
VERIFICATION FRAMEWORK FOR UML -
BASED DESIGN OF EMBEDDED SYSTEMS*

Martin Kardos and Yuhong Zhao
Heinz Nixdorf Institute, University of Paderborn, Germany

Abstract: System level design incorporating system modeling and formal specification in
combination with formal verification can substantially contribute to the
correctness and quality of the embedded systems and consequently help reduce
the development costs. Ensuring the correctness of the designed system is, of
course, a crucial design criterion especially when complex distributed (real-
time) embedded systems are considered. Therefore, this paper aims at
presenting a verification framework designated for formal verification and
validation of UML-based design of embedded systems. It first introduces an
approach of using the AsmL language for acquiring formal models of the
UML semantics and consequently presents an on-the-fly model checking
technique designed to run the formal verification directly over those semantic
models.

Key words: embedded system design, UML, formal semantics, ASMs, AsmL, formal
verification, model-checking

1. INTRODUCTION

The increasing complexity of today’s embedded systems imposes new
demands on the overall design process and on the used design languages and
verification techniques. The system level design has become a hot topic in
the research area of embedded systems and is gradually gaining popularity in
the designer community. Typical for system level design are specification
and modeling techniques offering facilities for coping with the system
complexity such as structural decomposition, abstraction, refinement, etc.
However, employment of these techniques into the design process of
embedded systems can not succeed without appropriate support for

*This work has been supported by the German National Science Foundation (DFG)

22 Martin Kardos and Yuhong Zhao

embedded systems can not succeed without appropriate support for
verification. Therefore, verification techniques are needed that are able to
identify the design errors hidden in the abstract and often incomplete models
at the earlier stages of the system level design.

The work presented in this paper deals with formal verification of UML-
based design for embedded systems. The main objective resides in providing
a unified verification framework based on a solid formal background that
integrates formal verification techniques together with model-based
validation techniques. In this way we believe that system designs of high
complexity could be verified at early design phase of the system
development lifecycle.

The remainder of the paper is organized as follows. Section 2 gives an
overview of the proposed verification framework. Section 3 outlines the
work on formalizing the UML semantics by means of the ASM-theory based
specification language AsmL. Section 4 presents a model checking approach
towards formal verification of the AsmL specifications. In this section, the
focus is put on the description of an on-the-fly algorithm and its functional
parts consequently followed by the introduction of possible enhancement
towards the efficient model checking of distributed systems. In Section 5 the
related work is discussed. Finally, the paper concludes with a brief outlook
on the future work in Section 6.

2. FRAMEWORK OVERVIEW

The proposed verification framework is depicted by means of a process
flow diagram shown in the Figure 1. The input to the verification process
(dashed box) is represented by an UML model describing the specified
system. The verification process is further divided into two parallel
branches, namely the formal verification and the validation. The main goal
of the formal verification consists in proving the correctness of the required
properties that a given UML model has to fulfill. This is achieved by
incorporating model checking techniques into the verification framework.
The validation branch, on the other hand, comprises of the methods for
conventional model simulation amended by the model-based testing. Both
branches are built upon a common formal background based on the theory of
Abstract State Machines (ASMs) and are implemented in the AsmL
language.

In the rest of the paper we focus only on the formal verification, i.e. the
model checking of AsmL specifications. The simulation and model-based
testing approaches are based on the tool support coming together with AsmL
and are out of the scope of this paper.

Verification Framework for UML-Based Design of Embedded Systems 23

Figure 1. Verification framework for UML-based design

3. FORMALIZING UML SEMANTICS

The main prerequisite for integration of the proposed verification
methods into the verification framework is the presence of a rigorous formal
semantics of the modeling paradigm, in our case represented by the Unified
Modeling Language (UML 2.0) [1]. Therefore, choosing the right formal
method is one of the crucial decisions to be taken. In our approach the
Abstract State Machines (ASMs) [2] has been chosen as a suitable formalism
to define the formal semantics of UML. The ASMs have approved their
strong modeling and specification abilities in various application domains
[3] also including work on formalization of selected parts of the older
version of UML [4,5]. In particular, we adopted the AsmL language [6], an
executable specification language built upon the theory of Abstract State
Machines, to formally describe the UML semantics.

Formalizing the UML semantics is a tedious task, especially when the
complexity and vastness of the whole UML 2.0 is considered. Therefore, our
aim is not to formalize the complete semantics of UML. Instead, we consider
only those UML diagrams that have been adopted into our design
methodologies focusing on the two main application domains we are active
in: the design of distributed production control systems and the design of
self-optimizing multi-agent systems with mechatronic components. In the
former, UML is applied to model distributed software for controlling

24 Martin Kardos and Yuhong Zhao

production lines. We use UML structure diagrams, collaboration diagrams
and state machine diagrams combined with modeling of actions by means of
so-called Story Diagrams [7]. In the latter, similar diagrams are employed
except that the state machine diagrams are extended with discrete time
semantics. Due to the fact that the formalization process is out of the scope
of this paper we omit further details.

Although both application domains strongly overlap, there still exist
specific semantic deviations that result in partially different semantic models
of UML written in AsmL. However, the verification framework presented in
this paper does not depend on any semantic deviations. The solution resides
in using the AsmL as formal platform for all verification and validation
methods of the framework that are designed in a way to support any AsmL
specification regardless of what it describes.

4. MODEL CHECKING ASML MODELS

One of the qualities of AsmL is the high expressivity and richness of the
language that allows us to keep the semantic models of UML in a readable
and comprehensible form. This gives us flexibility in further maintenance of
the semantic models and eases their modification and updating. However, in
order to keep this advantage of AsmL we need to provide such a model
checking approach that imposes least restrictions on the AsmL specification.
Concretely, an AsmL specification should be allowed to fully exploit the
robust data type system build in the AsmL, should allow dynamic object
creation as well as usage of whole operational functionality provided by
AsmL. The only constraint imposed on a specification is related to the size
of its state space that has to be finite. The model checking approach
presented in the next sections obeys all these requirements. It can be
classified as an on-the-fly approach working over the explicit ASM state.

4.1 On-the-fly model checking

The intended model checking approach is depicted in the Figure 2. First
of all, a particular AsmL specification and the property to be verified are
provided as inputs. The property is specified in form of a temporal logic
formula. In the first step, the temporal formula is transformed into a property
automaton. As next, the AsmL specification is compiled and prepared for
on-the-fly exploration. When both steps are successfully finished, the
verification algorithm is started. During this process the state space
exploration of a given AsmL specification is driven by the verification
algorithm in an on-demand manner. The verification process may terminate

Verification Framework for UML-Based Design of Embedded Systems 25

in one of the following states: 1) in the OK state, after the whole state space
has been explored and no contradiction of the property has been detected, 2)
in the contradiction state, if a state of the system is found that does not
satisfy the property and a counter example is produced 3) in the exception
state, when an exception inside the specification is thrown during the state
space exploration, and 4) in the user termination state, if the verification
process was forced by the user to terminate.

Figure 2. On-the-fly model checking of AsmL

4.1.1 Property specification and transformation

During model checking a system is verified against a property describing
the desired system behavior. The property is expressed in form of a temporal
logic formula. There exist several kinds of temporal logics, e.g. CTL, LTL,
CTL* which usually differ in the set of expressible behaviors. In our
approach we consider the CTL* logic that subsumes both CTL and LTL.
The transformation of a CTL* formula into an automaton is done following
the method introduced in [8]. This method uses a set of predefined goal-
directed rules to derive the states of specialized tree automata called

26 Martin Kardos and Yuhong Zhao

alternating Büchi tableau automata (ABTAs). An ABTA represents the
property automaton showed in Figure 2.

4.1.2 Transition system construction

A transition system (a state transition graph) derived from an AsmL
specification represents all possible runs of the specification. Obviously, the
construction of such a transition system is, with respect to the needed time
and resources, the most costly part of the overall model checking process.
Therefore, we propose an on-the-fly construction approach that uses the
exploration function built-in in the AsmL Toolkit. This function should
allow us to drive the exploration of the system state space according to the
demands of the verification algorithm. Additionally, the configurability of
the exploration process gives us the apparatus to control how the state space
is going to be explored. Thanks to this feature, even an infinite specification
can be model checked within a fixed state space boundary (bounded model
checking).

4.1.3 Verification algorithm

The model checking algorithm adopted in our approach originates in the
work presented in [8]. It works over a product automaton, constructed from
the produced property automaton and the transition system. Since, in our
case, the transition system is generated in an on-the-fly manner, the original
algorithm had to be adapted accordingly. In addition, the algorithm was
redesigned in order to achieve a certain generics with respect to the
implementations of transition system and property automaton. This gives us
more freedom for experiments towards achievement of optimal
implementations.

4.2 Incremental Model Checking

The presented model checking approach, similar to any other existing
approaches, can show its weakness when it comes to verification of AsmL
specifications that have a large state space. This is typical for example for
distributed systems that consist of several interacting components running in
parallel. In order to cope also with such distributed systems we propose a
solution embedded into our verification framework. The main idea resides in
defining an algorithm that is capable of executing the model checking in an
incremental manner. The algorithm proposed here, depicted in Figure 3, can
be seen as an enhancement of the on-the-fly algorithm presented above. It
considers an AsmL specification consisting of several components (ASM

Verification Framework for UML-Based Design of Embedded Systems 27

agents) running in parallel and affecting each other only through their
precisely defined communication. In addition, the properties to be verified
are constrained to only ACTL formulas (the CTL formulas with only
universal quantifiers).

Figure 3. Control flow of incremental model checking

For an embedded system M with a finite set of variables
where each variable has an associated finite domain the

set of all possible states is Let P be the set of atomic
propositions derived from the system. Then the system can be represented as
a Kripke structure M = (S, I, R, L) where S = D is the set of states, is
the set of initial states, is the transition relation between states and

is the labeling function. Given an ACTL property f, to avoid
checking the satisfiability of f directly on M due to the state space explosion
problem, we can obtain an abstract model (initial abstraction) from the
original system by applying an appropriate abstraction function h to M.
Intuitively, the abstraction function h induces an equivalence relation on
the domain D. That is, let d, e be states in D, then It
means that the equivalence relation partitions D into a set of equivalence
class denoted as where If we
regard each equivalence class [d] as a state from an abstract view, an abstract
Kripke structure derived from M with respect to h can be
defined as follows:

1.
2.
3.
4.

is the abstract domain

Usually, the abstraction function h can be obtained by analyzing the
dependency relationship between the variables in the system as well as the
effect of these variables on the property to be verified. It is obvious that

28 Martin Kardos and Yuhong Zhao

covers all possible behaviors of M but contains fewer states and fewer
transitions than M. In this sense, is an upper approximation to M, which
means that an ACTL formula f true in implies it’s also true in M.
However, in case that falsifies f, the counterexample may be the result of
some behavior in which is not present in the original model M.
Therefore, by refining to a more precise model, i.e. far closer to M, it is
possible to make the behavior which caused the erroneous counterexample
disappear. For the refinement of we repeat the above procedure until a
definite conclusion can be drawn. During this procedure, the initial
abstraction will be refined more and more close towards M. The
refinement can be done based on the information derived from erroneous
counterexamples [19]. As a result, the refined model is obtained by splitting
the abstract state causing the erroneous counterexample into two subsets of
the states, each of which represents a new abstract state. In this way, the
erroneous counterexample does not exist in the refined model any more.

Given an abstraction function h, it is easy to know that the initial abstract
model can be constructed on-the-fly. Consequently, we can apply the on-
the-fly model checking mentioned in section 4.1 to the abstract model of the
original system M. If the abstract model satisfies f, then we can conclude the
original system satisfies f. In case that a counterexample is found, we can
locate the first abstract state which can cause the counterexample and then
split the abstract state into two abstract states. Afterwards, we continue the
on-the-fly model checking on this modified abstract model until a definite
answer is obtained.

5. RELATED WORK

Many methods on model checking UML model [9,10,11,12,13] have
been presented in recent years. The basic idea of all these methods is to
transform the UML model to the input language of an existing model
checking tool, say SMV, SPIN or UPPAAL for example. In other words, the
semantics of the UML model is reflected through the input language of some
model checker. The expressiveness of the model checker’s input language
usually limits the expressiveness of the checked UML model. Unlike these
methods, our method presented in this paper uses the ASM-based executable
specification language AsmL to define the semantics of the UML model.
The expressive power of AsmL allows us to formalize the semantics of any
complex UML model that implies no constraints on used UML diagrams at
the user’s side. In addition, the resulting AsmL specification can be executed
or tested by the tools coming with AsmL.

Verification Framework for UML-Based Design of Embedded Systems 29

Of course, AsmL can also be used to do model checking. Since AsmL is
quite a new language, there are no published approaches aimed at model
checking AsmL yet. However, a few papers can be found concerning model
checking of Abstract State Machines [14,15,16]. Basically, we can identify
two main approaches both based on translation of the selected subsets of
ASMs into the input language of an existing model checking tool. In the
[14,15] an ASM model is first simplified by flattening the data structure and
the corresponding ASM rules, and then translated (by direct mapping) to the
SMV [17] input language. The approach introduced in [16] follows similar
strategy, but uses the SPIN [18] model checker and its PROMELA language.
The main drawbacks of both approaches consist in the constraints imposed
on the supported ASM models. On the other hand, imposing such constraints
seemed to be an inevitable decision in order to bridge the gap between the
different expressive power of ASMs and the model checker languages. Our
method can avoid this problem by model checking AsmL specifications
directly.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a verification framework designated for
formal verification and validation of UML-based design of embedded
systems. The main ideas consist in using the AsmL specification language to
define the formal semantic model of the supported part of UML and
consequently applying model checking technique directly on the resulting
AsmL semantic model. In addition, we have introduced two model checking
methods, on-the-fly model checking and incremental model checking that
we hope, are suitable for verifying large complex system models.

The work presented here is still an ongoing research work that needs to
be evaluated in order to approve its practical utilization. Therefore, after
finishing the implementation of the discussed methods we plan to focus on
their evaluation by taking real system examples from the already mentioned
application domains. Consequently, we plan to integrate the formal
verification into our verification framework together with the simulation and
model based-testing functions provided by the AsmL tools.

REFERENCES

[1] Object Management Group. UML Superstructure Submission V2.0. OMG Document
ptc/02-03-02, January 2003. URL: http://www.omg.org/cgi-bin/doc?ad/2003-01-06.

30 Martin Kardos and Yuhong Zhao

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Y. Gurevich: Evolving Algebras 1993: Lipari Guide; E. Börger (Eds.): Specification and
Validation Methods, Oxford University Press, 1995.
Abstract State Machines web page: http://www.eecs.umich.edu/gasm/
E. Börger, A. Cavarra, and E. Riccobene: An ASM Semantics for UML Activity
Diagrams, in Teodor Rus, ed., Algebraic Methodology and Software Technology, 8th
International Conference, AMAST 2000, Iowa City, Iowa, USA, May 20-27, 2000,
Proceedings, Springer LNCS 1816, 2000, 293--308.
K. Compton, J. K. Huggins, and W. Shen: A Semantic Model for the State Machine in
the Unified Modeling Language. In Gianna Reggio, Alexander Knapp, Bernhard Rumpe,
Bran Selic, and Roel Wieringa, eds., “Dynamic Behaviour in UML Models: Semantic
Questions”, Workshop Proceedings, UML 2000 Workshop, Ludwig-Maximilians-
Universität München, Institut für Informatik, Bericht 0006, October 2000, 25-31.
Y. Gurevich, W. Schulte,C. Campbell,W. Grieskamp. AsmL: The Abstract State Machine
Language Version 2.0. http://research.microsoft.com/foundations/AsmL/default.html
T. Fischer, J. Niere, L. Torunski, A. Zündorf: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modelling Language and Java; in Proc. of the 6th
International Workshop on Theory and Application of Graph Transformation (TAGT),
Paderborn, November 1998, LNCS, Springer Verlag.
G. Bhat, R. Cleaveland, and A. Groce: Efficient model checking via Buchi tableau
automata. Technical report, Department of Computer Science, SUNY, Stony Brook,
2000
T. Schäfer, A. Knapp, and S. Merz. Model Checking UML State Machines and
Collaborations. In Proc. Wsh. Software Model Checking, Volume 55(3) of Elect. Notes
Theo. Comp. Sci., Paries, 2001.
A. Knapp, S. Merz, and C. Rauh. Model Checking Timed UML State Machines and
Collaborations. Proc. 7th Int. Symp. Formal Techniques in Real-Time and Fault Tolerant
Systems, LNCS 2469, pages 395-416. ©Springer, Berlin, 2002
K. Diethers, U. Goltz and M. Huhn. Model Checking UML Statecharts with Time. In
Proc. of the Workshop on Critical Systems Development with UML, 2002.
A. David, M.Möller, and W. Yi. Formal Verification of UML Statecharts with Real-
Time Extensions. In Proc. of FASE 2002 (ETAPS 2002). LNCS 2306, p218-232, 2002.
S. Gnesi and D. Latella. Model Checking UML Statechart Diagrams using JACK. In
Proc. Fourth IEEE International Symposium on High Assuarance Systems Enginering,
IEEE Press, 1999.
G. del Castillo and K. Winter: Model checking support for the ASM high-level language.
In S. Graf and M. Schwartzbach, editors, Proc. on 6th Int. Conf. TACAS 2000, volume
1785 of LNCS, pages 331-346, 2000.
Kirsten Winter: Model Checking Abstract State Machines, Ph.D. thesis, Technical
University of Berlin, Germany, 2001.
A. Gargantini, E. Riccobene, S. Rinzivillo: Using Spin to Generate Tests from ASM
Specifications, In E. Börger, A. Gargantini, E. Riccobene, editors, Proc. of 10th
International Workshop on Abstract State Machines 2003, Taormina, Italy, March 3-7,
2003
K. McMillan: Symbolic Model Checking, Kluwer Academic Publishers, Boston (1993).
G. J. Holzmann: The model checker SPIN. IEEE Transactions on Software Engineering,
May 1997.
E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, volume 1855 of LNCS, pp. 154-169, 2000.

