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Abstract: Compared with other verification methods, to some sense, model checking can
be thought of as more attractive method to test hardware and software systems
due to its automatic features. However, a stumbling problem is how to supply
correct formal properties in logic to do model checking by system designers
without specific mathematical background. This paper first presents two intuit-
tive representations for the LTL formulas: one is graphical automaton-like; the
other is textual regular-expression-like and then shows how these representa-
tions can be used to construct Büchi automata for LTL model checking.

1. INTRODUCTION

Software components have become an important part of the complex
distributed (real-time) embedded systems, which usually run in a much more
constrained environment than “traditional” computer systems and require
consequently safety-critical and high-reliability to these systems. Therefore,
one challenge today’s system designers are facing is how to guarantee the
correctness of such systems, especially when large concurrent and reactive
systems are concerned. Moreover, in safety crucial applications, real-time
requirements need to be considered, which further increase the difficulty of
system development and validation. The non-determinism inherent in such
applications usually makes them hard to test. However, formal methods for
specifying and verifying systems can offer a greater assurance of correctness
than traditional simulation and testing [CGP00].

Formal verification methods can ensure that a high-level system design
really meets rigorously specified correctness requirements, thereby increase-
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ing the possibility that faulty designs can be discovered at the earlier phases
of system development. Temporal logics [CD88] are well-suited for specify-
ing temporal properties of systems. Nevertheless, experiences show that
specifications of even moderate-sized systems are too complex to be readily
understood if without some expertise in idioms of the specification language
[DAC99]. Consequently, system developers seldom make signifycant use of
formal specification and verification techniques in practice.

In order to be widely adopted in the development of real world systems,
formal specification and analysis methods should be made accessible to sys-
tem designers and software engineers in the sense that users can express the
properties of the systems about which they wish to reason as intuitively as
possible and to confirm automatically that the design models of the systems
satisfy the required properties. As a result, system developers can use formal
specifications throughout the system lifecycle to guide development, main-
tenance and enhancement.

To do this, the author has presented intuitive representations for a widely
used temporal logic called CTL* as well as its extensions with respect to
time in [Zha03]. These representations include automaton-like graphical
notations and regular-expression-like textual notations so as to fit into
different needs. To some extent, these representations can offer a natural
way to express system properties without sacrificing the benefits of the
formal notation. Moreover, the intuitive representations of the LTL formulas
can help to construct Büchi automata with features different from other
methods [DGV99, Fri03, GL02, GO01, SB00, Tri02]. This method
makes fairness constraints caused by the “U” operators disappeared and the
resulting automata are the Büchi automata with only one acceptance condi-
tions, instead of the generalized ones with multiple acceptance conditions.

Considering the limit of space, the main aim of the paper is to introduce
the intuitive representations for LTL formulas and then present the automata
translation method based on these intuitive representations. The remainder of
this paper is structured as follows: Section 2 gives the preliminaries on linear
temporal logic and on Büchi automata; Section 3 presents the intuitive
representations for the LTL formulas; Section 4 addresses applying these
representations to automata translation; Section 5 discusses related work and
finally we draw conclusions in Section 6.

2. PRELIMINARIES

Linear Temporal Logic(LTL)[Pnu81] is composed of temporal operators
(X, F, G, U and R) which specify properties of a system execution path.
LTL formulas are defined inductively starting from a finite set P of atomic
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propositions, the standard Boolean operators, and the temporal operators.
Without loss of generality, given a system M, let be an execution path;

be a proposition; f and g be LTL formulas. The interpretation of LTL can
then be described as below:
1.
2.
3.
4.
5.
6.
7.
8.
9.

M,
M,
M,
M,
M,
M,
M,
M,
M,

p holds at the first state of
f does not hold along
either f or g holds along
both f and g hold along
f holds at the second state of
f holds at some state on
f holds at every state on
f holds along  up to some state where g holds.
g holds along up to and including the first state where
f holds.

Büchi automata are widely used in model checking to verify LTL for-
mulas due to the characteristic that both the system model and the properties
can be represented in an automaton form. There are several variants of Büchi
automata. The variant typically used in model checking is Büchi automata
with labels on transitions and simple accepting conditions defined in terms
of states. Simply, a Büchi automata is a 6-tuple <S, P, R, L, F>, where S
is a finite set of states, P is a finite set of propositions, is a
transition relation, is a transition labeling function, is a set
of initial states, and is a set of accepting states.

3. LTL’S INTUITIVE REPRESENTATIONS

3.1 Graphical Representation

Without loss of generality, Figure 1 - Figure 5 illustrate the graphical
representations for LTL formulas Xf, Ff, Gf, f U g and f R g respectively,
each of which is composed of a dot and a path pattern. Simply speaking,
a dot connects to the first position of a path pattern and a path pattern
consists of  nodes and edges: a node denotes a position on the path pattern, on
which the formula “f” means only those states satisfying f can occur in this
position (matching the node); an edge denotes the sequential order between
states, on which a symbol “*” represents repeating zero or finitely many
times and a symbol represents repeating infinitely many times. In
addition, “T” refers to true representing “all states” in the system M;
similarly, “F” refers to false representing “no state” if needed. Thus, path
patterns can intuitively illustrate what states may occur in which positions on
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a matching path. In this sense, a path pattern can be seen as a type of those
paths matching this path pattern and such a path can be seen as an instance
of this path pattern.

Figure 5. f R g

The meanings of Figure 1 - Figure 5 are obvious, i.e., each path matching
the above path patterns in M are the path satisfying the corresponding
formula. But how about the more complicated LTL formulas with the nested
sub-formulas? Let’s take the formula as an example. As a
result, Figure 6 is the graphical representation in which the nodes with a dot

characterize the nested cases. That is, a path pattern connected to the dot
in a node of another path pattern represents a subformula. Therefore, a

path starting from a state matching such a node should, on the one hand,
conform to the path pattern starting from the node and, on the other hand,
conform to the path pattern of the formula in the node at the same time. For
example, a path from a state matching the node should follow both the
path pattern starting from and the path pattern connected to the dot in

Note that this is different from Figure 5 which means a path should
follow one of the two given path patterns. In addition, the negation form can
be represented as In this way, we can intuitively represent any

Figure 6.

Figure 1. Xf Figure 2. Ff

Figure 4. f U gFigure 3. Gf
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complex LTL formulas. The proof is simple by structure induction and
therefore omitted here.

3.2 Textual Representation

The idea of textual representation for LTL formulas is inspired by the
form of regular expressions. However, in order to describe LTL formula
intuitively in a textual way, we just borrow some notations of the traditional
regular expressions and add some new notations to fit our needs.

The new notations related to logic operators are “~” denoting Negation,
“|” denoting Or, “&” denoting And, “=>” denoting Implication and “<=>”
denoting Equivalence. In particular, “!” is employed to force the formula im-
mediately preceding it to repeat infinitely many times. The notations borrow-
ed from the regular expressions are the operators related to concatenation
and closure [HMU01] which also have a similar meaning here. In addition,
“T” and “F” have the same meaning as in the graphical representation.

As a result, the basic LTL formula Xf can be written as “TfT!”, Ff can be
written as “T*fT!”, Gf written as “f!”, f U g written as “f*gT!”, and “f R g”
written as As for the complex LTL formulas,
say its regular form is also easy to be obtained in this way,
i.e., “(h => T*(f*gT!)T!)!”. It’s not difficult to reason that this textual repre-
senttation has a direct one to one mapping with the corresponding graphical
representation. Therefore, its semantics is the same as the graphical one. In
fact, the regular form is another way to represent path patterns. Note that, to
avoid ambiguity, this regular representation has to be parenthesized when-
ever need. Otherwise, the meaning of the expression “(h => T*(f*gT!)T!)!”
would be not clear if the brackets surrounding the sub-expression “f*gT!”
were missing.

4. LTL’S AUTOMATON TRANSLATION

Because the graphical and the regular representations for LTL formulas
are essentially the same thing, here we only use the regular form to illustrate
the translation procedure in this section. On the other hand, we suppose the
LTL formula is of the restricted negation normal form, in which the negation
is applied only to propositional variables.

4.1 Example

To ease the understanding of the translation procedure, let’s first take an
LTL formula as an example. According to Section 3, the textual
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form of is representing an infinite sequence of nodes
labeled with If we separate the first node from the sequence, the
rest of the sequence still forms an infinite sequence. That is, can
be derived into two parts: Note that
the double colon “::” here is employed to separate the two parts: the part
before “::” is called head; the part after “::” is called tail. Intuitively, a path
pattern can be seen as a sequence of nodes, in which the first node is head
and the rest of the sequence tail. As for its head is
and its tail is However, its head is still a path pattern not a state
formula. Our goal is to transform a path pattern into its “normal” form, i.e.,
its head is state formula. Similarly, According to
the interpretation of LTL formulas, it’s not difficult to reason that

Moreover, since (T*gT!) is still a path pattern, can be
further transformed as follows until all the head parts are state formulas:

Notice that T! matches any infinite path, so
can be represented as the following normal form:

Similarly, the normal form of is shown as below:

Let then we have

which can be seen as a variant of context-free grammar productions. We can
construct the Büchi automaton of as shown in Figure 7 from this
production form.

Figure 7. Büchi automaton of

One problem that needs to make further explain is accepting condition.
The Büchi automaton of contains two states A and B which are
labeled with and respectively. Accord-

and
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ing to the automaton construction, the state A labeled with
means any infinite path starting from A matches the state B
labeled with means any infinite path starting from B
matches and (T*gT!) at the same time. It is easy to reason that
the loop from B directly to B is not acceptable because the infinite part (i.e.,
T!) of (T*gT!) is never matched. But the loop from B via A to B is acceptable
because Consequently, both A and B are
accepting states with such a constraint on B that the loop from B must go
through A. In general, all the states on an accepting loop can not contain a
common subformula of the form “x*yT!”. Otherwise, the loop will always
matche x*yT! and thus can not match the infinite part of x*yT! at all.

Note that in this automata translation procedure we do not need fairness
constraints with respect to the (implicit) “U” operators in the given formula.
The reason is Let A =f*gT! and B=T!, thus
in the resulting automaton (Figure 8) only the state B labeled with T! is the
accepting state, which guarantees that g has already been held before
arriving at B. In this aspect, this automata translation method differs from
many other methods by explicitly denoting the path pattern following g.

Figure 8. Büchi automaton of f U g

4.2 Translation Algorithm

The above example illustrates that the procedure of translating an LTL
formula into Büchi automaton from its path pattern representation, which is
similar to the tableau-constructing method. But the approach presented here
is more simple and intuitive. Especially, the “U” operators are no longer a
problem. In what follows, we’ll present our algorithm by imitating the
algorithm in [GPVW95]. Therefore, our algorithm has the same complexity
as the algorithm in [GPVW95].

The basic data structure used in our algorithm is called node. The states
of the automaton can be derived from nodes. A node is defined as below:

where the field formula keeps the textual path pattern of an LTL formula; the
fields head and tail keep the head and the tail of the path pattern formula
respectively. As a result, formula = head::tail. Our goal is to transform
formula into its normal form, i.e., its head is a state formula. Obviously, the
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three fields together can uniquely identify a node. Intuitively, the successors
of a node are the nodes with formulas the same as tail of the node and the
predecessors of a node are the nodes with tails the same as formula of the
node. The edge between a node and its successor is labeled with head of the
node. To some sense, the resulting automaton is a flattened path pattern.

Given an LTL formula r in a textual path pattern form, the function
create_graph initiates the automaton construction procedure by applying
split to the starting node with formula and head set to r and tail set to T!. As
a result, create_graph returns a set of nodes, from which we can derive a
Büchi automaton of r.

The recursive function split builds a tableau. It has two parameters: node
denoting the current node to be processed and node_set a set of nodes have
been generated by now and returns an updated set of nodes if possible.
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4.3 Acceptance Condition

We can deduce the accepting states of the resulting automaton as follows.
According to our automaton construction, a state labeled with a path pattern
means any infinite path (loop) starting from the state matches the path
pattern. Consequently, the infinite part of the path matches the infinite part
of the path pattern. In addition, the tails of the nodes obtained from
create_graph always have the conjunction form
where has a form of either “x*yT!” or “x!”. Notice that a path pattern of
the form “TxT!” or “xT!” is a special case of the form “x*yT!”. This
conjunction form requires any loop from the corresponding state in the
automaton match the n path patterns at the same time.

For convenience, we denote as a path pattern set
If all the states on a loop share common path patterns

of the form “x*yT!”, say,
obviously, the loop will match f*gT! forever

but never get to the infinite part of f*gT!. Consequently, such a loop is not
acceptable. However, if the above condition is not true, then we can say the
loop is acceptable. In general, if a state in a resulting automaton has a loop
starting from it and the states on the loop do not share common path patterns
of the form “x*yT!”, then the state is a (constrained) accepting state.

It’s easy to reason that a state labeled with a path pattern of the form
is definitely an accepting state and a state labeled with a

path pattern of the form is definitely not
an accepting state. Therefore, a state contains path patterns of the two forms
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“x!” and “x*yT!” is an accepting state if there is a loop to it and the states on
the loop do not share common path patterns of the form “x*yT!”.

As mentioned in section 4.1, this automata translation procedure does not
need fairness constraints with respect to the (implicit) “U” operators in the
given formula and thereby differs from many other methods. According to
the existing methods, for each subformula of the form “f U g”, a set of
accepting states is produced. In case a
formula contains multiple subformulas of the form “f U g”, then the resulting
automaton contains accordingly multiple sets of accepting states, so called
generalized Büchi automaton. The path of a generalized Büchi automaton is
accepted if for each set of accepting states, there are infinitely many s’s on
the path such that Therefore, a generalized Büchi automaton is
usually transformed into a normal Büchi automaton with only one set of
accepting states by using a counter i: each state becomes a pair <s, i>. The
counter is initialized to 0 and counts modulo where

It is increased whenever a state of the ith set is reached. As
a result, only one set of accepting states, say is needed.

5. RELATED WORK

Graphical representation, due to its visual effect, is popular in the process
of system development. Some intuitive representations for temporal logic
properties have been presented in recent years. Timing Diagrams [SD93] are
a graphical notation for expressing precedence and causality relationships
between events in a computation, the semantics of which is defined by a sub-
set of temporal logics. Graphical Interval Logic (GIL) [DKM+94] is a visual
temporal logic in which formulas resemble timing diagrams and can thus
express a subset of temporal logic, too. Timeline notation captures the event-
based LTL requirements [SHE01]. Constrained expression representation in

is essentially a regular expression which can not address infinite
executions of the system. Regular CTL (RCTL) [BBL98] covers a rich and
useful set of CTL formulas and regular expressions. Bandera Specification
Language (BSL) is a source-level model checking independent
language for expressing properties of Java program actions and data.

For the automaton translation, many existing approaches [DGV99, Fri03,
GL02, GO01, SB00, Tri02] are mainly based on the LTL formulas
or alternating Büchi automata of the LTL formulas together with some simp-
lification and optimization techniques to reduce the size of the resulting
automata. In contrast, the method presented in this paper built the automata
based on the path patterns of the LTL formulas. Path pattern is similar but
different from alternating Büchi automaton in concept and use. We just use
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path pattern(formula) to label a state, but never think of
such a state as a conjunction of n basic states labeled respectively with

A path pattern can characterize the whole path instead of the prefix of
the path, say Fg, because path pattern ends with the infinite form “x!”. Thus,
path pattern does not need accepting states. Using path pattern does not need
to transform G(F) into R(U) operator. Checking a (constrained) accepting
state is simple and the resulting automaton can directly be used to do LTL
model checking. That is to say, we can avoid the problem caused by the
formula of form “f U g” and obtain a “normal” Büchi automaton directly.

6. CONCLUSION AND OUTLOOK

Expressing complex requirements in logic is without doubt a challenging
task. Therefore, this paper attempts to visualize the cryptic specifications to
ease the question. By using path pattern, one can intuitively reason what type
of states can occur in which positions on a path and both state- and event-
based properties can be specified in a unified way. Moreover, path pattern
can help to construct the normal Büchi automata, instead of the generalized
ones, which different from many other translation methods in the aspect that
this method avoids the problem caused by the “U” operator naturally. We
plan to study on the simplification and optimization methods related to this
automata translation way in the future.
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