
DEVELOPMENT OF DISTRIBUTED
AUTOMOTIVE SOFTWARE
The DaVinci Methodology

Dr. Uwe Honekamp, Matthias Wernicke
Vector Informatik GmbH, Dep. PND - Tools for Networks and distributed Systems

Abstract: The software complexity in modern vehicle electronic systems is increasingly
growing. Vehicle projects have to take into account a growing number of
interconnected functions, which are jointly developed by many persons in
many different companies. For facing these challenges, new design
methodologies for a formalized and partially automated software development
are required.

The DaVinci design methodology has been developed to match the specific
requirements of distributed automotive systems. This includes the function-
oriented design of the system structure as well as the deployment on a network
and software integration on ECUs (electronic control units). Such a design
serves as basis for an automatic code generation process, which integrates the
applications into an efficient ECU target architecture with real-time operating
system (RTOS) and communication stack.

Typical scenarios during the development processes like the reuse, exchange
and integration of design data are supported and combined with a flexible
configuration management. PC-based test environments may be used for
functional integration tests or verification of the network communication.

This article is supposed to give a brief overview of the methodology as well as
some selected aspects of its implementation in the DaVinci tool suite.

Design methodology, distributed embedded systems, automotive.Key words:

94 Uwe Honekamp, Matthias Wernicke

1.

The software architecture of typical automotive systems in general is
required to fulfil important requirements, the most prominent being:

Independence of software component from each others: it must be
feasible to independently develop and test self-contained functions of the
automotive software. Only by this means it is possible to reuse particular
software components among model families.
Independence from particular network topology: it must be possible to
map a particular collection of communicating software components to a
variety of network topologies.
Efficiency: the overhead imposed by the conformance to a standard
software architecture is required to be as small as possible. Of course,
the optimal solution would be not to generate any overhead at all.
As a response to these requirements the Da Vinci methodology has been

developed. DaVinci supports the independence of “pieces of software” from
each others by defining the so-called software component.

The combination of particular software components to form a logically
consistent higher functionality is called a software configuration. In other
words: the software configuration represents a graph of software
components.

Figure 1. Distributed System

INTRODUCTION

Development of Distributed Automotive Software 95

Furthermore, it is possible to model relevant hardware components (i.e.
ECUs, communication buses, sensors, actuators). By this means a graph of
hardware elements is formed.

In order to define a concrete network of electronic control units (ECU)
for a particular car model the software graph has to be mapped on the
hardware graph. The result is called a mapping system. The latter is the basis
for sophisticated code generation activities that mainly resolve the abstract
interfaces defined in the software component. By this means the strict
interfaces leave virtually no overhead.

The persistent storage of DaVinci model elements is based on XML.
Model elements that belong together are arranged in a so-called workspace.
The latter, on the other hand, can be associated to a configuration
management repository to support team-based development of DaVinci
models.

The main field of application for DaVinci is the specification of so-called
body electronics (e.g. power windows, climate control, seat adjustment,
lighting, etc.). It is planned to extend the applicability of the DaVinci
methodology to other automotive domains such as power train, chassis, etc.
in the future.

2.

2.1

Obviously, the main point for achieving independence of software
components is the definition of strict interfaces among software components
as well as to the underlying hardware and standard services (RTOS,
communication drivers, network management, etc.).

A further point to take into account is the granularity of software
gathered in a software component. The latter is defined as the minimum self-
contained reusable software unit.

Software components can be arranged hierarchically such that software
components (without behavioural description) contain other software
components.

The behaviour of a software component can be modelled either directly
by means of the C language or by means of some behaviour modelling tool
such as The Mathwork’s Simulink™ or I-Logix’ Statemate™.

DAVINCI DESIGN ELEMENTS

Software Component

96 Uwe Honekamp, Matthias Wernicke

Furthermore, dSPACE’s TargetLink™ can be used for behavioural
modelling to support the creation of series production code from Simulink™
models.

Figure 2. Example of a hierarchical software component

The architecture of Vector’s DaVinci Tool Suite provides a generic
adapter concept that allows to easily integrate additional behaviour
modelling tools on customer’s demand.

2.2

A signal is used for interconnecting software components with each
others. Furthermore, a signal can be used to connect a software system (see
ch. 2.4) to hardware devices such as sensors and actuators.

Signals maintain several properties such as the data type, the conversion
formula from the physical domain to the data type as well as several
automotive-specific properties like a timeout value.

2.3

The so-called ECU state machine is part of the abstraction mechanisms
specially introduced to yield a maximum hardware independence of software

Signal

ECU State Machine

Development of Distributed Automotive Software 97

components. ECU state machines define special states in which an ECU can
operate as well as the possible transitions between states.

Software components, on the other hand, may define so-called
procedures that implement special behaviour of the software component
according to the current state of the ECU state machine.

Of course, the full power of ECU state machines as a means of
abstraction is provided only if all ECUs (to which a particular software
component can be mapped) implement an instance of the same ECU state
machine.

2.4

A software system is a collection of software components connected by
signals. The purpose of a software system is to gather software components
to form a higher functionality based on the interaction of the particular
software components.

Figure 3. Example of a simple software system.

Another perspective of a software system is the representation of the
entire (as far as DaVinci in concerned) software functionality of the network
of ECUs in a car.

Software System

98 Uwe Honekamp, Matthias Wernicke

3.

3.1

A bus is used to express a communication device among the collection of
ECUs in a network. In general, several types of buses (e.g. CAN, LIN,
MOST, FlexRay, etc.) could be used in a network of automotive ECUs.
Furthermore, several disjoint buses of the same type (e.g. CAN) could be
used to form subnets connected to each others by gateway ECUs.

DaVinci currently supports the definition of CAN networks. Gateways
are supported but the gateway functionality must be explicitly specified by a
software component.

For the future, DaVinci will not only support a wide range of buses but it
will be possible to automatically determine the communication behaviour of
gateway ECUs based on the formal description of the communication
network.

3.2

An ECU obviously is used to carry out computations, i.e. host a
collection of software components as described by the mapping description.
An ECU can have sensors and actuators that resolve particular signals.

In other words: software components interact (via signals) with the real
world by means of sensors and actuators provided by the ECU onto which
the software component is mapped.

Furthermore, the description of an ECU consists of a reference to a
particular ECU state machine.

Figure 4. Communication Bus

DAVINCI IMPLEMENTATION ELEMENTS

BUS

ECU

Development of Distributed Automotive Software 99

For supporting the generation of target code, it is possible to specify the
type and (if applicable) variant of the underlying microcontroller.

3.3

A hardware system is the direct counterpart of the concept of the
software system, i.e. it describes a collection of ECUs as well as the
communication buses used to interconnect particular ECUs.

3.4

A mapping system defines a particular combination of a hardware system
and a software system. Furthermore, the mapping of software components to
ECUs as well as the mapping of signals to bus messages are essential parts
of the description of a mapping system.

Figure 5. A simple mapping system

4. DAVINCI TARGET ARCHITECTURE

As mentioned before, the abstract interfaces defined by the DaVinci
methodology at some point in time must be resolved such that software
components can be embedded into a defined target architecture with
maximum efficiency.

DaVinci’s code integration capabilities allow the seamless integration of
heterogeneous software components, e.g. legacy C Code and model-based
developed components.

The standardized target architecture used for DaVinci models is depicted
in Figure 6. As sketched by the picture, the target architecture itself consists
of self-contained modules some of which must be specially generated
according to the DaVinci model configuration.

Hardware System

Mapping System

100 Uwe Honekamp, Matthias Wernicke

Other modules exist as predefined source code but must be configured
(i.e. header files containing configuration information must be created). Both
generation and configuration of software modules is carried out by specially
tailored code generation tools.

One of the most prominent code generation issues is the generation of a
communication stack that provides signal access in the context of a so-called
interaction layer to software components.

The underlying RTOS must be configured as well. The configuration
depends on the mapping of software components as well as the assignment
of priorities to tasks.

Furthermore, timing constraints concerning bus communication must also
be taken into account, i.e. it must be made sure that messages with a high
priority are send by tasks that as well are executed under a high priority.

Figure 6. DaVinci target architecture

The currently supported range of microcontroller targets consists of the
Motorola PowerPC series for embedded applications as well as on the Star 12
microcontroller. Further targets are supported on demand.

For diagnostics purposes Vector’s CANdesc software module can be
integrated to DaVinci applications. Supported interaction layers are

Development of Distributed Automotive Software 101

GMLAN, DBKom, and derivatives of the Vector IL. For calibration and
measurement purposes it is possible to add a CCP driver as well.

5. TEST OF SOFTWARE COMPONENTS

A very typical constraint of the development of ECU software is the fact
that in early phases of the development project the target hardware does not
yet exist.

This fact should not have an impact on the activities on the software side.
For this purpose it is essential to have a test platform that emulates especially
the communication hardware.

Figure 7. CANoe test environment

This requirement is fulfilled by the software tool CANoe that has as well
been developed by Vector Informatik GmbH. The functionality of CANoe,
however, is not limited to mere simulation.

It is possible to simulate particular nodes of a communication bus that
otherwise already exists in hardware, i.e. physically existing ECUs can be
conveniently combined with simulated ones and perform realistic real-time
communication among each others. This concept is depicted by Figure 7.

DaVinci supports CANoe as an experimentation platform for early
phases of a network project. It is possible (by means of a predefined target
configuration) to generate the target architecture code such that the entire
ECU including applications, communication stack and RTOS can be
simulated by CANoe.

6. DISTRIBUTED DEVELOPMENT

Large software projects in the automotive domain are usually distributed
among several supplier companies under the control of the car manufacturer.

102 Uwe Honekamp, Matthias Wernicke

A tool suite for carrying out large software project must therefore support
the distributed development of software.

For this purpose Da Vinci provides several features:
It is possible to attach a DaVinci workspace to a configuration
management repository thus enabling DaVinci to be used by the
development team of at least an entire company.
DaVinci provides sophisticated import and export mechanisms that are
capable of dealing with the formal model without uncovering subjects to
intellectual property (e.g. the structure of a control algorithm
implemented to realize a specific software component). This technique
can be used to share DaVinci model elements among developers of
different companies. Please consult Figure 8 for more details.

Figure 8. Distributed development using DaVinci

7. FUTURE PROSPECTS

The DaVinci methodology as well as the corresponding tool suite is
subject to continuous improvement. Among other things this applies in
particular to the introduction of further behaviour modelling tools as well as
the support for additional microcontroller targets.

