
ME64 – A PARALLEL HARDWARE
ARCHITECTURE FOR MOTION ESTIMATION
IMPLEMENTED IN FPGA

Diogo Zandonai 1,2, Sergio Bampi 1 and Marcel Bergerman 2

1 UFRGS – Federal University of Rio Grande do Sul, Porto Alegre, Brazil;
2 GIT – Genius Institute of Technology, Manaus, Brazil l

Abstract:

Key words:

Digital video compression is a computationally intensive task, in which
motion estimation accounts for a significant portion of the arithmetic
operations. This paper presents ME64, a dedicated scalable hardware
architecture for fast computation of motion vectors. ME64 is a highly parallel
architecture, based on a matrix of 64 processing elements at its core, an I/O
interface, and comparison and control units. The proposed architecture was
implemented in an FPGA to treat reference and search blocks of 8x8 and
15x15 pixels, respectively. ME64 is scalable to be able to cover larger search
blocks if needed. It implements the full search algorithm using the SAD
criteria. ME64 was fully described in VHDL and prototyped in the Xilinx
XC2S150 FPGA device, with a maximum frequency of 33 MHz. Using this
FPGA device, ME64 reaches 2.1 GOps (billions of 8-bit operations per
second) and 107.32 frames (640x480 pixels) per second. The results herein
presented validate the ME64 against a software implementation, using an
external I/O data driver.

Hardware Architecture for Motion Estimation, Motion Estimation, Video
Compression.



318 Diogo Zandonai, Sergio Bampi and Marcel Bergerman

1. INTRODUCTION

1.1 Motivation

Digital video has a growing number of applications, such as in DVDs,
digital television, videophone, and PC multimedia. All these applications
require a large communication bandwidth and/or storage space.
Compression makes these applications feasible by reducing the amount of
data necessary to represent the video information.

Figure 1 shows a block diagram of a generic video compression system.
The pre-processing block performs color conversion and sub-sampling,
when necessary. Compression occurs inside the blocks: static image
compression and motion estimation, which are responsible for removing
spatial and temporal redundancy, respectively. Once compression is
performed, the resulting data is packed in a bitstream according to some
standard, MPEG-2, for example.

Figure 1. Generic video compression block diagram

Table 1 shows the computational effort to implement the main video
compression tasks in MOp (millions of 8-bit operations) per frame. This
table shows that the computational effort for motion estimation is more than
three times the effort for image compression.



ME64 – A Parallel Hardware Architecture for Motion Estimation ... 319

Since motion estimation is the most computationally intensive video
compression task, its implementation in a dedicated hardware device saves
hundreds of millions of operations and speeds up the task when compared to
software solutions.

1.2 Motion vectors

Motion vectors are used to represent the reference frame based on the
search frame, as shown in Figure 2. The reference blocks are represented by
a portion of the search block that has the same size of the reference block.
The motion vector points to the portion of the search block with the lowest
distortion when compared to the reference block. Each possible portion is
called a motion vector hypothesis.

Figure 2. Motion vectors, search block and reference block

To find the best motion vector hypothesis, an algorithm that defines the
search procedure and which hypotheses to consider is utilized in association
with some criterion for distortion computing. In practice, the most common
criterion is the SAD (sum of absolute differences) [5] [8]. Table 2 presents



320 Diogo Zandonai, Sergio Bampi and Marcel Bergerman

relevant algorithms for motion estimation and their operations requirement
in MOp per frame.

1.3 Previous works

Some relevant architectures for motion estimation have been developed,
as in [5] [4] [6] [9]. Their common features are that they are comprised of
linear or two-dimensional arrays of processing elements and all of them
utilize the SAD as the distortion calculation criterion. Their main
differences are the search block size, the I/O interface to input video data,
the level of hardware parallelism and the clock frequency.

The remainder of article is organized as follows: Section 2 presents the
proposed architecture, Section 3 presents the prototype used for validation
and Section 4 presents the results and conclusions.

2. THE ME64 ARCHITECTURE

2.1 General considerations

ME64 implements the full search algorithm for block matching-based
motion estimation. This algorithm was chosen due to its regularity and
precision. Full search is the most precise search algorithm, since it returns
the optimal motion vector hypothesis for a given search block. The analysis
is performed in a very regular way, which allows ME64 to save CPU time
by speeding up memory access through an efficient I/O interface and high
level of parallelism.

In ME64, the criterion for distortion computation is the SAD. This is a
common criterion in motion estimation hardware implementations [4] [6]
[9] because it does not involve multiplications or divisions.



ME64 – A Parallel Hardware Architecture for Motion Estimation ... 321

ME64 was designed to treat reference and search blocks of 8x8 and
15x15 pixels, respectively; therefore, 64 hypotheses are considered. One
motion vector is computed every 64 clock cycles. Motion estimation is
performed based on luminance data [1].

2.2 Architectural description

Figure 3 presents the ME64 high-level block diagram. The input
reference (Y) and search (SO and S1) data are organized by the I/O interface
in a way suitable for input to the Processing Matrix. The Processing Matrix
computes the distortion for all motion vector hypotheses and presents one
valid distortion value to the Comparison Unit at each clock cycle. The
Comparison Unit analyses these hypotheses and indicates to the Control
Unit through a NEW_MV signal pulse that a better hypothesis occurred. The
Control Unit, upon receiving this pulse, generates the MV signal based on its
own internal state.

Figure 3. ME64 high-level block diagram

The Processing Matrix is composed of 64 processing elements (PE), each
one responsible for the calculation of the distortion for one motion vector
hypothesis. The PE architecture is presented in Figure 4. The reference data
input Ri is stored in a register and presented in the output Ro, allowing for a
pipeline organization of the PEs. The difference between the B and Ri
signals is computed by ADR0. This difference may be inverted, depending
on its signal, by a controlled inverter logic gate, implemented through XOR
gates. The difference is then accumulated by ADR1 in the ACC register,
which is 6 bits larger than the input signal to avoid overflow. After 64 clock
cycles ACC stores the distortion in such a way that the SADij signal is
valid.



322 Diogo Zandonai, Sergio Bampi and Marcel Bergerman

Figure 4. Processing element architecture

The Processing Matrix is presented in Figure 5. Each PE is named PEij,
in which i stands for the line index and j stands for the column index of the
element’s position in the Processing Matrix. The R input signal feeds all PEs
through a pipeline created by connecting a PE’s Ro signal to the next PE’s
Ri signal. The four global buses feed local buses. The data from the GB1
and GB3 buses pass through a delay line with addressing function. Two
local buses feed one line of PEs. The local buses named LBi0 feed the B0
input to the PEs while the local buses named LBi1 feed the B1 input to the
PEs. Each PEij is responsible for the calculation of the distortion of the
block whose first pixel is the one located at the coordinates (i,j) in the
search block. Each PE starts computing one clock cycle that is delayed with
respect to the previous PE in the pipeline. For this reason, only one SADij
value is valid at each clock cycle. The SADij outputs from PEs feed the
M64 multiplexer which selects the unique valid SADij signal to feed the
SAD signal.

Figure 5. Processing Matrix architecture

The SAD signal is the input to the Comparison Unit. This unit, at each
clock cycle, analyses one distortion value and, if it represents a minimum, it
is stored in the MIN register and a NEW_MV pulse is generated.



ME64 – A Parallel Hardware Architecture for Motion Estimation ... 323

The Control Unit is a finite state machine implemented using an 8-bit
counter. The control signals are generated by applying a combinatorial logic
to some bits of the 8-bit counter. The Control Unit is also responsible for
generating the motion vector by sampling the addressing signal END at the
time a pulse is received from the NEW_MV signal.

2.3 Scalability

The proposed architecture may be instantiated to support larger search
blocks. For instances, the search block size is (k*8+7)x(k*8+7). Figure 6
presents an example of four ME64 instances to support a search block of
23x23 pixels.

Figure 6. Scalability property of the ME64 architecture

The R bus of each region receives the same data while their global buses
receive different partial search blocks. Note that the dead zones from inner
instances are covered by adjacent instances.

3. SYNTHESIS RESULTS

The proposed architecture was validated in simulation with the
ModelSim 5.5 tool and by a software tool (running on the PC platform) that
feeds data to the actual ME64 hardware implementation and reads back the
values of the motion vectors. In addition, to verify the quality of the ME64
hardware computation, the motion vectors were also computed by software
in the PC, and compared to the ME64 results for the same frames. The main
development tools used were:



324 Diogo Zandonai, Sergio Bampi and Marcel Bergerman

Hardware development tool WebPack 4.2, from Xilinx. This tool is
integrated with the simulation tool ModelSim 5.5, from Mentor Graphics.

Xilinx Spartan II Evaluation Kit, with the target FPGA prototyping
device XC2S150.

Pentium III 733 MHz microcomputer connected to a video source,
running MSWindows.

The ME64 full description was written in VHDL language. In this
description, the bit-width of the input signals Y, S0, and S1 were defined
based on a generic parameter named n.

During the development, simulation was exhaustively used for
validation. It also showed that the description with n=8 (as video is usually
distributed) occupies 1,918 logic blocks, which is more than the 1,728
available in the XC2S150 device. Figure 7 presents the number of logic
blocks taken up by ME64 for various values of n.

Figure 7. Number of logic blocks versus n

The XC2S150 device offers 12 configurable 4096-bit memory slices.
The ME64 architecture requires simultaneous access to its ten 256-bit
memory blocks. So unfortunately, each of ME64’s memory blocks had to be
mapped to different memory slice of the XC2S150, thus using up most of
the available memory.

The software developed interfaces to the prototype via the PC parallel
port. Due to the restrictions in the number of pins for communication using
the parallel port and the low availability of logic blocks in the XC2S150
device, the prototype was initially tested with n=4.

The prototype was tested at a slow speed (9.76 KHz) to accommodate
the slow communication channel provided by the PC parallel port. The
hardware results for the motion vectors of a full frame were compared to the



ME64 – A Parallel Hardware Architecture for Motion Estimation ... 325

software calculation done in the PC for n=8. This way, the ME64 hardware
calculations were validated.

4. CONCLUSION

With the FPGA running at 33 MHz, its maximum operating speed, the
proposed architecture can estimate motion for video at a resolution of
640x480 pixels at the rate of 107.32 fps (frames per second) or 41.96 fps for
a resolution of 1024x768 pixels.

Comparing the prototype against the PC software implementation, the
FPGA hardware prototype is 19.67 times faster and performs 437 times
more operations per second than a Pentium III 733 MHz running the
compiled version of the motion estimation software.

The ME64 latency is 192 clock cycles. The prototype uses 16 I/O pins
(for n=4), and the n=8 version would use 31 I/O pins. The prototype uses
71.1% of the logic blocks and 83.3% of the memory blocks available in the
XC2S150 FPGA device.

Considering the high ME64 computing power there is no reason to use
an algorithm other than the most precise, the full search. Moreover, in the
implementation of another algorithm, the expected decrease in the
operations rate requirement would not be directly converted to an increase
in the speed, due to the limitations imposed by the I/O rate that the FPGA
can sustain.

Table 3 presents a comparison of the proposed architecture against other
solutions. The frame rate normalization was done considering frame size,
reference block size and search block size.

The ME64 is among the fastest in Table 3. It is scalable, i.e. the frame
rate may be increased further and the search block size parameterized. The



326 Diogo Zandonai, Sergio Bampi and Marcel Bergerman

ME64 has a low I/O pin count and has a good ratio of operations to frame
rate. Given the ME64 efficient I/O interface and its pipeline architecture, the
hardware usage is 100% after initial pipeline fill latency.

Future developments include the design of different architectures of
processing elements. The proposed architecture can be used to implement
different algorithms such as hierarchical search or block clustering search.
The prototype can be integrated with external memory and an image sensor
aiming at a prototype running at the maximum simulated clock frequency.
Another tool to be developed is an automatic generator of VHDL
descriptions of motion estimation architectures based on the scalability
property of ME64. These descriptions would have the same throughput as
ME64 and a configurable search block size.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BHASKARAN, Vasudev; KONSTANTINIDES, Konstantinides. Image and video
compression standards: algorithms and architectures. 2. ed. Massachusetts: Kluwer
Academic Publisher, 1999. 454p.
CHAN, Yui-Lam; SIU, Wan-Chi. Block motion vector estimation using edge matching:
an approach with better frame quality as compared to full search algorithm. In: INT.
SYMP. ON CIRCUITS AND SYSTEMS, Hong Kong, 1997. Proceedings, [S.l.]: IEEE
Press, 1997, p. 1145-1148.
CHU, Chung-Tao; ANASTASSIOU, Dimitris; CHANG, Shih-Fu. Hierarchical global
motion estimation/compensation in low bitrate video coding. In: INT. SYMP. ON
CIRCUITS AND SYSTEMS, Hong Kong, 1997. Proceedings, [S.l.]: IEEE Press, 1997,
p. 1149-1152.
FUJITA, Gen; ONOYE, Takao; SHIRAKAWA, Isao. A new motion estimation core
dedicated to H.263 video coding. In: INT. SYMP. ON CIRCUITS AND SYSTEMS,
Hong Kong, 1997. Proceedings, [S.l.]: IEEE Press, 1997, p. 1161-1164.
QUEROL, Marc. STI3220: motion estimation processor codec. [S.l.]: SGS-Thomson
Microelectronics, 2001. Available at:
<http://www.st.com/stonline/books/pdf/docs/1648.pdft>. Access in: July, 18, 2002.
SANZ, César; GARRIDO, Matías J.; MENESES, Juan M. VLSI architecture for motion
estimation using the block-matching algorithm. In: AUTOMATION AND TEST
EUROPE CONF., Paris, 1998. Proceedings, [S.l.: s.n.], 1998, p. 45-49.
SHI, Yun Q.; SUN, H. Image and video compression for multimedia engineering:
fundamentals, algorithms and standards. United State: CRC Press, 2000. 480p.
TOURAPIS Alexis M.; AU, Oscar C.; LIOU, M. L. Predictive motion vector field
adaptive search technique (PMVFAST) enhancing block based motion estimation. In:
VISUAL COMMUNICATIONS AND IMAGE PROCESSING, San Jose, 2001.
Proceedings, [S.l.: s.n.], 2001.
ZANDONAI, Diogo; BAMPI, S.; CARRO, L. An architecture for MPEG motion
estimation. In: WORKSHOP IBERCHIP, 7., Montevideo, Uruguay, 2001. Proceedings,
Montevideo, Uruguay: Universidad de la Republica, 2001, ‘1’ CD.


