
AN ACTIVE REPLICATION SCHEME THAT
TOLERATES FAILURES IN DISTRIBUTED
EMBEDDED REAL-TIME SYSTEMS

Processors and communication links failures

Alain Girault1, Hamoudi Kalla1, and Yves Sorel2

1INRIA Rhône-Alpes, 655 avenue de l’Europe, 38334 Saint-Ismier cedex, FRANCE

{ alain.girault.hamoudi.kalla } @inrialpes.fr
2INRIA Rocquencourt, B.P.105 - 78153 Le Chesnay Cedex, FRANCE

yves.sorel@inria.fr

Abstract: Embedded real-time systems are being increasingly used in a major part of criti-
cal applications. In these systems, critical real-time constraints must be satisfied
even in the presence of failures. In this paper, we present a new method-based
on graph transformation that introduces fault-tolerance in building embedded
real-time systems. The proposed method targets distributed architecture and can
tolerate a fixed number of arbitrary processors and communication links fail-
ures. Because of the resource limitation in embedded systems, our method uses
a software-based replication technique to provide fault-tolerance. Finally, since
we use graph transformation to perform replication, our method may be used
by any off-line distribution-scheduling algorithm to generate a fault-tolerant dis-
tributed schedule.

Keywords: Distributed and embedded systems, real-time systems, fault-tolerance, active
replication, graph transformation.

1. INTRODUCTION

Distributed and embedded real-time systems, such as transportation (e.g.,
aircrafts and automobiles), nuclear, robotics, and telecommunication, requires
high dependability (Avizienis et al., 2000), where system failures during execu-
tion can causes catastrophic damages. These systems must function with high
availability even under hardware and software faults. Fault-tolerance (Jalote,
1994) then becomes an important key to establish dependability in these sys-
tems. Hardware and software redundancy are well-known effective methods
for hardware fault-tolerance (Guerraoui and Schiper, 1996), where extra hard-

84 Alain Girault, Hamoudi Kalla and Yves Sorel

ware (e.g., processors, communication links) and software (e.g., tasks, mes-
sages) are added into the system to deal with hardware faults. However, hard-
ware techniques based on hardware solutions are not preferred in most em-
bedded systems due to the limited resources available, for reasons of weight,
encumbrance, energy consumption, or price constraints.

In this paper, we present our most recent work for integrating fault-tolerance
in SYNDEx (http://www-rocq.inria.fr/syndex), a system level CAD software tool for
optimizing the implementation of real-time embedded applications on mul-
ticomponent architectures. The method we present extends (Girault et al.,
2001; Girault et al., 2003) by tolerating also communication links failures,
and is more general than (Dima et al., 2001) since it can tolerate an arbitrary
number of processors failures and an arbitrary number of communication links
failures.

The paper is organized as follows. Section 2 describes the related work.
Section 3 presents the various models used by our method and states our fault-
tolerance problem. Section 4 presents the proposed approach for providing
fault-tolerance. Section 5 explains how to use our solution with some existing
distribution-scheduling heuristics to generate fault-tolerant schedules. Finally,
section 6 concludes and proposes directions for future research.

2. RELATED WORK

Related work in software fault tolerance approaches for distributed and em-
bedded real-time systems falls in several categories. Relatively to fault hy-
pothesis, we are interested in three fault-tolerant approaches: processors fault-
tolerance, communication links fault-tolerance, and processors/communication
links fault-tolerance.

In the first category of approaches that tolerates processors failures, several
algorithms-based on scheduling heuristics have been proposed. They are based
on active software redundancy (Breland et al., 1994; Hashimoto et al., 2002)
or passive software redundancy (Ahn et al., 1997; Oh and Son, 1997). In the
active redundancy technique, multiple redundant copies of a task are scheduled
on different processors, which are run in parallel to tolerate a fixed number of
processor failures. For instance, an off-line scheduling algorithm that tolerates
a single processor failure in multiprocessor systems is presented in (Hashimoto
et al., 2002). In the passive redundancy technique, also called primary/backup
approach, a task is replicated on primary and backups replicas, but only the
primary replica is executed. If it fails, one of the backups is selected to become
the new primary. For instance, a fault-tolerant real-time scheduling algorithm
that tolerate one processor failure in a heterogeneous distributed system is pre-
sented in (Qin et al., 2002), where failures are assumed to be permanent.

An Active Replication Scheme that Tolerates Failures … 85

In the second category of approaches that tolerates communication links
failures, several techniques have been proposed, which are based on proactive
and reactive schemes. In the proactive scheme (Fragopoulou and Akl, 1995),
multiple redundant copies of a message are sent along disjoint paths. However,
in the reactive scheme (Sriram et al., 1999), one copy of the message, called
primary, is sent, and if it fails, another copy of the message, called backup, will
be transmitted.

Finally, the last category of approaches tolerates both processors and com-
munication links failures (Gummadi et al., 2003; Zheng and Shin, 1998; Dima
et al., 2001). For instance, in (Gummadi et al., 2003), failures are tolerated
using the fault recovery scheme and a primary/backups strategy. Our solu-
tion is more general since it can tolerate arbitrary processors and communica-
tion links failures, and it may be used by any off-line distribution-scheduling
heuristic to generate a fault-tolerant distributed code.

3. MODELS

3.1 Algorithm model
The algorithm is modeled by a data-flow graph Each vertex is an op-

eration and each edge is a data-dependence. A data-dependence corresponds
to a data transfer from a producer operation to a consumer operation, defining
a partial order on the execution of operations. This partial order relation is
denoted by Operations of can be either an external input/output op-
eration or a computation operation. Operations with no predecessor (resp. no
successor) are the input interfaces (resp. output), handling the events produced
by the sensors (resp. actuators). The inputs of a computation operation must
precede its outputs. Moreover, computation operations are side-effect free, i.e.
the output values depend only of the input values. The algorithm graph is exe-
cuted repeatedly at each input event from the sensors in order to compute the
output events for the actuators.

Figure 1. (a) Algorithm graph; (b) Architecture graph.

Figure 1(a) gives an example of with four operations: A (sensor), B
and C (computations), and D (actuator), and four data-dependences:

and

86 Alain Girault, Hamoudi Kalla and Yves Sorel

3.2 Architecture model

The architecture is modeled by a graph where vertices are processors,
and edges are bidirectional point-to-point communication links. In the sequel,
we write “links” instead of “point-to-point communication links”.

A processor P is a graph made of one operator one local memory and
at least one communicator An operator executes sequentially operations
of reads from and writes data into its local memory A communicator

cooperates with another communicator in order to execute sequentially
transfers of data stored in the memory (send or receive) between processors
through a link.

Figure 1(b) gives an example of with three processors and
and three links and where each processor is made of one operator

one local memory and two communicators and
To each operator we associate a list of pairs where is the worst

case execution time (WCET) of the operation o on operator Also, to each
communicator we associate a list of pairs where is the worst
case transmission time (WCTT) of the data-dependence on communicator

Since the target architecture is heterogeneous, the WCET (resp. WCTT)
for a given operation (resp. data-dependence) can be distinct on each operator
(resp. communication link).

3.3 Failure model

We consider only processors and communication links failures, where fail-
ures are assumed to be a fail-silent (also known as fail-stop), i.e. a component
works correctly or stops functioning (becomes silent). Recent studies on mod-
ern processors have shown that a fail-silent behavior can be achieved at a rea-
sonable cost (Baleani et al., 2003). We assume that at most processors
and links may fails.

As we consider off-line distribution-scheduling heuristics, the execution of
operations and communications are time-triggered (Kopetz and Bauer, 2002),
that is, each operation and communication is assigned two start-dates:
in the absence of failure and in the presence of failures.

4. THE PROPOSED APPROACH

In this section, we present our approach based on software redundancy to
tolerate processor and link failures. We propose to use graph transformation
to perform software redundancy, where a given input algorithm graph is
transformed into a new algorithm graph augmented with redundancies.
Then, operations and data-dependences of can be distributed and sched-
uled on a specified target distributed architecture to generate a fault tol-

An Active Replication Scheme that Tolerates Failures … 87

erant distributed schedule. The global picture of our methodology is shown in
Figure 2.

Figure 2. Global picture of our methodology.

In this section, we concentrate on the first step, the transformation of
into We first present a method that tolerates only processors failures,
next we present a method that tolerates only links failures, and finally we
present a combined method that tolerates both processors and links failures.

4.1 Tolerating processor failures

In order to tolerate at most processor failures, we propose to use the
same principle as in (Girault et al., 2003): each operation has replicas
scheduled on distinct processors. The system’s communication links
are assumed to be fault-free.

The transformation of into is performed in two steps. Initially,
each operation of is replicated in on exclusive replicas

(the set of replicas is noted two operations et
are exclusive if and only if they are two identical replicas of the same opera-
tion and they must be scheduled on distinct processors. In the second step,
each replicated operation of must receive its inputs data times
from each of its predecessors. Therefore, each data-dependence of
is replicated in on exclusive replicas two
data-dependences et are exclusive if and only if they are two iden-
tical replicas of the same data-dependence and they must be scheduled
on disjoint paths (see Figure 3(a) for

Figure 3. (a) Processor failures; (b) Link failures.

88 Alain Girault, Hamoudi Kalla and Yves Sorel

4.2

To tolerate at most link failures, we propose to use the same princi-
ple as in tolerating processors failures, which is based on the following graph
transformation. We don’t need to replicate operations because the processors
are assumed to be fault-free. Therefore, each data-dependence of is
replicated in on exclusive replicas
between any two dependent operations (see Figure 3(b) for

4.3
To tolerate at most processor and link failures, we first replicate

each operation of in on exclusive replicas (set as
shown in Figure 4(a), wherein operations A and B of Figure 1(a) are replicated
on exclusive replicas. Then, each replicated operation of must
receive its input data times from each of its predecessors. There-
fore, each data-dependence of is replicated in on
exclusive replicas, as shown in Figure 4(a), wherein the data-dependence
is replicated times between the replicas of A and each
replica of B.

Figure 4. (a) Initial transformations for and (b) Final transformations.

The problem of this scheme is to find a distribution of these exclusive de-
pendences of between the replicas of A. The requirement is to
tolerate only processor failures and link failures. Therefore, we pro-
pose a distribution which is less expensive in terms of communications.

To present as clearly as possible our distribution technique, we present ini-
tially its principles in the case and for the algorithm sub-graph
of Figure 5(a). Figures 5(b) and 5(c) are the two first steps of our approach,
before the distribution itself, which is performed in two steps, illustrated in
Figures 5(d) and 5(e). Since and and contain
each two replicas. Furthermore, the data-dependence is replicated three
times.

Tolerating link failures

Tolerating processor and link failures

An Active Replication Scheme that Tolerates Failures … 89

First, we connect each replica of A with one of these three data-dependences,
as shown in Figure 5(d). Next, we first replace the third data-dependence by a
new operation We call this new operation a routing operation, its duration
is null (the set of all routing operations from A to B is noted Fi-
nally, we connect all the replicas of A to which is also connected
to each replica of B, as shown in Figure 5(e). The purpose is to make sure
that each replica of B has three distinct sources from which it will receive
the data-dependence so that if any two sources fail (two because here

then these failures will be masked by the third source. Thus, for
any operations and are exclusive and must be implemented on dis-
tinct processors. Also, the data-dependences and are
exclusive and must be implemented on disjoint paths. Such exclusive relations
are given with the final transformed graph to the distribution/scheduling
heuristic (see Figure 2).

Figure 5. Distribution scheme for and

In the general case, and the transformation scheme of
on is illustrated in Figure 4(b), where each operation is replicated

in on exclusive replicas, and each data-dependence is replaced
by routing operations data-dependences between and
each and one data-dependence between each and each The opera-
tions in and in are exclusive and must be implemented on
distinct processors. Also, all replicated data-dependences and are
exclusive and must be implemented on disjoint paths.

5.

Our method may use the distribution-scheduling heuristic DSH proposed
in (Grandpierre et al., 1999). As required by our graph transformation method,
we modify the DSH heuristic to take into account the exclusive relations be-
tween operations and data-dependences. The modified heuristic is formally

DISTRIBUTION/SCHEDULING HEURISTIC

90 Alain Girault, Hamoudi Kalla and Yves Sorel

described in Figure 6. We use the two functions and to de-
note the sets of successor and predecessor operations of o in

At each step of the heuristic, for each candidate operation in
we compute the set of processors that can execute and comply to
the concerned exclusions of Then, the most urgent candidate operation

is selected to be scheduled thanks to the schedule pressure function
defined in (Grandpierre et al., 1999). Then, among the set the pro-
cessor where will finish at the earliest date, is selected to execute

But before is actually scheduled onto all the required
data-dependences are scheduled on paths, possibly disjoint depending again
on the concerned exclusions of Finally, the lists of scheduled

operations and of candidate operations are updated.
Finally, the proposed general transformation scheme enables us to generate

a fault-tolerant distributed schedule of the new algorithm graph onto the

An Active Replication Scheme that Tolerates Failures … 91

architecture graph The following theorem proves that it is, by construc-
tion, tolerant to any combination of at most processors failures and at
most communication links failures.

THEOREM 1 Let be an algorithm graph and an architecture graph.
Let be the new algorithm graph obtained by applying the transformation
of Figure 4(b) to Let be the system obtained by distributing and
scheduling onto w.r.t. the exclusion relations required by the graph
transformation having led to If at most processor failures and
communication links failures occur in then at least one replica of each
operation will remain active.

Proof. Since each operation is replicated times, since all these
replicas are scheduled onto distinct processors, and since at most pro-
cessors can fail simultaneously, then at least one replica of each operation is
scheduled onto a processor that will remain valid. We therefore need to prove
that any operation scheduled onto an active processor is active, i.e., that it re-
ceives correctly all its required inputs from all its predecessor operations.

Let be such an operation, namely the replica of operation For
each of its predecessor operations thanks to the same argument as above,
there exists at least one replica scheduled onto a valid processor. By con-
struction, there exist data-dependences between and Thanks to
the exclusion lists given to the distribution/scheduling heuristic, these
data-dependences are scheduled onto disjoint paths. Since at most
communication links can fail simultaneously, then at least one of these data-
dependences will remain valid. Hence will receive correctly its input from

We have thus proved that any operation scheduled onto an active processor
will receive correctly all its input data from all its predecessors in and will
therefore be executed correctly.

6.
We have investigated methods to mask hardware failures in heterogeneous

distributed systems with point-to-point communication links. We have pro-
posed a new method that tolerates at most arbitrary processors and at
most arbitrary communication links failures. It is a software solution,
based on active redundancy to mask the hardware failures. It proceed in two
steps: first a graph transformation, and then an off-line distribution-scheduling
heuristic. The graph transformation adds software redundancy to the original
algorithm graph we obtain a new algorithm graph with redundancy,
along with exclusion relations. Then, the distribution-scheduling heuristic is
applied to map onto a given architecture graph As a result, it gen-
erates a static schedule of onto which is tolerant to the required
processors and communication links failures.

CONCLUSION

92 Alain Girault, Hamoudi Kalla and Yves Sorel

Currently, we are working on a new solution to take into account distributed
architectures with bus communication links. We also plan new solution to take
sensors/actuators failures into account.

REFERENCES
Ahn, K., Kim, J., and Hong, S. (1997). Fault-tolerant real-time scheduling using passive repli-

cas. In PRFTS’97, Taipei, Taiwan.
Avizienis, A., Laprie, J.-C., and Randell, B. (2000). Fundamental concepts in dependability. In

ISW-2000, pages 7–12, Boston, Massachusetts, USA.
Baleani, M., Ferrari, A., Mangeruca, L., Peri, M., Pezzini, S., and Sangiovanni-Vincentelli, A.

(2003). Fault-tolerant platforms for automotive safety-critical applications. In CASES’03,
San Jose, USA. ACM.

Breland, M.A., Rogers, S.A., Brat, G., and Nelson, K.L. (1994). Transparent fault-tolerance
for distributed Ada applications. In Proceedings of the Conference on TRI-Ada ’94, pages
446–457. ACM Press.

Dima, C., Girault, A., Lavarenne, C., and Sorel, Y. (2001). Off-line real-time fault-tolerant
scheduling. In Euromicro PDP’01, pages 410–417, Mantova, Italy.

Fragopoulou, P. and Akl, S.G. (1995). Fault tolerant communication algorithms on the star
network using disjoint paths. In Proceedings of the HICSS’95, Kingston, Canada.

Girault, A., Kalla, H., Sighireanu, M., and Sorel, Y. (2003). An algorithm for automatically
obtaining distributed and fault-tolerant static schedule. In DSN’03, San Francisco, USA.

Girault, A., Lavarenne, C., Sighireanu, M., and Sorel, Y. (2001). Fault-tolerant static scheduling
for real-time distributed embedded systems. In ICDCS’01, pages 695–698, Phoenix, USA.
IEEE. Extended abstract.

Grandpierre, T, Lavarenne, C., and Sorel, Y. (1999). Optimized rapid prototyping for real-
time embedded heterogeneous multiprocessors. In 7th International Workshop on Hard-
ware/Software Co-Design, CODES’99, Rome, Italy.

Guerraoui, R. and Schiper, A. (1996). Fault-tolerance by replication in distributed systems. In
Proceeding Conference on Reliable Software Technologies, pages 38–57. Springer-Verlag.

Gummadi, K.P., Pradeep, M.J., and Murthy, C.S. Ram (2003). An efficient primary-segmented
backup scheme for dependable real-time communication in multihop networks. IEEE/ACM
Trans. on Networking, 11(1).

Hashimoto, K., Tsuchiya, T, and Kikuno, T. (2002). Effective scheduling of duplicated tasks for
fault-tolerance in multiprocessor systems. IEICE Transactions on Information and Systems.

Jalote, P. (1994). Fault-Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs, New
Jersey,

Kopetz, H. and Bauer, G. (2002). The time-triggered architecture. Proceedings of the IEEE,
Special Issue on Modeling and Design of Embedded Software.

Oh, Y. and Son, S.H. (1997). Scheduling real-time tasks for dependability. Journal of Opera-
tional Research Society, 48(6):629–639.

Qin, X., Jiang, H., and Swanson, D.R. (2002). An efficient fault-tolerant scheduling algorithm
for real-time tasks with precedence constraints in heterogeneous systems. In ICPP’02, pages
360–386, Vancouver, Canada.

Sriram, R., Manimaran, G., and Murthy, C. Siva Ram (1999). An integrated scheme for estab-
lishing dependable real-time channels in multihop networks. In ICCC’90, pages 528–533.

Zheng, Q. and Shin, K. G. (1998). Fault-tolerant real-time communication in distributed com-
puting systems. In IEEE Trans. on Parallel and Distributed Systems, pages 470–480.

