
IPSEC CLUSTERING

Antti Nuopponen,' Sami Vaarala.e and Teemupekka Virtanen"

1Emic Networks

anltLnuopponen@iki.fi

2Stinghorn

samLvaarala @iki.fi

3Helsinki University ofTechnology

tpv@tml.hut.fi

Abstract IPsec based YPNs are widely used to secure connections in the Internet. As the
bandwidth in the Internet grows there is a need to create more powerful fault
tolerant IPsec systems. We present an IPsec c1ustering model based on sharing
the processing of each IPsec connection to all cluster nodes using a master node.
This c1ustering model offers good scalability, fine graded load balancing, and
fault tolerance while maintaining all IPsec security features. We also present a
test implementation of the c1ustering model with test results.

Keywords: IPsec, high availability, c1ustering

INTRODUCTION

The Internet Protocol security architecture (lPsec)[2] is commonly used to
secure connection in the Internet. In the Internet the bandwidth is growing all
the time, and the users are taking advantage of it. This sets higher and higher
performance requirements to all components of the Internet, IPsec systems
included.

One approach to the improve performance of an IPsec implementation is to
use high powered machines with dedicated cryptographic hardware. Another
approach to increase the capacity of an IPsec implementation is to group mul­
tiple machines in a way that they act as one IPsec node. This technique is
called c1ustering. In addition to better scalability the c1ustering also provides
fault tolerance, and an ability to dynamically add and remove members from
the system without affecting the cluster operation.

A straightforward way to cluster IPsec is to divide each IPsec connection
to a dedicated node in the cluster. This approach however suffer form several

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004

368

disadvantages. The load balancing can only be made in the connection level.
If there is for example a cluster with three nodes and there are two connections
into the cluster there is no way to take advantage of all cluster nodes.

The most serious disadvantage is the lack of ability to survive member fail­
ure situations transparently to the IPsec clients without compromising the se­
curity of the IPsec. The IPsec security associations (SA) in the cluster could be
synchronized between cluster nodes, and in a failure situation a new member
could start to serve connections of the member that failed. This however cre­
ates a security vulnerability because the replay protection information of the
cluster member that failed is lost. Because the IPsec replay protection infor­
mation has to be updated after every packet it can not be kept synchronized
between cluster nodes with a reasonable overhead. After the cluster member
has failed there is no way of telling which packets it already had received.

In order to create an IPsec clustering model that maintains all IPsec security
features and is transparent to the IPsec clients a new approach is taken. The
clustering presented in this paper is based on sharing the processing of each
IPsec connection (SA) to all cluster nodes using a master node. The model
assumes that the cluster members do not have an ability to keep IPsec security
associations synchron ized real-time and that every member of the cluster can
potentially fail in any point of time.

The paper is organized as fallows. In section I existing clustering models
are presented. Section 2 describes the clustering model presented in this paper.
Section 4 describes a test implementation and the conclusions are given in
section 5.

1. EXISTING CLUSTERING MODELS

There are some commercial IPsec clustering products available , but techni­
cal details of them are hard to obtain.

One IPsec clustering model is based on broadcasting all packets to all clus­
ter members in layer 2 and then selecting the processing node based on some
information on the packet. In this model there is no master node in the cluster
and all cluster nodes make the choice whether to process a packet or not indi­
vidually. Because each cluster node perform the IPsec processing independent
of each other there is no way to keep the IPsec SAs synchronized, and thus the
cluster can no guarantee the replay protection in a failure situation .

Other method to cluster IPsec is to dedicate a member of the cluster to each
IPsec connection when the connection is initiated. In this model the same
cluster member does all the processing of a given SA, and if the member fails
then the SA has to be renegotiated. To avoid the renegotiation the cluster could
synchronize each SA to more than one slave and then survive failure situation .

IPsec clustering 369

Unfortunately the SA replay protection information becomes the problem as
in the previous model.

2. CLUSTERING ARCHITECTURE

The IPsec c1ustering architecture presented in this paper is based on sharing
the same IP addresses between all cluster nodes. Each member of the cluster
has at least two network interfaces, which are named public and private inter­
face. Since the cluster is a security gateway between the IPsec c1ient and the
correspondent node only the IPsec tunnel mode is supported[2].

All packets sent to the cluster are first received by the cluster master, which
is one of the cluster nodes and is automatically selected among the cluster
members to handle the packet distribution. The master then forwards each
packet to a cluster node for processing. Other members of the cluster are called
slaves.

This kind of c1ustering technique makes the whole cluster to appear as a sin­
gle IP network node, and no changes to the existing IPsec clients are required
as long as the cluster does not lose the SA information .

It is assumed that an IPsec c1ient can set up an IPsec SA with the cluster
using Internet key exchange (IKE)[5] . Detailed description about how that is
done is out of the scope of this paper, but for example IKE negotiations can be
handled in the cluster master node.

Forwarding model

The forwarding in the master node is done packet-by-packet basis using a
load sharing function that takes in the packet and produces an id that points
to a member of the cluster to which to forward the packet for processing. The
master itself does not take part to the IPsec processing because it would make
it impossible to survive a master failure without compromising the replay pro­
tection.

The advantage of this kind of load sharing is that differences between IPsec
connections do not affect the load differences of individual cluster members . If
an IPsec connection creates a traffic peak the effect is a load peak in all cluster
members not just in one member. Other big advantage is the ability to maintain
IPsec security in failure situations.

With this kind of forwarding model two issues arise; first is the IPsec replay
protection when receiving packets and the second is traffic based SA lifetime .
It is unrealistic to keep the replay protection information synchronized real­
time and therefore a cluster member A can not know what sequence number
a member B has already received. If a packet with a sequence number n is
forwarded to the cluster member A for processing and the packet is re-sent

370

to the cluster and forwarded to the cluster member B, IPsec replay protection
does not work.

Next subsections describe how these problems can be solved.

Load sharing function

In order to maintain the replay protection feature of the IPsec when receiving
IPsec packets the load sharing function must always map the same sequence
number to the same authentication context, or to drop it if the authentication
context no longer exists. To achieve this, the load sharing function uses the
IPsec sequence number field as input and performs deterministic mapping from
the sequence number to a cluster member id.

The sequence number field must always be present on an IPsec packet, and
the sender must add incremental sequence number to every packet[4, 3]. If the
receiver explicitly teIls the sender not to use reply prevention the sender can
stop adding the sequence number into each IPsec packet. This does not limit
the use of the sequence number in the cluster solution, because the cluster is
the receiver and the cluster does not send the notification to the IPsec client.
This ensures that the client must add a sequence number to each packet.

The IPsec ESP[4] transform allows operation without packet authentication.
In this mode the sequence number is not authenticated and the replay preven­
tion is not used. The clustering solution can handle this mode in a same way
than other modes by treating all packets as if they passed the replay protec­
tion check. As described in [6] the use of ESP without authentication opens
security vulnerabilities, and thus it is better to use authentication with ESP.

If the ESP with authentication is used all IPsec packets that are secured
using the same SA have a unique sequence number value that can not be mod­
ified. Because sequence number field is present in every IPsec packet, it can
not be modified and it is unique in context of one SA, it is a good basis for
multiplexing the connections between cluster nodes.

Because a cluster member will most likely lose its SA information in a fail­
ure situation the authentication context is linked into the cluster member in
a way that every time a member leaves the cluster and joins it again a new
authentication context is created .

Outbound packets do not have the sequence number when they are received
by the master. In order to use the same load sharing model the cluster master
first allocates a sequence number, places it to the packet and then uses the load
sharing function to decide to which member to send the packet for the actual
IPsec processing.

IPsec clustering 371

Inbound IP traffic processing

Inbound IP traffic that does not have an IPsec protection are handled by the
cluster master as specified in [2].

When an IPsec protected packet is received by the master it first performs
an SA lookup to find the correct SA for the packet. If no such SA is found the
packet is discarded. After the master has Iocated the correct SA it uses the load
sharing function of that SA to get the cluster member id to which to forward
the packet. The function mayaiso produce a null result which indicates that
the packet must be discarded. Ones the slave receives the packet it performs
the same SA lookup to find the correct SA to use. If the slave can not locate the
SA it discards the packet and send notification about missing SA to the master.

If the master receives notification about missing SA it send the SA to all
cluster members.

The cluster master also maintains additional information about packets it
forwards. This information includes the highest seen sequence number and
highest authenticated sequence numbers. The master uses this information to
survive from failure situations. The highest seen sequence number is the larges
seen sequence number for each SA that the master has forwarded to a clus­
ter node. The highest authenticated sequence number is the highest sequence
number that the cluster nodes have reported correctly authenticated.

Outbound IP trafiic processing

In outbound packet processing the cluster master first checks the correct
action from the IPsec Security Policy Database (SPD)[2] . If the action is to
apply IPsec and use replay protection the master thcn allocates next sequence
number to the packet and uses a load sharing function to decide to which cluster
member to send the packet to. The master attaches the sequence number into
the packet so that the slave knows which sequence number to use.

Ones the slave receives the packet from the master it locates the correct SA
from the SPD and then applies the IPsec protection specified in the SA using
the sequence number assigned by the master. After packet is protected the
slave sends it to the other endpoint of the IPsec connection.

Handling failure situations

There are two kind of failures that can occur; first is the master failure and
the second is the slave failure. These are handled differently, and as long as
they do not occur simultaneously the cluster can survive them transparently to
the IPsec clients and without compromising security features of the IPsec.

In a slave failure situation the cluster master performs a load re-assignment
that removes the failed slave from the cluster. This is done by defining a new

372

load sharing function starting from the next sequence number after the highest
seen sequence number. Because the master forwards all packets to the cluster
members for processing this guarantees that no replay attack is possible .

When the master fails a new master is automatically selected. The new
master does not forward any packets until it has asked the highest authenti­
cated sequence number for each SA from all cluster members. Ones the new
.master has this information it creates a new load sharing function for each SA.
These functions only allow packets that have higher sequence number than al­
ready authenticated. Because the master does not perform IPsec processing the
cluster slave members have all the replay protection information. If the master
would participate into the IPsec processing there would be no way to survive
from the master failure without compromising the replay protection.

In a situation were the master and at least on of the slaves fail simultane­
ously, the cluster has to drop all SAs, because it does not have enough infor­
mation to recover without compromising the security.

Changing the mapping functions

When the state ofthe clusterchanges in some way, forexample a new mem­
ber is added or a member fails, the cluster must update the load sharing func­
tion. The update must be made in a way that the mapping of an already seen
sequence number does not change. This can be done by defining the new load
sharing function in parts. When a new sharing scheme is taken into use the
function is redefined starting from a sequence number larger than the largest
seen by the master so far. For example the load sharing function could be
defined as folIows:

{

FI(s) ,for s :S 100
F(s) = F2(s) ,for 100< s < 500

F3(s) ,for s ~ 500

In this example packet with sequence number smaller or equal than 100 are
mapped using function FI, packet with sequence numbers between 101 and
499 are mapped using function F2, and packet with sequence number larger
or equal of 500 are mapped using function F3. The function FI could for
example map packet to slaves one, two, and three. The function F2 could
represent a failure of a slave when packet are mapped to slaves one and two.
Ones the slave three has rebooted it can rejoin the cluster and a new function
F3 taken into use.

IPsec specification[2] defines the replay protection in a way that packets
with sequence number smaller by the size of the replay window that the highest
seen sequence number are automatically dropped . This allows the clustering
implementation to forget the previous definitions of the load sharing functions
after packet with larger sequence numbers are received. The required receive

lPsec clustering 373

window size is 32, and recommended is 64. In the above example when the
c1ustering has seen and authenticated a packet with sequence number larger
than 164 it can forget the function definition FI. This feature allows the c1us­
tering to maintain only two function definition as long as it does not redefine
the function before is has seen and authenticated packet with larger enough
sequence number in order to forget the previous definition.

Replay protection information synchronization

In order to properly handle slave faiIure situation, the cluster needs to syn­
chronize the replay protection information periodicaIly. Synchronization has
to be done in a way that it prevents potential denial of service attack that could
be made using fake packets that have a very high sequence number. This attack
is explained in more detail in section 3.

Figure I illustrates the sequence number synchronization. A message named
"packet (xx)" is an IPsec protected packet with a sequence number of xx. At
first the master receives two packets with sequence numbers 10 and 11. The
master forwards these packets to slaves 1 and 2 and marks the highest sequence
number seen to 11 (Sk = 11). Then the master receives a forged packet with
sequence number 50 and forwards it to the slave 2. Now the highest seen se­
quence number is 50 (Sk = 50), even though the slave 2 dropped the packet
because it was not authenticated correctly.

Figure I.

~
Periodic synchronization of sequence number counters

~~~c;=J
Packe l( IO)

nPackel( lO)

Packell l l) Packe l(IO )

Packel( l1)

FOfgedPackel(50j 11 Pa ckel( l l)

Forged Packet (SO)

Pac kel( 13)

Padlet( lJ)

Packe l( 14) Pac ke l (13)

Packel(1 41

Master marks lhe D Se qnum reg uesl ~I..1 Packel (14)

higheSlsaquence
number seen 10 Seqnumreguest

50 and sers

-~
Higle sl seq num 13

highesf 100
Packel(15)

I Pack et (15)

Maslefha sr eceived

Imessages "om slaves HigleSlseqoum 14

and sers hl{1leSl seen

~
PaelIet (l S)

1015

~ l)

After the packet with sequence number 14, the master sends the periodic
sequence number synchronization request to alI slaves. When the master sends



374

the request it saves the highest seen sequence number (s s = 50), and set the
current value ofthe highest seen sequence number to zero (Sh = 0). Before all
slaves have responded to the request the master has forwarded a packet with
the sequence number 15 (Sh = 15) to the slave 1. After all slaves have replied
to the request, the master checks the highest correctly authenticated sequence
number from all slaves. Then the master sets the highest seen sequence number
to the maximum of the current highest seen by the master (Sh = 15) and the
highest authenticated by slaves (sa = 14).

If the packet with sequence number 50 would have been correctly authenti­
cated the slave 2 would have sent this in its sequence number synchronization
reply, and the highest seen sequence number would have ended up to be 50.

The sequence number synchronization is done in this way to prevent a denial
of service attack using forged sequence numbers. In this attack a malicious
node sends fake packets to the cluster. These packets have a valid SPI value and
a maximum sequence number. These packets cause the highest seen sequence
number seen in master to be the same as in attack packets. If the cluster did
not have a mechanism to roll back the highest seen sequence number a single
packet would be enough to cause the value to remain high . This would cause
a infinitely long delay when a slave fails, and the load sharing must be re­
assigned. Details how the slave failure situation is handled is explained in
section 2.

3. ANALYSIS

Security association lifetimes

An IPsec security association has two different lifetimes: first is the time
based lifetime defining how long an SA can be used, and the second is the
traffic amount based lifetime defining how much data can be transferred using
anSA.

Each cluster member can monitor the time based lifetime individually, and
the only requirement is that cluster members keep their clocks synchronized.
This can be done for example using the network time protocol[l] .

The traffic amount based lifetime is more difficult to handle, because each
cluster member that participates to the IPsec processing processes only a por­
tion of the actual traffic . Fortunately traffic lifetime can be handled by being
little over cautious. This is done in a way that each cluster member sends
periodically the amount of traffic it has received to the cluster master. The
master then send the total amount of traffic received back to each cluster mem­
ber. In addition to this the cluster master also counts the traffic it forwards to
the cluster members. If the traffic Iifetime would be exceeded by adding the
forwarded amount of traffic the master stops forwarding traffic of this SA and
send request for data counters to all cluster members. Now the master knows



IPsec clustering 375

the actual amount of traffic received using this SA. If it does not exceed the
traffic Iifetime the master will continue forwarding traffic. Ones the Iifetime
would be again exceeded with the forwarded amount the master repeat the pro­
cedure. When the Iifetime is actually exceeded the master will remove the SA
from its database and optionally sends IKE notification to the IPsec c1ient.

In a typical IPsec setup a new SA is negotiated when the old one is about to
exceed its Iifetimes, and that is why the cluster does not have to perform this
kind of procedure in practice.

In a slave failure situation the master must relay on the amount it has for­
warded to the clients and update the traffic counters according to it. This does
not cause any security issues since the forwarded amount of traffic is always at
least as large as the actual amount of traffic received using an SA.

Security

This section gives an analysis of the differences of the c1ustering method
presented in this paper and a single node IPsec implementation. This analysis
show that the security of the system presented is as good as single node IPsec
implementation.

In a steady state the packet processing is logically done exactly as in a single
node IPsec implementation as long as the load sharing function guarantees that
all IPsec packets protected using the same SA with the same sequence number
are forwarded to the same authentication context.

Because the changing of the load sharing function is done by defining a new
function starting from a given sequence number there is no way that a packet
could be forwarded using two different mapping functions.

The master failure situation does not generate any security weaknesses as
long as only the master fails because other members of the cluster have the
whole replay protection information available and the new master only for­
wards packets with larger sequence numbers that already received before the
old master failed .

The slave failure situation is the only situation were there are a change to
attack the cluster. In a situation were a slave fails a malicious node can perform
a denial of service attack by sending fake IPsec packet that have very high se­
quence number. This attack is carried out by constantly sending these packets,
and ones a slave fails the cluster master has forwarded a very high sequence
number to that slave. Because the master does not know whether the packet
was correctly authenticated it has to assume that it was, and only define a new
load sharing function after this sequence number. This generates a situation
were the cluster is unable to take a new load sharing function into use and the
portion of the traffic previously handled by the failed node is discarded.



376

To make this attack less serious the cluster constantly synchronizes the re­
play protection information as specified in 2. Because of this synchronization
the attacker must be actively sending packets when a slave fails. If it's not the
highest seen sequence number is rolled back during the periodic synchroniza­
tion.

There is a possibility to initiate a targeted denial of service attack against
a single cluster node. This attack is performed by generating forged packets
with valid SPI and high sequence number. When these packets are sent to the
cluster they will end up to the same cluster node, since they have the same
sequence number. When this kind of attack occurs the cluster will re-balance
the load and the attack will automatically move to the next node. As long as
the attack is ongoing the cluster will keep re-balancing the load over and over
again. This will cause disruption to the cluster, but compared to single node
implementation the situation is better since the whole cluster can not be taken
down.

4. IMPLEMENTATION

We made an test implementation of the clustering model presented in this
paper using an existing clustering implementation running on Linux. The ex­
isting clustering worked on a connection level in a way that each IPsec con­
nection is assigned into a single cluster node. In a case of member failure the
existing clustering requires a new IKE negotiation.

Load sharing function

The load sharing function F(s) = id was implemented using a sharing table
that contains 256 entries. Each of these entries contains apointer to a member
in the cluster. The table is filled in pseudo random way so that desired portion
of the table entries point to a desired node. This way the packet forwarding
code can just use last eight bits of the sequence number as an index into the
table to get the id of the correct member to which to forward the packet.

The pseudo random function used to fill the sharing table needs not to be
very good. Just a simple integer hash that divides sequence numbers in a
pseudo random way works fine. The main point about the function is that
there would not be long sequence of same ID in the share table to avoid bursts
of traffic.

Figure 2 shows an example of a share table from a cluster that has three
nodes that participate to the IPsec processing .

Figure2. Example share table



IPsec clustering 377

Performance testing

The performance testing was done using four Pentium 4 1,8GHz machines
as a cluster, two Pentium 4 2,4GHz as IPsec c1ients and own Pentium 3 ma­
chine as a server that runs a tool called iperf. The iperf is a tool that measures
network throughput using UDP or TCP.

Throughput using the single node IPsec was measured to be 52Mbit/s in
both directions. At this speed the processor load of the IPsec node handling
the IPsec c1ient was 100%, and the processor load of the IPsec c1ient was about
40%. The machines used as an IPsec c1ient and gateway were identical. The
difference between processor loads is caused be the different software archi­
tecture of the Linux and Windows IPsec implementations.

The performance of the implementation made in this paper was found to
highly depend on the amount of simultaneous TCP connections used to mea­
sure the performance. Analysis of the implementation showed that this effect
was caused by reordering of packets when they were put through the cluster.
Reordering caused TCP to drop window size and triggered the TCP fast re­
transmission that wasted the bandwidth. Overall the TCP behaves badly when
reordering occurred. When the amount of concurrent TCP connections was
increased the reordering effect became smaller for a single TCP stream and the
performance improved significantly. More details how TCP reacts on reorder­
ing of packets is explained in [7].

The reordering effect sets an upper limit to throughput of a single TCP
stream in this kind of cluster. When this limit is reached the TCP starts to
suffer from the reordering. Estimation about this limit can be calculated using
the network latency between cluster members. The amount of reordering can
be calculated from the network throughput and extra delay in the route through
a slave. The amount means that how many packets can be passed through the
master before a packet sent through a slave arrives to the receiver.

In order to remove the re-ordering problem the cluster could be modified
to route all packets through a ordering node that would use upper layer proto­
col information such as TCP sequence numbers to restore the right order. In
principle this node could be the cluster master. However routing packets twice
through the master would degrees the performance of the cluster.

Table 1 summarizes the results of the performance measurements using a
single TCP stream. Upload means the traffic throughput from the IPsec dient
to the server, and the download means the traffic throughput from the server
to the IPsec c1ient. In a two member setup the traffic was divided in a way
that the master handled 40% of the traffic and slave handled 60%. In a three
member setup the master did not handle traffic at all and both slaves handled
50% each . In four member setup the master handled 1% of the traffic and each
slave handled 33%.



378

Table1. Results of the performance measurements

Download Upload
Single 53 MbitJs 53 MbitJs

1 member 47 MbiUs 46 MbitJs
2members 41 MbitJs 28 MbitJs
3members 68 MbitJs 43 MbitJs
4 members 30 MbitJs 43 MbitJs

As the table shows the three member setup provided the best performance
of the new cluster. This was caused by the fact that the master did not handle
the traffic at all and traffic routes through both slaves were almost equal in term
of latency. In two and four member setups the traffic going through the master
caused more reordering than in three member setup, because the route through
the master was faster than the route through the slaves . Later measurements
showed that even in a setup were the master does not handle traffic at all re­
ordering seems to happen, because the throughput increase in this setup was
also significant when traffic was divided to multiple TCP streams.

Fail-over testing

The fail-over testing was done with a cluster of two machines.
The first test measured how a failure of a slave affects the traffic throughput.

The slave was removed from the cluster when the IPsec client was downloading
through the cluster. The throughput was measured as an average in 5 second
intervals using 5 simultaneous TCP streams. The traffic was divided between
cluster members in a way that the master handled 40% of the traffic and the
slave handled 60%.

Throughput in the first interval before the slave removal was 70Mbit/s. In
the second interval were the slave was removed the throughput was 42Mbit/s,
and in the last interval were the master handled the whole traffic the throughput
was 47Mbit/s.

When the slave was removed it took 600ms from the master to notice that
slave was removed. During this time slave's portion of the traffic was lost.
After the master noticed that the slave was missing it re-assigned the load share,
and the packet loss ended.

As can be seen from the throughput in interval were the slave was removed
the impact was smalI. The throughput was only 5% smaller than it was using
single node with no packet loss. Of course if the measurement interval would
be smaller the affect would be larger. The 5 seeond interval gives impression
about what kind of impact a slave failure would cause in a real situation. If the
total traffie through the cluster is less than 47Mbit/s when a slave fails there is



IPsec clustering 379

no real affect to clients. If the total throughput is larger then all connections
will be slowed down after the failure .

5. CONCLUSIONS

The IPsec c1ustering method presented in this paper provides high availabil ­
ity and scalability while maintaining all security features of the IPsec .

If the architecture presented in this paper would be taken into commercial
use, more extensive test should be made to see how the cluster reacts to differ­
ent kind of load peaks, and how the SA synchronization work in setup were the
amount of SAs is in order of thousands. For use in very high speed connections
such as site-to-site VPNs the packet re-ordering issues must be solved.

References

[I) David L. Mills: Network Time Protocol (Version 3). Request For Comments 1305, March
1992.

[2J Randall Atkinson, Stephen Kent: Security Architecture for IP. Request For Comments
2401, November 1998.

[3J Randall Atkinson , Stephen Kent: IP authent ication header (AH). Request For Comments
2402, November 1998.

[4] Randall Atkinson , Stephen Kent: IP Encapsulating Security Payload (ESP) . Request For
Comments 2406 , November 1998.

(5) Dave Carrel, Dan Harkins: The Internet Key Exchange (lKE) . Request For Comments
2409, November 1998.

[6] Steven M. Bellovin: Problem Areas for the IP Security Protocols . Proceedings ofthe Sixth
Usenix UNIX Security Symposium. July 1996.

[7] Ethan Blanton , Mark Allman: On making TCP more robust to packet reordering. ACM
Computer Communication Review, 32(1), January 2002.


