
A NOVEL APPROACH FOR OFF-LINE
MULTIPROCESSOR SCHEDULING
IN EMBEDDED HARD REAL-TIME
SYSTEMS

Raimundo Barreto1, Paulo Maciel1, Marília Neves1, Eduardo Tavares1,
Ricardo Lima2
1Centro de Informática (CIn) at Universidade Federal de Pernambuco (UFPE).
PO Box 7851, 50732-970 Recife-PE-Brazil.
{ rsb,prmm,mln2,eagt } @cin.ufpe.br.
2 Departamento de Engenharia da Computação - Universidade de Pernambuco
Recife-PE-Brazil
ricardo@upe.poli.br

Abstract: There are two general approaches for scheduling tasks in real-time systems: run-
time and pre-runtime scheduling. However, there are several situations where
the runtime approach does not find a feasible schedule even if such a schedule
exists. The proposed approach uses state space exploration for finding a pre-
runtime scheduling. The main problem with such methods is the space size,
which can grow exponentially. This paper shows how to minimize this problem,
and presents a depth-first search method on a timed labeled transition system
derived from the time Petri net model.

Keywords: Embedded real-time systems, scheduling, formal methods, and time Petri nets.

1. INTRODUCTION
Embedded hard real-time systems are dedicated computer applications hav-

ing to satisfy stringent timing constraints. For meeting this requirement,
scheduling performs an important role. There are two general approaches for
scheduling tasks: runtime and pre-runtime scheduling. In runtime schedul-
ing, the schedule is computed on-line as tasks arrive, using a priority-driven
approach. However, there are situations where this approach may constrain
the possibility of finding a feasible schedule, even if such schedule exists [10–
11]. The approach presented in this paper is pre-runtime scheduling, where
schedules are computed entirely off-line. This solution reduces context switch-
ing, its execution is predictable, and excludes the need of complex operating



158 R. Barreto, P. Maciel, M. Neves, E. Tavares, R. Lima

systems. In safety-critical systems the predictability is an important matter,
mainly due to the use of arbitrary precedence and exclusion relations. In ac-
cordance with [11], pre-runtime scheduling is often the only means of provid-
ing predictability in complex systems. This work uses state space exploration
since it presents a complete automatic strategy for verifying finite-state sys-
tems [6]. In spite of the fact that a scheduling can be found using this strategy,
this may be limited by the excessive size of its state space. The proposed ap-
proach tackles this problem by applying techniques for state space reduction,
and a depth-first search algorithm. This paper is an extension of ours previous
work [3], which presents how to reach feasible schedules by using a time Petri
net model on uniprocessor architectures.

2. RELATED WORK
Xu and Parnas [10]present a branch-and-bound algorithm that finds an opti-

mal pre-runtime schedule on a single processor for real-time process segments
with release, deadlines, and arbitrary exclusion and precedence relations. De-
spite the importance of their work, it does not present real-world experimental
results. Abdelzaher and Shin [1]proposed an extension of [10]in order to deal
with distributed real-time systems. This algorithm takes into account delays,
precedence relations imposed by interprocess communications, and considers
many possibilities for improving the scheduling lateness at the cost of com-
plexity. The scheduler synthesis proposed by Altisen et.al. [2]synthesizes all
dynamic on-line scheduling satisfying a given property. In spite of they have
claimed that using synchronization modes the complexity is reduced, they do
not directly address the state explosion problem, stressed by the authors as a
limitation of their approach. Several authors also use Petri nets in scheduling
theory. However, most of them are only concerned with schedulability anal-
ysis. For instance, Bruno et. al. [4]present a schedulability analysis, using
high-level Petri nets. However, their work does not generate feasible sched-
ules, but it relies on Xu and Parnas’ algorithm [10]in order to find them.

Comparing our approach with other works (e.g., [1, 9]), it differs in the sense
that: (i) their works model the scheduling problem, whilst our work models the
tasks of a system. For this reason, they may have better performance in some
situations. Nevertheless, time efficiency is not a critical concern when con-
sidering schedules computed off-line. However, our solution can also generate
timely and predictable scheduled code, which is difficult in their works. (ii) us-
ing Petri net analysis techniques allows one to check several system properties.
Although state space exploration is not new, at the best of our present knowl-
edge, there is no similar work that uses formal methods for modeling real-time
systems, and finds a feasible pre-runtime schedule considering multiprocessor
architectures.



A Novel Approach for Off-lineMultiprocessor Scheduling … 159

3. COMPUTATIONAL MODEL: SYNTAX
AND SEMANTICS

The computational model syntax is given by a time Petri net [7], which is
a Petri net extended with time, and its semantics is given by its time labeled
transition system. A time Petri net (TPN) is a bipartite directed graph repre-
sented by a tuple P (places), and T (transitions) are
two types of nodes. The edges are represented by

represents the weight of the edges. A TPN marking is a vector
and is the initial marking. represents the tim-

ing constraints, where is a set
of enabled transitions in marking Let M be the set of all reachable mark-
ings of is a clock vector, which represents the time elapsed
since the respective transition enabling. In order to facilitate the TPN’s anal-
ysis, it is defined the dynamic firing interval where

and is
dynamically modified whenever the respective clock variable is incremented,
and does not fire.

The set of states S of is given by that is, a single
state is defined by a pair where is a marking, and is its respective
clock vector for The initial state is where

is the set of firable transitions at state defined by:
where

The firing domain for at a specific state is defined by:

The semantics of a TPN is defined by associating a TLTS
such that: (i) S is a finite set of discrete states of (ii) is an

alphabet of labels representing activities. The labels are corresponding
to the firing of a firable transition at a specific time value in the firing
interval (iii) is the transition relation; and
(iv) is the initial state of

Let be a TLTS derived from a time Petri net and a
reachable state. denotes that firing a transition t at time

from the state a new state is reached, such that:

The firing of a transition at a specific time in the state defines the
next state

Let be a TLTS of a TPN  where its initial state,

a final state, and which is the desired final marking.

(i)

(ii)



160 R. Barreto, P. Maciel, M. Neves, E. Tavares, R. Lima

is defined as a feasible firing schedule,
where if and
As it is presented later, the modeling methodology guarantees the final marking

is well-known since it is explicitly modeled.

4. TEST MODEL

Let be the set of tasks in a system. Let be a periodic task defined
by where is the initial phase (delay associated
to the first time request of a task after the system starting); is the release
time (interval between the beginning of a period and the earliest time that a
task execution can be started); is the worst case computation time; is the
deadline (interval between the beginning of a period and the time when the
task must be completed); and is the period (time interval in which the task
must be executed). Let be a sporadic task, where is the
worst case computation time; is the deadline; and is the minimum
period between two activations of task A task is classified as sporadic if it
can be randomly activated, but the minimum period between two activations
is known. As pre-runtime approaches may only schedule periodic tasks, the
sporadic tasks have to be translated to an equivalent periodic task [8]. A task

precedes task if can only start execution after has finished. A task
excludes task if no execution of cannot start while task is executing.

Exclusion relations may prevent simultaneous access to shared resources. Each
task consists of a finite sequence of task time units
where always precedes for A task time unit is the smallest
indivisible granule of a task, during which it cannot be preempted by any other
task. A task can also be split into more than one subtasks, where each subtask
is composed by one or more task time units.

5. MODELING REAL-TIME SYSTEMS

Hard real-time systems are those that besides its functional correctness,
timeliness must be satisfied. The modeling phase is very important to attain
such constraints.

5.1 Scheduling Period

The proposed method schedules the set of periodic tasks occurring in a pe-
riod that is equal to the least common multiple (LCM) of the periods of the
given set of tasks. The LCM is also called schedule period Within
this new period, there are several tasks instances of the same task, where

gives the instances of For example, consider the following
task model consisting of two tasks: and



A Novel Approach for Off-lineMultiprocessor Scheduling … 161

In this particular case, implying that the two periodic tasks are re-
placed by seven new periodic tasks and where the
timing constraints of each task instance has to be transformed to consider that
new period [10].

Figure 1. Modeling Scheduling Methods

5.2 Scheduling Methods
Figure 1 presents three ways for modeling scheduling methods, where

is the task computation time and are computation times for
the first and last subtask, respectively):

a)

b)

c)

all-non-preemptive: processor is just released after the entire computa-
tion be finished. Figure 1(a) shows that computation transition timing
interval has bounds equal to the task computation time (i.e., [c, c]);

all-preemptive: tasks are implicitly split into all possible subtasks. This
method allows running other conflicting tasks, meaning that one task
could preempt another task. It is worth observing, the difference be-
tween the timing interval for the computation transition and the arc
weight in Figures 1(a) and 1(b).

defined subtasks: tasks are split into more than one explicitly defined
subtasks. Figure 1(c) shows two subtasks.

5.3 Tasks Modeling

Figure 2 is also used to show (in dashed boxes) the three main building
blocks for modeling a real-time task. These blocks are: (a) Task Arrival,
which models the periodic invocation for all task’s instances. Transition
models the initial phase, whilst transition models the periodic arrival for the
remaining instances; (b) Deadline Checking, where it is used elementary net
structures to capture deadline missing. Some works (e.g. [2]) extended the
Petri net model for dealing with deadline checking. (c) Task Structure, which



162 R. Barreto, P. Maciel, M. Neves, E. Tavares, R. Lima

models: release time, processor granting, computation, and processor releas-
ing. Figure 2 presents a non-preemptive TPN model for the example presented
in previous subsection. It does not model the seven task instances. Instead, it
models only the two original tasks, and the time period of every task instances.

5.4 Modeling Interprocessor Communication

Processors are connected to one (or more) bus, which is modeled as a re-
source that is shared by all processors and accessed in mutual exclusion. The
proposed approach schedules the communication for avoiding network con-
tention. Otherwise, it could result in different execution times for different
runs of the same system, which is not appropriated for hard real-time systems.
It is supposed that: (i) the communication time between tasks in the same
processor is negligible; and (ii) the communication is synchronous (blocking).
Figure 3 presents a model for two interprocessor communicating tasks (ping
and pong). The task ping computes and sends a data to pong. When the
data arrives, the task pong computes and sends a new data to ping, and this

Figure 2. Petri net model

Figure 3. A Simple Example of Interprocessor Communication



A Novel Approach for Off-lineMultiprocessor Scheduling … 163

Figure  4.  Scheduling Synthesis Algorithm

procedure repeats indefinitely. The bus is modeled by a place (P–BUS) shared
by all tasks. The communication time is attached to transitions TCommA–B
and TCommB–A. The places P–SB–A and P–SB–B model sending buffers,
whilst places P–RB–A and P–RB–B model receiving buffers.

6. PRE-RUNTIME SCHEDULING

This section shows a technique for state space minimization, the algorithm
that implements the proposed method, and an application of the algorithm.

6.1 Minimizing State Space Size

Partial-Order Reduction. If activities can be executed in any order,
such that the system always reaches the same state, these activities are inde-
pendent. Partial-order reduction methods exploit the independence of activi-
ties [6]. An independent activity is one that is not in conflict with other activity,
that is, when it is executed it does not disable any other activity, such as: ar-
rival, release, precedence, computation, processor releasing, and so on. This
reduction method proposes to give for each class of activities a different choice-
priority. Dependent activities, like processor granting and exclusion relations,
have lowest priority. Therefore, when changing from one state to another, it
is sufficient to analyze the class with highest choice-priority and pruning the
other ones. This reduction is important due to two reasons: (i) it reduces the
amount of storage; and (ii) when the system does not have a feasible schedule,
it returns more rapidly.

Undesirable States. Section 5 presents how to model undesirable
states, for instance, states that represent missed deadlines. The proposed me-
thod is interested for schedules that do not reach any of these undesirable states.



164 R. Barreto, P. Maciel, M. Neves, E. Tavares, R. Lima

6.2 Pre-Runtime Scheduling Algorithm

The algorithm proposed (Fig. 4) is a depth-first search method on a TLTS.
The stop criterion is obtained whenever the desirable final marking is
reached. Considering that, (i) the Petri net model is guaranteed to be bounded,
and (ii) the timing constraints are bounded and discrete, this implies that the
TLTS is finite and thus the proposed algorithm always finishes. When the
algorithm reaches the desired final marking it implies that a feasible
schedule was found (line 3). The state space generation is modified (line 5)
to incorporate the state space pruning. PT is a set of ordered pairs rep-
resenting for each firable transition (post-pruning) all possible firing time in
the firing domain. The tagging scheme (lines 4 and 9) ensures that no state is
visited more than once. The function fire (line 8) returns a new generated
state due to the firing of transition at time The feasible schedule is
represented by a TLTS generated by the function add–in–trans–system
(line 10). The whole reduced state space is visited only when the system does
not have a feasible schedule.

6.3 Application of the Algorithm

Table 1 depicts the execution of the algorithm applied to the time Petri net
model of Figure 2. In this table, at state 13, two transitions and are
firable. The possible execution of task T1 (choosing for firing) is a wrong
choice since, after that, task T2 misses its deadline (state 17). The algorithm
backtracks to state 13 and try the alternative, now granting the processor to the
task T2 (firing This new decision leads to a feasible schedule, since in the
state 29 the firing of transition reaches the desired final marking



A Novel Approach for Off-lineMultiprocessor Scheduling … 165

Figure 5. Case Study Graph

7. EXPERIMENTAL RESULTS
Table 2 shows a summary of the experimental results. All experiments were

performed on a Pentium-III 600 Mhz dual processor. In order to depict the
practical usability of the proposed method in more details, one of the examples
is considered, a simple control application. This case study is described origi-
nally in [5]. The system consists of a sensory device mounted on a motorized
platform that must detect and track specific objects in the environment. Four
processors connected by a single bus control the system. The model consists
of 6 tasks split into 22 subtasks, which exchanges 10 messages, 6 of them are
sent across processor boundaries. Figure 5 shows the computational graph for
this application, presenting the subtasks allocated to processors, and its com-
munication pattern. In this graph each node is labeled with the corresponding
subtask number, arcs representing local communication are treated as prece-
dence relation, and each arc representing an interprocessor communication is
labeled with a corresponding message identification. The proposed algorithm
founds a feasible scheduling with no overhead, since it only examined the min-
imum number of states (in this case 50 states) in 5 milliseconds.



166 R. Barreto, P. Maciel, M. Neves, E. Tavares, R. Lima

8. CONCLUSIONS
This paper proposed a formal modeling methodology based on time Petri

nets, and a framework for pre-runtime scheduling on multiprocessors using a
reduced state space exploration algorithm. In spite of this analysis technique
is not new, to the best of our knowledge, there is no work reported similar to
ours that models hard real-time systems and finds (whether one exists) a re-
spective pre-runtime scheduling. The real-time task specification can be very
general, since it can have resource and timing constraints, and intertask rela-
tions, such as precedence and exclusion relations. The proposed algorithm is a
depth-first search method on a finite TLTS derived from a TPN model. When
searching for a feasible schedule, the algorithm suffers from the state space
explosion problem. In order to maintain the state space growth under control,
the proposed method uses minimization techniques. The algorithm presented
here always finds a schedule, provided that one exists.

The proposed modeling and the scheduling synthesis are an important step
toward embedded real-time software synthesis tools. So, it is planned to gen-
erate complete executable code from the formal model. This can be solved
through TPN with tasks, which is an extension of TPN, which annotates tran-
sitions with program code. Another extension is to take into account different
operational modes in the pre-runtime scheduling.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. F. Abdelzaher and K. G. Shin. Optimal combined task and message scheduling in
distributed real-time systems. In Proc. IEEE RTSS, pages 162–171, December 1995.
K. Altisen, G. Göbler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework for
scheduler synthesis. IEEE Real-Time System Symposium, pages 154–163, Dec 1999.
R. Barreto, S. Cavalcante, and P. Maciel. A time petri net approach for finding pre-
runtime schedules in embedded real-time systems. In 1st Int. Workshop on Embedded
Computing Systems (ECS’04). IEEE CS Press, march 2004.
G. Bruno, A. Castella, G. Macario, and M. Pescarmona. Scheduling hard real time sys-
tems using high-level petri nets. 13th ICATPN, pages 93–112, Jun 1992.
M. DiNatale and J. A. Stankovic. Dynamic end-to-end guarantees in distributed realtime
systems. In Proc. of the IEEE Real-Time Systems Symposium, pages 216–227, 1994.
P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. PhD Thesis, University of Liege, Nov. 1994.
P. Merlin and D. J. Faber. Recoverability of communication protocols: Implicatons of a
theoretical study. IEEE Transactions on Communications, 24(9):1036–1043, Sept. 1976.
A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-
Time Environment. PhD Thesis, MIT, May 1983.
J. Xu. Multiprocessor scheduling of processes with release times, deadlines, precedence,
and exclusion relations. IEEE Trans. Soft. Engineering, 19(2):139–154, February 1993.
J. Xu and D. Parnas. Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360–369, March 1990.
J. Xu and D. Parnas. On satisfying timing constraints in hard real-time systems. IEEE
Trans. Soft. Engineering, 1(19):70–84, January 1993.


