
MDA PLATFORM FOR COMPLEX EMBEDDED
SYSTEMS DEVELOPMENT

Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat
CEA LIST – CEA SACLAY
F-91191 Gif-sur-Yvette Cedex France
Phone : +33 169 085 039
{chokri.mraidha; sylvain.robert; sebastien.gerard ; david.servat}@cea.fr

Abstract: Moving from code-centric to model-centric development seems to be a
promising way to cope with the increasing complexity of embedded real-time
systems. The Object Management Group (OMG) has been recently promoting
this approach, known as Model Driven Architecture (MDA). It relies on UML
model refinement and transformation as the basic step of an iterative design
process. This model-centric posture has raised many questions, among which
the need for an integrated MDA-based developing environment is probably the
most severe one. It directly affects the reality of the adoption of this good
practice by software engineers. For several years, the CEA-LIST has been
involved in the field of real-time systems research and development. This
work resulted in the completion of the Accord/UML toolkit, which aims at
providing users with a model-driven method and supporting tools. This paper
outlines the Accord/UML approach focusing on the solving of complex real-
time/embedded systems development issues in this MDA process.

Keywords: Model driven development, UML, Real-time embedded systems

1. INTRODUCTION

Over the last few years, engineers have been faced with the problem of
developing more and more complex embedded real-time systems in a world
where time-to-market constraints are constantly increasing. Moving from
code-centric to model-centric development brings significant answers to



2 Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat

software complexity management. With its standardization the Unified
Modeling Language (UML) [1] has become the lingua franca of object-
oriented modeling. Existing UML-based approaches for real-time systems
development [2, 3] still result in models that are hard to maintain and reuse.
This drawback is principally due to the lack of model development
methodologies.

The Model Driven Architecture (MDA) [4] initiative introduces
architectural separation of concerns in order to provide portability,
interoperability, maintainability and reusability of models. To achieve these
goals, MDA recommends different kinds of models and describes ways to
obtain these models from one another through model transformation
processes. MDA relies on three kinds of models, which are the Computation
Independent Model (CIM), the Platform Independent Model (PIM) and the
Platform Specific Model (PSM).

The CIM is a view of a system from a computation independent
viewpoint. This model focuses on the requirements of the system and its
interactions with the environment while hiding the details of the structure of
the system. In other words, the system is seen as a black box. The PIM
focuses on the structure and operations of the system from a platform
independent viewpoint while hiding details specific to a particular platform.
In the PIM, the system is seen as a white box. The PSM combines the PIM
with details specific to a particular platform to obtain a model dependent of
that platform.

The idea is then to apply MDA tenets in order to facilitate development
of real-time applications. Accord/UML [5, 6] is an MDA-oriented
methodology entirely based on UML which aims at facilitating real-time
software development by engineers who are not real-time experts. The first
section of this paper gives an overview of the Accord/UML methodology,
enhancing its compliance with the MDA approach. The second section
accounts for several directions of research to deal with platform specificities
issues for complex embedded real-time systems development, while putting
emphasis on code generation process, before giving a short conclusion.

2. OUTLINES OF THE ACCORD/UML PLATFORM

Accord/UML aims at providing users with an MDA-compliant
methodology and connected tools dedicated to real-time systems design.
This section briefly introduces of the Accord/UML methodology before
giving an overview of its associated workbench.



MDA Platform for Complex Embedded Systems Development 3

2.1 The Accord/UML methodology

A prototype development with the Accord/UML methodology basically
consists of three successive phases, each producing one of the three MDA
model kinds. For each phase, Accord/UML provides guidelines and UML
extensions (gathered in a UML profile), which enable users to model system
real-time features. Moving from one phase to another is facilitated by
partially automating model transformations.

The preliminary analysis phase deals with requirements capture. System
requirements are identified and reformatted in a set of UML diagrams (use
case diagrams and high-level scenario diagrams). The resulting model gives
a better-formalized view of system functionalities regardless of its internal
structure. This model, called Preliminary Analysis Model (PAM) in our
methodology stands for the CIM MDA model.

In the detailed analysis phase, the objective is to move from the PAM to
the Detailed Analysis Model (DAM), which is the Accord/UML vision of
PIM. The system is decomposed in complementary and consistent sub
models: structural models (mainly class diagrams), detailed interaction
models (detailed scenarios diagrams), and behavioral model (statecharts and
activity diagrams). Structural models are built following a generic pattern,
which consists in separating system core features from its relationships with
its environment. This approach notably favors reusability and permits to
define a generic mapping from PAM to DAM. Modeling real-time structural
features is eased by introducing the Real-Time Object concept [7, 8], an
extension of UML active objects. As far as behavioral modeling is
concerned, two aspects are separated [9]: the control view through
statecharts, and the algorithmic view through activity diagrams completed by
an UML Action Semantics [1] compliant Action Language [10]. To ensure
determinism in modeling behavioral aspects, Accord/UML also provides
through its profile a set of rules to specify UML semantics variation points in
the one hand and clarify some ambiguous points on the other hand. The
resulting model gives an implementation language independent executable
specification of the system.

Finally, the aim of the prototyping phase is to obtain a complete running
mock-up of the application from its DAM [11]. This model is the
Prototyping Model (PrM), an Accord/UML equivalent of PSM. This model
is then used as an input to a specialized C++ generator, handling notably
system real-time features implementation. Eventually, a runtime framework
is provided to support the execution of the synthesized code on top of a
Real-Time Operating System: the Accord real-time kernel, and the Accord
virtual machine. The so-obtained prototype can thus be validated by test.



4 Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat

2.2 The Accord/UML workbench

As depicted in Figure 1, the Accord/UML methodology support consists
mainly of three parts: automatic synthesis of specific design patterns relating
to real-time and distribution issues; full code generation (structure +
behavior) toward the Accord runtime platform; the Accord platform itself
implementing high level concepts of the methodology and running on Unix,
Linux or VxWorks.

Figure 1: From analysis model to executable application.

The Accord/UML workbench relies on a generic UML-based CASE tool,
Objecteering [12], which we customize for distributed real-time embedded
systems design. This offers possibilities through its profile builder tool to
implement UML profiles. Our toolset is then made of the Objecteering tool
completed with additional modules implementing the Accord/UML profiles.

More precisely, in modeling phases, building models is done thanks to
the Objecteering UML modeler, which provides a complete set of UML
elements (e.g. use cases diagrams, class diagrams, state-machine diagrams,
sequence diagrams...), but also using additional model elements defined in
the context of the Accord/UML profiles and ensuring real-time features
modeling. Stepping from one model to another is done as much as possible
via Accord/UML specific model transformation rules. For instance,
Accord/UML sets mapping rules to ensure automatic model transformation
from Use Cases diagrams to Classes diagrams. The tenets of the approach
being to define and implement as often as possible modeling rules to assist
the engineer in building the application model. One could speak of MAC
(“Modeling Assisted by Computer”).

In addition, the Accord/UML tools provide the developer with means of
validation in the earlier phases of the development. Firstly, structural and
functional validation is carried out on the behavioral models. To this end, a
connection has been made between Accord/UML and the Agatha tool [13-
15], enabling automatic test case generation from the behavioral diagrams
obtained during the detailed analysis phase. Secondly, a validation of quality
of service (QoS) in terms of timing requirements is performed by a



MDA Platform for Complex Embedded Systems Development 5

schedulability analysis of UML models [16]. This point will be discussed in
more details in the following sections.

Once application models are completed, one may perform code
generation from this model. To this purpose, Accord/UML provides a
specialized code generator targeting C++ code (a C code generator being
under development). This generator has been upgraded to integrate real-time
features support conformant to the Accord/UML specification. This means
that the generated code can be executed with support from the Accord kernel
and Accord virtual machine [17] running on top of various operating
systems, namely VxWorks, UNIX, or Linux.

3. PLATFORM DEPENDANCE ISSUES IN AN MDA
PROCESS

In this section, we present the strategy adopted in Accord/UML to deal
with real-time/embedded issues, before providing several examples
assessing the relevance of our choices.

3.1 Rationale

Targeting real-time embedded applications instead of mainstream ones
imposes a superset of constraints on the software developed, among which
platform-related considerations and real-time features validation are
prevailing. Actually, traditional real-time software design processes provide
strategies and support tools to validate temporal (either application-specific
or non-functional) properties of the system during the earlier phases of the
design cycle. Moreover, in the context of embedded applications, the
characteristics of the HW platform have a major influence on the final
system temporal behavior and have to be taken into account to make relevant
design choices. Integrating these issues in our MDA-compliant approach is
thus one of the major challenges we had to face.

As a consequence, two principal objectives were aimed to in the design
of our development methodology and tools: to provide a sufficient level of
real-time features integration and providing ways to validate the application
with respect to the HW platform, in a UML-based model-centric approach.
This comes actually to an attempt to merge conflicting aspects, since the
ultimate goal of the MDA approach is precisely to shield concerns linked to
the platform (in terms of implementation language as well as targeted HW).
Furthermore, the UML is a language, which natively provides only “raw”
materials (model elements, extension mechanisms), which are voluntarily



6 Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat

platform-independent and generalist. As a consequence, UML tools are
usually designed to support mainstream software development and provide
therefore very poor means of validating real-time properties. All these
considerations have led us to differentiate three kinds of actions to perform:

Adapt the UML to real-time issues, by adding or extending (with UML
profiles) native model elements to provide proper ways to represent
temporal features at the model level.
Adapt existing validation strategies to our approach: this implies notably
to bridge the gap between the UML and other more formal languages,
and between UML modeling tools and validation tools.
Ensure the suitability of the application with respect to its embeddability,
by trying to express the HW platform characteristics at the model level
and thus enabling to make design choices in accordance.
These directions have been applied and refined all along the design of our

platform. In the next sections, we account for this process, by describing
works addressing several specific aspects of MDA adaptation to real-
time/embedded issues.

3.2 A generic architecture for smart-sensor networked
application

This thread of work is focused on architectural aspects when dealing with
embedded applications. Smart-sensor networked applications stand as the
prototypical example of such complex, but fairly common type of
architectures, featuring both a central computing resource, such as an
embedded PC, and several electronic devices, such as sensors and actuators.

To cope with the integration of such heterogeneous type of both
hardware and software pieces, the component paradigm is of great help. It
helps give a likewise abstract view of the various parts of the system. Then
the question remains as how to integrate those parts, given that, most of the
time, each of them is devised in an independent fashion, which prevents
from easy coping of, among many, communication matters.

This work [18, 19] is an attempt to provide a generic integration scheme
in the form of a component-partition of such networked applications. In his
proposition, a sensor is represented both at the application (embedded PC)
and at hardware level by various components:

At the hardware device level, the sensor is seen as two components. The
first one provides interface to the hardware logic. It is specified according
to the existing standards (IEEE and OMG [20, 21]). The second one
embeds the user logic and functional features. Apart from some
predefined interfaces it is left to the engineer to develop



MDA Platform for Complex Embedded Systems Development 7

At the embedded PC level, each sensor is represented by a device-driver
component, which realizes one among predefined communication
patterns and provides specific service interfaces to talk to the sensor
through the network. Both CAN and Ethernet protocols have been taken
into account so far and special care has been given to the design of
synchronization algorithms among all the device driver components, so
that the whole communication delay is handled. All this logic is
embedded in the device-driver model construct, from which code can
then be generated.
This is a typical example of what MDA is promoting. The definition of

generic integration patterns, giving a sound basis for modeling, which in
turn, via code generation, is finely-tuned to specific targeted electronic
device platforms.

3.3 Schedulability and performance analysis

This thread of work can be seen as a general concern for assessing
system properties – functional as well as extra-functional – at the level of the
model. Among those, schedulability and performance stand as the most
severe ones that embedded systems are expected to provide.

Three subsequent PhD thesis have been led on this topic within our team.
The pursued goal was, on the one hand to broaden the coverage of those
aspects within the UML, and on the other hand to bridge the gap between
such UML modeling constructs and the use of external validation tools.

As concerns the first aspect, a dedicated UML profile was designed to
define a generic Action Language [10] suitable for expressing control and
functional algorithms in an implementation-language-independent fashion.
Besides, another profile was developed to enable the expression of worst-
case execution time (WCET) properties at the model level. Based on these,
both a static and a dynamic WCET analysis of the overall models are
possible.

The second part consisted in an effort to derive from Accord/UML
standard models a specific, scheduling-oriented model [16], suitable for
interpretation within a symbolic execution based validation tool, Agatha [13,
14], developed at CEA-LIST. Once established, this link between both tool-
chains enables a complete assessment of the scheduling properties of an
application model, provided that WCET information is fed to the models.
This approach was mainly intended for critical real-time systems, for which
precise knowledge of WCET are more likely to be known.

Finally, an ongoing work is focused on performance assessment, based
on the use of the enhancement of the Scheduling, Performance and Time
UML profile [22] and on the generation of Layered Queuing Networks



8 Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat

(LQN) [23] from standard Accord/UML application models. In the same
way as was done for the scheduling issue, we foresee here the opportunity to
bridge the gap with tools that were devised to extract LQN properties.

3.4 From models to code

Real-time embedded systems have to meet various design constraints
including consumption of energy or memory and a sufficient level of
performance to satisfy real-time requirements. There are actually several
kinds of real-time embedded systems. They cover a wide range of domains
going from cell phones applications to nuclear power plants control systems
or also spacecrafts embedded calculators. Each domain has its own
constraints to meet. This concern takes place at every stage of the design
process but the fact that code of the application is the last link in the chain,
makes code generation an essential and critical phase of model-centric
development. Code provided by generators has to meet constraints of the
RT/E application itself but also has to take into account the limitation of the
resources provided by the hardware supports of the application. Hence, code
generation needs to be optimized for each targeted platform depending of the
features it offers. Besides, there are often several solutions to generate code
from a given model. For example, a state-transition model may be generated
under the form of a set of nested switches [24], or using the state pattern
[25], but also by generating tables. These three patterns of code generation
will not have the same impact on energy, memory and performance features
of the generated code.

These different patterns of code generation are proposed in the
Accord/UML workbench. Hence, code for different optimization purposes
can be generated from the same model. Currently, the user has to manually
make the choice of the code generation pattern, but our goal is to have a
“smart” code generator capable of making this choice as automatically as
possible. More than constraints specifications, this requires an elaborated
platform description model to gather sufficient amount of information and
we also need to elaborate some heuristics, keeping in mind combinatorial
explosion issues, to be able to make the most appropriate choice.

Another axis of our ongoing work on optimized code generation concerns
the ability to quantify the efficiency of the generated code in terms of
energy, memory or performance in order to validate the fulfilment of
requirements. From our point of view, this is a very important challenge in
order for model-driven development to be a success in real-time embedded
system development domain.



MDA Platform for Complex Embedded Systems Development 9

4. CONCLUSIONS

We strongly believe that the MDA approach, or more generally design
processes centered on models design, constitutes a powerful mean to
facilitate real-time embedded systems development. However, this statement
will be completely true only if support tools and design processes guidelines
are defined and refined, taking into account the very specific aspects of this
application domain.
This paper expands this core rationale by describing the Accord/UML
platform, a combination of an MDA-compliant methodology and a
supporting workbench for developing real-time systems. In Accord/UML,
going through development process is eased by models transformation
automation and code generation, and support is provided until code
execution. In order to mitigate concerns linked to implementation, a
seamless integration of embedded and real-time features is performed all
along the development process, for instance by providing methods and tools
for temporal validation, or by extending the UML to a “real-time UML”.
The relevance of our approach has been assessed in various applications
from the automotive and telecom industry in the context of European project
such as AIT-WOODDES, EAST, or ARTIST.

REFERENCES

1.
2.

3.

4.
5.

OMG, Unified Modeling Language: Superstructure Version 2.0. 2003.
B.P. Douglass, Real-Time UML : Developing Efficient Objects for Embedded Systems.
Object technology Series, ed. Addison Wesley. 98.
Bran Selic, Garth Gullekson, and Paul T. Ward, Real time Object-oriented Modeling.
Wiley Professional Computing. 94: John Wiley & Sons, Inc.
OMG, MDA Guide Version 1.0.1. 2003, OMG.
Sébastien Gérard, et al. Efficient System Modeling of Complex Real-time Industrial
Networks Using The ACCORD/UML Methodology. in Architecture and Design of
Distributed Embedded Systems (DIPES 2000). 2000. Paderborn University, Germany:
Kluwer Academic Publishers.
S. Gérard, F. Terrier, and Y. Tanguy. Using the Model Paradigm for Real-Time Systems
Develoment: ACCORD/UML. in OOIS’02-MDSD. 2002. Montpellier: Springer.
François Terrier, et al. A Real Time Object Model. in TOOLS Europe’96. 1996. Paris,
France: Prentice Hall.
Sébastien Gérard, et al. A UML-based concept for high concurrency: the Real-Time
Object. in The 7th IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC 2004). 2004. Vienna, Austria.

6.

7.

8.



10 Chokri Mraidha, Sylvain Robert, Sébastien Gérard, David Servat

9.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

12.
13.

10.
11.

Chokri Mraidha, et al. A Two-Aspect Approach for a Clearer Behavior Model. in The 6th
IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC’2003). 2003. Hakodate, Hokkaido, Japan: IEEE.
Chokri Mraidha, et al., Action Language Notation for ACCORD/UML. 2003, CEA.
Patrick Tessier, et al. A Component-Based Methodology for Embedded System
Prototyping. in 14th IEEE International Workshop on Rapid System Prototyping
(RSP’03). 2003. San Diego, USA: IEEE.
Softeam,Objecteering,http://www.obecteering.com.
C. Bigot, et al. Automatic test generation with AGATHA. in TACAS. 2003. Warsaw,
Poland.
D. Lugato, et al., Validation and automatic test generation on UML models : the

AGATHA approach. special issue of the STTT (Software Tools for Technology Transfer),
2004.
C. Bigot, et al. A Semantics for UML specification to be validated with AGATHA. in
ERTS’04. 2004. Toulouse, France.
Trung Hieu Phan, et al. Scheduling Validation for UML-modeled Real-Time Systems. in
ECRTS 2003. 2003. Porto, Portugal.
David Servat, et al. Doing Real-Time with a Simple Linux Kernel. in RTLWS’2003. 2003.
Valencia, Spain.
C. Jouvray, et al. Smart Sensor Modeling with the UML for Real-Time Embedded
Applications. in IV2004. 2004. Parma, Italy.
C. Jouvray, et al. Networked UML modeling sensors. in ICTTA’04. 2004. Damascus,
Syria.
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators, in Network
Capable Application Processor (NCAP) Information Model, IEEE Std 1451.1. 26 june 99.
OMG, Smart Transducers Interface - OMG. 07 dec. 01.
OMG, UML Profile for Schedulability, Performance and Time (ptc/02-03-02). 2003,
OMG. p. 154.
D.C. Petriu and C.M. Woodside, Performance Analysis with UML: Layered Queuing
Models from the Performance Profile, in UML for Real: Design of Embedded Real-Time
Systems. 2003, Kluwer Academic Publishers.
Miro Samek, Practical Statecharts in C/C++: Quantum Programming for Embedded
Systems. 2002.

Erich Gamma, et al., Design Patterns. Elements of Reusable Object-Oriented Software.
1994: Addison-Wesley.


