
USING AGENTS IN THE EXCHANGE OF
PRODUCT DATA

Udo Kannengiesser and John S. Gero
Key Centre of Design Computing and Cognition, University of Sydney

Abstract:

Key words:

This paper describes using agents in the exchange of industrial product data
when predefined translators are not available. A major problem with standard
translators is that a seamless data transfer instantly fails when not every
translator implements a mapping into or from the standard format. This is
frequently the case for large design projects that involve the use of a multitude
of heterogenous tools, possibly in evolving configurations over time. This
approach to using agents aims to flexibly provide product models in a form
adapted to the need of the particular tools when a common data format is not
readily available. Experiments show the feasibility of this approach as well as
its efficacy and efficiency.

product data exchange, product modelling, interoperability

1 INTRODUCTION

There has been an increased use of computational tools to support
various tasks in product development. Examples include computer-aided
drafting (CAD) and manufacturing (CAM) systems and a number of
specialised tools for analyses such as finite element analysis (FEA) and
spreadsheet analysis. Most computational systems have been developed
independently from one another to address the specific needs of each task
and use different product data representations. However, industrial product
development is a process that involves a complex network of interrelated
activities, each of which needs information produced or manipulated by the
other. Interoperability – the ability to move data from one representation of a
product to another to allow other computational processes to operate on it



130 Udo Kannengiesser and John S. Gero

has become an area of growing concern as the cost of such interchanges
increases (NIST 1999).

Most approaches to the exchange of product data (today commonly
subsumed in the notion of product modelling) are founded on a standard data
model that is used to translate between the different native formats of the
tools. Any object that needs to be made interoperable must be pre-defined in
this model and encoded into a standard form. One of the best-known product
models is the ISO 10303 standard, informally known as STEP (STandard for
the Exchange of Product model data).

Despite the growing use of STEP some practical issues remain. One of
them is that interoperability between a set of tools is solely determined by
the intersection of their translation capabilities. As many translators have
been specialised to implement only certain subsets of the standard data
model, in practice a completely seamless data transfer is often not possible
(Pratt 2001). Especially large design projects involving a highly diverse set
of tools are affected. This problem is aggravated when technological or
organisational changes over the duration of a project necessitate the
integration of new tools or new exchanges among present tools. In addition,
the pace at which ISO standards are developed and implemented is generally
very slow and often lags behind the needs and developments in industrial
practice (Eisenberg and Melton 1998).

Updating the set of translators for every modification in the tool
environment is time-consuming, costly and not always possible within the
time constraints of a project. There is a need for a more flexible approach,
one that is able to quickly achieve interoperability when a common product
model is not readily available. We have developed an agent-based system
that can exchange product data among tools that do not share a common
format. Experimental results show that this approach can be an effective and
efficient way to provide the needed flexibility in the transfer of product data
when pre-defined translators are not available. Our conceptual assumptions
draw from research in cognitively-based situated agents.

1. SITUATED AGENTS

A characteristic that allows a system or agent to adapt its behaviour to
changes in its environment is situatedness, an idea from cognitive science. A
situated agent does not simply react reflexively in its environment but uses
its interpretation of its current environment and its knowledge to produce an
action (Clancey 1997). As a consequence, a situated agent can be exposed to
different environments and produce appropriate responses.



Using Agents In The Exchange Of Product Data 131

Gero and Fujii (2000) have developed a modular architecture for a
situated agent, Figure 1. The agent’s sensors monitor the environment to
produce sense-data relevant for the agent. The sensors receive biases from
the perceptor, which “pulls” the sense-data to produce percepts. Percepts are
grounded patterns of invariance over interactive experiences. Perception is
driven both by sense-data and biases from the conceptor, which “pulls” the
percepts to produce concepts. Concepts are grounded in the percepts as well
as possible future interactions with the environment. The hypothesizor
identifies mismatches between the current and desired situation and decides
on actions that when executed are likely to reduce or eliminate that
mismatch. Based on the hypothesized action, the action activator decides on
a sequence of operations to be executed on the environment by the effectors.

This architecture provides a framework for different modes of cognition
and consequently different degrees of flexibility in the agent’s actions: A
reflexive agent uses the raw sensory input data from the environment to
generate a pre-programmed response. A reactive agent uses percepts to
activate its actions, which can be viewed as a limited form of intelligence
constrained by a fixed set of concepts and goals. A reflective agent
constructs concepts based on its current goals and beliefs and uses them to
hypothesize possible desired external states and propose alternate actions
that will achieve those desired states through its effectors. The agent’s
concepts may change as a consequence of its experience.

Situated, reflective agents are especially useful in dynamic environments
characterised by high heterogeneity and frequent change. One such
environment is the fragmented world of industrial design software.

Figure 1. A modular architecture for a situated agent allowing different modes of reasoning.



132 Udo Kannengiesser and John S. Gero

2. IMPLEMENTATION

We have implemented a system consisting of a situated, reflective agent
(which we call the product modelling (PM) agent) and a number of tools,
each of which is “wrapped” by a simple, reactive agent, Figure 2. The PM
agent maintains all the data of a particular product throughout the different
design stages from the initial specification to the released design description.
The individual design stages are carried out by the tool agents that modify or
add to the product data. The PM agent knows about the tool agents’ roles
and the current state of the design with respect to a given project plan and
accordingly manages all data transfers to and from the tool agents. Cutkosky
et al. (1993) have used a similar architecture using agents wrapping design
tools and facilitators to exchange their data; however their approach is based
on pre-defined standard translators.

Figure 2. An agent-based system for product data exchange.

All agents are implemented in the rule-base language Jess1 and connected
to their environment by sensors and effectors written in Java. While the tool
agents, here, are rather simple consisting of perceptors and action activators,
the PM agent has all the modules of a situated, reflective agent, including
conceptor and hypothesizor. In addition, it has a neural network (in Java) to
represent its memories about its interactions with the tool agents, which it
uses to bias the way it interacts with its environment. The neural network is
an interactive activation and competition (IAC) network that has the same

1 Java Expert System Shell (http://herzberg.ca.sandia.gov/jess/)



Using Agents In The Exchange Of Product Data 133

architecture as the one proposed by McClelland (1981) and includes an
unsupervised learning algorithm. In addition, we have given the agent the
capability to add new neurons to the IAC network as well as to reorganise
the connections among the neurons to update its memory according to its
current interpretation of its interactions. This allows the agent to integrate
new experiences such as previously unknown formats or new associations
between the formats and the tool agents (in case a tool agent replaces its tool
by one that uses a different format). The PM agent can construct new
formats from interpreting messages represented in unfamiliar formats using
a set of generative rules and semantic knowledge.

The messages exchanged among the agents are structured according to
specifications developed by the Foundation for Intelligent Physical Agents
(FIPA 2004). There are two types of messages: strings representing product
models, and propositions or requests to clarify their meanings when an agent
fails to understand a product model. The latter type is based on synonyms
and hypernyms (super-names) as a means to explain unknown data. This has
been inspired by the conceptual foundations of WordNet (Miller 1995).
Figure 3 shows all possible agent interactions using the AUML2 notation.

Failure of the PM agent to provide a tool agent with product data that is
represented in the correct format necessitates help from the human user who
then has to translate the data manually. Similarly, if the PM agent fails to
understand the product data produced by a tool agent, human intervention is
required to fill the data into the PM agent’s product database. We will use
the number of times that human intervention occurs during the design
project as an indicator for our system’s efficacy.

As the PM agent can learn from its interactions with the tool agents, we
expect it to transfer the product data with less and less effort among the same
set of tool agents. As a result, there will be fewer messages in the system
dealing with expressing lack of understanding or clarifying meanings. We
will refer to this type of messages using the linguistic term repair. The
number of times that repair occurs during the design project will serve as an
indicator for our system’s efficiency.

Figure 4 shows a possible result of the PM agent learning (parts of)
formats and thus increasing interoperability through its interactions.
Commencing with a limited amount of knowledge that is sufficient to allow
interoperability with some tool agents (tools T3 and T6), we expect the PM
agent to construct new knowledge over time to exchange product data with
other tool agents, either completely automated (tools T1, T2 and T4) or
semi-automated (tool T5). The PM agent might not be able, however, to

2 AGENT UML (http://www.auml.org/)



134 Udo Kannengiesser and John S. Gero

learn a tool agent’s format if that format is completely different from its
previous experiences (tool T7).

Figure 3. Possible interactions between the PM agent and a tool agent that needs a product
model A as its input to produce product model B as its output (tool agent A-B). After the PM
agent has successfully parsed product model B (eventually using human intervention), it
sends a product model C to tool agent C-D.

Figure 4. The PM agent’s knowledge (PM) covering some of the formats of tool agents (T1 -
T7). The dashed line indicates new knowledge gained over a series of interactions.



Using Agents In The Exchange Of Product Data 135

3. EXAMPLE: DESIGN OF A TURBOCHARGER

Our product example whose design data is to be exchanged among the
agents is an exhaust-gas turbocharger for passenger cars, Figure 5. This
product is quite complex with a large amount of data describing its structure
and behaviour. For reasons of illustrative simplicity we have reduced this
complexity to only 268 variables, without limiting the validity of the model.

Figure 1. A turbocharger for passenger cars (Source: BorgWarner Turbo Systems):
1. Compressor housing, 2. compressor wheel, 3. thrust bearing, 4. compressor backplate,
5. turbine housing, 6. shaft & turbine wheel assembly, 7. bearing bushing, 8. centre housing.

All data is represented by content, specifically in the form of:
< variable name > < value > < unit of measure >
Different formats can be distinguished by different sets of variable names

describing the same set of concepts. For example, depending on the format,
the compressor air flow of at an engine speed of 5500 rpm may
be represented as “AF1000 “AF_1000 or
“V_RED_1000 We have defined 7 different formats covering
each of the 268 product variables.

We have implemented 16 tool agents, each of which has (hard-coded)
knowledge about at most two of the 7 formats: one format must be used to
represent the tool’s input data and one to represent the tool’s output data



136 Udo Kannengiesser and John S. Gero

(these formats can also be identical). Although a tool agent does not have the
possibility to swap or mix its input and output format, it can communicate its
knowledge about mappings among them (as synonyms or hypernyms) to the
PM agent if requested. The PM agent uses its knowledge about the tool
agents to provide each of them with the correct product model represented in
the correct form. This knowledge is stored in its IAC network as associations
between tool agents and the following types of properties:

function or role in the design project
behaviour (as an input-output view) of the tool or agent
input format
output format
vendor of the tool or agent
This knowledge is also used as a bias for the correct parsing template to

interpret product models produced by the tool agents. If the PM agent’s
knowledge about the correct format is not sufficient, the PM agent uses its
knowledge about other, similar formats or about product semantics to parse
the message. Its semantic knowledge consists of pre-coded qualitative
relationships among some of the product variables, such as “nozzle inner
diameter < nozzle outer diameter”. The agent also uses its expectations and
perceptions about the product model with respect to the number of variables,
their type of values and their units of measurement. It can conclude, for
example, that a numeric value with a unit of measure of possibly
indicates “stress”. Before adding these constructed assumptions to its
knowledge and proceeding with the next design stage, the PM agent first
seeks reconfirmation from the tool agent to ensure that its assumptions are
correct. If the PM agent is unable to understand a product model using its
semantic knowledge, it tries to receive help from the tool agent by
communicating with it.

Figure 6 shows the project plan we have established for simulating a part
of the design of a turbocharger. Every task is carried out by a different tool
agent. We have set up a scenario that includes two iterations that represent
necessary reformulation for optimising the product’s performance after
evaluating the prototype. This permits us to examine if the PM agent
becomes more successful and efficient when interacting with the same
agents for a second or third time. These are the agents carrying out the tasks
2 to 11 after the iteration and 3 to 12 after the iteration. We have also
set up some tool agents to modify their formats to simulate the integration of
new tools during the design project and to test the PM agent’s ability to
adapt to these changes by quickly reorganising its memory.

The scenario requires a total of 68 product data transfers between the PM
agent and the tool agents. We have given the PM agent some initial
translation knowledge that is sufficient to cover 41 of them, while the



Using Agents In The Exchange Of Product Data 137

remaining 27 data exchanges will require either additional effort of
interpretation and communication by the agents or intervention by the
human user. This potential lack of interoperability concerns the input and/or
output formats of 7 of the 16 tool agents.

Figure 2. A project plan and scenario for simulating the design of a turbocharger.

4. RESULTS

Table 1 summarises the results of the simulation with regard to its
efficacy. The agent-based system has raised the potential rate of
interoperability by nearly 50% compared to what a static system would be
able to achieve under the same initial conditions.



138 Udo Kannengiesser and John S. Gero

Table 2 gives an overview of the failures and repairs occurring in
exchanging product data throughout the two iterations in the scenario. It also
shows the PM agent’s knowledge gaps regarding the formats of 7 of the 16
tool agents (labelled A-1 to A-16). As some of these gaps are gradually
eliminated through agent interaction, the (potential) lack of interoperability
is reduced resulting in fewer failures and less communication.

The PM agent has also been able to reorganise its knowledge after agents
A-4, A-5 and A-8 unexpectedly changed their formats after the first
iteration. As a result, it has been able to exchange product models with them
after the second iteration without further problems or communicative effort.



Using Agents In The Exchange Of Product Data 139

5. CONCLUSION

Our experiments have shown that an agent-based approach to product
data exchange can provide interoperability without pre-defined translators. It
can allow design projects to choose the computational tools appropriate for
the needs of the actual design tasks and worry less about the availability of a
standard translator. This would make these projects more adaptable to
technological and organisational changes. Although our implementation has
demonstrated to some extent how using agents in product modelling can
increase interoperability, we expect better results when more than one
situated agent is used. Our current work focuses on extending the tool agents
(which to date are only reactive) to be situated.

Letting situated agents negotiate a shared product model on the fly can
potentially constitute a method for pushing future standardisation. After a
product model has been agreed upon and successfully used by a set of
agents, this model can be used later as the prototype version of a new part of
the standard model. Such a method would ground the standard in practice
and accelerate its development and implementation.

ACKNOWLEDGEMENTS

This work is supported by a University of Sydney Sesqui Research and
Development grant and by an International Postgraduate Research
Scholarship.

REFERENCES

Clancey, W.J., 1997, Situated Cognition, Cambridge University Press, Cambridge.
Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genesereth, M.R., Gruber, T.R., Mark, W.,

Tenenbaum, J.M. and Weber, J.C., 1993, PACT: An experiment in integrating concurrent
engineering systems, IEEE Computer 26(1): 28-37.

Eisenberg, A. and Melton, J., 1998, Standards in practice, SIGMOD Record 27(3): 53-58.
FIPA, 2004, FIPA ACL Message Structure Specification, Document No. SC00061G (April

24, 2004); http://www.fipa.org/specs/fipa00061/SC00061G.pdf.
Gero, J.S. and Fujii, H., 2000, A computational framework for concept formation for a

situated design agent, Knowledge-Based Systems 13(6): 361-368.
McClelland, D.E., 1981, Retrieving general and specific information from stored knowledge

of specifics, Proceedings of the Third Annual Meeting of the Cognitive Science Society,
pp. 170-172.

Miller, G.A., 1995, WordNet: A lexical database for English, Communications of the ACM
38(11): 39-41.



140 Udo Kannengiesser and John S. Gero

NIST, 1999, Interoperability cost analysis of the US automotive supply chain, Planning
Report #99-1, NIST Strategic Planning and Economic Assessment Office, Gaithersburg,
MD.

Pratt, M.J., 2001, Practical aspects of using the STEP standard, Journal of Computing and
Information Science in Engineering 1(2): 197-199.


