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Abstract Scheduling problems overall assume that it is possible to identify stable criteria
definitions measuring the quality of alternatives. In real world problems how-
ever, this does not necessarily have to be the case. Situations may change over
time or even within the decision making process, and so may criteria and prefer-
ences of the decision maker.

The paper presents an interactive multicriteria guided optimisation frame-
work for production scheduling. The methodology enables the decision maker
to successively change the definitions of optimality criteria and his/her prefer-
ences. The methodology was tested on a real-world scheduling problem faced
by the Sherwood Press Ltd, a printing company based in Nottingham, UK.
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1. Introduction

Scheduling in real-world manufacturing environments is a complex problem
with a considerable amount of research activities in the fields of operations re-
search, computer science and artificial intelligence, going back several decades
(Brucker, 2001). The general problem of scheduling can be described to be a
problem of assigning resources to tasks over time subject to a set of side con-
straints (e.g. resource capacity constraints, etc.) with the goal of optimising
one or more objectives.

Over the years, various classes of scheduling problems have been investi-
gated, and consequently different methods have been developed (Pinedo, 2002).
Nevertheless, the impact of scheduling research on the real world problems has
been limited. One of the reasons is that scheduling algorithms usually employ
a single objective function which often fails to reflect preferences of the deci-
sion maker.

Multicriteria approaches to scheduling allow the integration of several, usu-
ally conflicting aspects or ‘points of view’ (Roy, 1996) that have to be con-
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sidered simultaneously. Due to the complexity of most problems heuristic and
metaheuristic techniques have been used for their solving with increasing pop-
ularity (Coello Coello et al., 2002).

This paper presents a methodology which enables the decision maker to
change the set of optimality criteria and his/her preferences during the search
process. The paper is organised as follows. Some concepts of multiobjective
optimisation relevant for this paper are given in Section 2. Section 3 describes
the production scheduling problem that was studied. Section 4 proposes a
novel framework for interactive multicriteria optimisation, overcoming restric-
tions. The proposed methodology was tested on real-world data provided by
Sherwood Press, a printing company based in Nottingham, UK, and the results
are presented in Section 5. Conclusions are given in Section 6.

2. Concepts from multiobjective optimisation

The multicriteria decision making (MCDM) process involves four phases
shown in Figure 1: formulation of a model which includes identification of op-
timality criteria and identification of the alternatives (the search space), search
for the alternatives, the choice of the most preferable alternative and the execu-
tion of the selected solution. With each schedule S € § a vector of objective

functions G(S) = (g1(S), 6. ,gz(S)) is associated.
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Figure 1. Multicriteria model building, search, and decision making process.

As criteria may be conflicting, the notion of optimality is interpreted in the
sense of Pareto optimality (see e.g. Van Veldhuizen and Lamont, 2000), which
is based on the concept of dominance relations among objective vectors. With-
out loss of generality, we assume in the further descriptions the minimisation
of objective values.

DEFINITION 1 (PARETO DOMINANCE RELATION) A vector of objective
functions G(S) is said to dominate an vector G(S8') if and only if¥i gi(S) <
9i(S") A Ji | 9:i(S) < 9i(S'). We denote the dominance of a vector G(S) over
a vector G(8") with G(S) % G(S").
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Using the dominance relation, the definition of Pareto optimality is derived
as follows.

DEFINITION 2 (PARETO OPTIMALITY) A solution S is said to be Pareto
optimal if and only if ~38' € 8 | G(8'") X G(S). The set of all Pareto optimal
solutions is called the Pareto set P for which P C 8 holds.

As visualised in steps 2 and 3 in Figure 1, the solving of the scheduling
problem can now be seen in identifying a most preferred schedule $* € P,
which itself is twofold. First, a Pareto optimal schedule is computed, which is
NP-hard ifthe scheduling problem for at least one criterion definition is N'P
(Ehrgott, 2000). Second, an element $* € P has to be selected. Three general
strategies are possible.

(1) A priori. The preferences of the decision maker are obtained before the
search.

(ii) Interactive. The problem solving alters between search and decision
making, successively revealing preferences.

(iii) A posteriori. After identifying the Pareto set P, the decision problem is
solved using multicriteria decision aiding techniques (Vincke, 1992).

While a few approaches combine the set of criteria to an overall evalua-
tion function (Allahverdi, 2003), most existing applications to multicriteria
scheduling are a posteriori approaches of Pareto optimisation (Bagchi, 1999).
Interactive applications are however comparably scarce (Hapke et al., 1998).

3. Problem statement
Machine environment

We investigated the scheduling problem faced by the Sherwood Press print-
ing company which may be best characterised as a flexible job-shop problem
with release dates and due dates (Blazewicz et al., 2001). The machine envi-
ronment is characterised by a set M = {Mi, ..., M} of machines organised
into disjunct working centres. Seven working centres have been identified to
be of relevance for scheduling: printing, cutting, folding, cards insertion, em-
bossing/debossing, gathering/stitching/trimming, and packaging.

As processing times depend on both the machine and the particular task, the
working centres may be regarded as consisting of unrelated parallel machines.
The availability of the machines changes over time. Some machines may also
be operated on Saturdays while others are only available from Monday till Fri-
day. Compared with problems known from literature, in the described problem
shifts of the job floor have to be respected, allowing the assignment of tasks to
machines only within a specific time window on each day.
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Job characteristics

Scheduling in the investigated problem has to deal with a set J = {J1,...,
Jjs .., Jn} of jobs, each of them consisting of a set Jj = {Tj1,..., Tjk, ...,
Tj¢} of tasks. The tasks are ordered with respect to a technically required
processing sequence which is known in advance. Associated with each job
Jj is a release date rj, a due date dj, and a nonnegative weight w; reflecting
its relative importance for the decision maker. While the release date must
not be violated, the due date constraints are desirable to satisfy but is is often
impossible to find a solution which violates none of them.

Each task T}, being able to be processed on one or several machines of a
certain working centre, has a quantity gjx indicating the size of the task, e.g.
the amount of sheets that have to be printed. Furthermore, processing times
Dijk, setup times 845 and cleanup times ¢x for each task T, on machine M;
are given.

It has to be noticed that some tasks are not processed as a whole as they
would exceed the capacity of the processing machine on a certain day. These
tasks are split into smaller processing units called lots. In a general formula-
tion, for each task Tjk exists a set of lots Ljk = {Ljk1y-++ s Ljkuy -+ -y Lkt }s
I 2 1. Here, a lot Ljky, has a quantity gjx, such that

l
S giku=ak j=1{1,...,n}, k={1,...,t} ¢))

u=l

While setup- and cleanup times are not dependent on the quantity of the lot,
the processing time Pijky, of lot Lk, on machine M; can be computed as
Qjku
Pijku = — —Dijk 2
1IRU qu (¥

In the studied problem, the decision about how to split tasks with longer pro-
cessing times is not treated separately from the problem of finding a schedule,
and the lot quantities gjx; are additional decision variables.

Optimality criteria

Meeting the agreed due dates is an important goal. Taken the completion
time Cjofjob Jj,we are able to obtain the total weighted tardiness:

a1(8) = Y_ w;T; A3)
I=1

where

T; = max{0,C; — d;)} “4)
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Although the splitting of tasks into lots may enable a parallel processing
and a possible earlier completion, setup- and cleanup times are together with
the organisational overhead accordingly increased. The second objective is the
minimisation of the number of lots.

n t
92(9) =YY" Lyl (5)

j=1k=1

Given the defined objective functions g1 and ga, the problem can now be
treated as a vector optimisation problem.

minimise G(S) = (91(5),92(5)) ©

However, the definition of optimality criteria cannot be regarded as exhaus-
tive due to two reasons:

1 In practice, the general objective functions aggregate tardiness and num-
ber of lots over a large number of jobs, implying the possibility that
different schedules might have similar or even identical evaluations.

2 It may not be possible to formulate all desired objectives in the phase of
the model construction, meeting the formal requirement of exhaustive-
ness of the set of criteria (Bouyssou, 1990). Some information might not
be present from the very beginning but are discovered during the search
and decision making process.

As aresult, it may occur that none of the Pareto optimal solutions given a
certain definition of criteria is preferred by the decision maker.

While existing multicriteria approaches already consider the problem of
possibly changing preferences during search in interactive techniques, a me-
thodology for changing optimality criteria, to our knowledge has not been pro-
posed yet.

4. A novel framework for interactive multicriteria
optimisation

In the proposed framework, the decision maker is allowed to redefine the set
of criteria interactively during the search process in order to refine the notion
of optimality according to the specific situation. Three cases are possible:

1 A new objective function is introduced.
2 An existing objective function is removed from the objective vector G(S).

3 An existing evaluation function is altered. As an example, the weights
w; of the jobs may be changed during the search.
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[1] Create initial population of solutions POP
[2] If no change in criteria definition is detected

(3] Select schedule S € POP

(4 Create neighbouring solution S™" using S

{s] Update population with S™ with respect to nondominance
(6] Else

(7] Recompute weak nondominance relations in POP

(8] Return to [2]

Figure 2. Multicriteria guided evolutionary algorithm.

Obviously, changes within the objective vector have an impact on the eval-
uation of the alternatives. A closer investigation reveals that the concept of
Pareto optimality may not be sufficient to anticipate possible changes of the
set of criteria. We therefore propose the concept of weak nondominance to be
used.

DEFINITION 3 (WEAK NONDOMINANCE) An objective vector G(S) is said
to be weakly nondominated if and only if 38" € 8 | Vi i(8') < gi(S).

With respect to Definitions 2 and 3, a Pareto optimal solution is also weakly
nondominated but not vice versa. However, weakly nondominated solutions
may become Pareto optimal if the definition of criteria is altered such that a
criterion for which inequality within the objective vector holds is removed.

During the search, all weakly nondominated solutions are kept in an archive,
which is successively updated. The introduction of conflicting criteria accord-
ingly results in an archive having a larger cardinality.

An evolutionary algorithm for interactive scheduling

The proposed framework is based on an evolutionary algorithm. A popu-
lation oriented approach has been chosen for implementation as a whole set
of weakly nondominated solutions should be found simultaneously. As the
pseudo code for the algorithm in Figure 2 shows, in the case of occurring
changes of the optimality criteria the weakly nondominance relations among
the individuals of the population are updated, resulting possibly in a removal
of alternatives that do not meet Definition 3.

Lot-sizing

The splitting of larger tasks is crucial for the further assignment to the ma-
chines. Numerous small lots should be avoided, while tasks with longer pro-
cessing times have to be devided such that they meet the availability time win-
dows of the machines. A probabilistic decision rule has been used to decide
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Figure 3. Probabilistic splitting of tasks depending on their processing time Pizk.

whether tasks should be split into smaller processing units. For each task Ty,
a probability of splitting is derived depending on its processing tune pjjk on
machine M;. With respect to the known daily capacity of the machines and
the duration of the shifts, tasks are not split if their processing time is lower or
equal to 7 hours (shift is 8 hours). Starting with 7 hours, the split probability
is monotonically increasing up to a maximum value of 1 being reached at 13
hours which is depicted in Figure 3.

In the case of a splitting, a uniform number of splits between f%’{l and

f%] is chosen.

Representation and decoding

The schedule encoding of the evolutionary algorithm consists of a set of
job permutations, one for each machine. At the beginning of the optimisation
procedure, lots are assigned randomly to technically possible machines and
their sequences are randomly generated. As different assignments are possi-
ble, the permutations of the machines can have different elements (lots) and
consequently can be of different length.

To obtain a schedule with start and end dates for the lots, the permutational
representation is decoded using the approach of (Giffler and Thompson, 1960)
for constructing active schedules avoiding cycles within the precedence graph
of the schedule. Here, all lots are subsequently scheduled while conflicts for
processing on the same machine are resolved with respect to the sequence in
the permutation, giving leftmost occurring lots priority. An example of this
representation is given in (Mattfeld and Bierwirth, 2004).

Operators

As different schedules might have different chromosome lengths, existing
crossover techniques of combining two encodings are not applicable. Instead,
a set of mutation operators is used, and at each iteration a neighbourhood solu-
tion is generated by applying one of the following operators with equal proba-
bility:
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1 Resplitting. One of the splitted tasks is randomly chosen and the number
of defined splits is changed within the given interval.

2 Resequencing. The position of a single lot on a particular machine is
changed by means of a shift operator as described in (Reeves, 1999),
shifting it forward of backward in the sequence.

3 Reassignment. A lot is removed from a machine and reassigned to a
different machine from the set of machines appropriate for the task.

5. Results

The algorithm has been tested on a real world data set from Sherwood Press,
containing the workload of four weeks (18 machines, 64 jobs, 218 tasks). In
total 50 test runs have been performed starting with different initial popula-
tions, each containing 50 individuals, leading to an overall approximation of
the Pareto set P as shown in Figure 4. In each test, 100,000 schedules have
been computed, keeping the best found alternatives from generation to gener-
ation.
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Figure 4. Results for the problem instance.

As suspected, the results show a tradeoffbetween the number oflots defined
by the splitting procedure and the weighted tardiness. Numerous smaller lots
are easier to schedule with respect to the total weighted tardiness. However,
it has to be taken into consideration, that g; (S) does not discriminate between
individual jobs but aggregates over their whole set, therefore allows a compen-
sation of tardiness of different jobs.
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In order to improve the quality of the schedules further, an additional objec-
tive function g3 measuring the tardiness of a specific, highly important but late
job was introduced during the search. It can be seen in Figure 5 that similar
schedules with respect to the criterion g1 are more clearly distinguishable by
criterion g3. While this aspect of evaluating the schedules is added to the set
of criteria, the existing information of g1 and gz is kept.

110
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it 3 i
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Figure 5.  Comparison of schedules according to their g1 and gs values.

The introduction of an additional criterion is the most direct way of ex-
pressing the importance of the mentioned job. Another possible action could
be changing the weight of the selected job. However, it would affect the rel-
ative importance of jobs, and it might not be easy for the decision maker in
practical situations with numerous jobs to find a proper weight adaptation in
order to obtain the intended results. Also, the introduction of a new criterion
does not allow compensation of tardiness of jobs.

6. Conclusions

A general approach for interactive multicriteria optimisation has been pre-
sented. An evolutionary algorithm has been proposed and applied to a problem
from the printing industry. We believe that the successive introduction of crite-
ria during the search is an important factor reflecting decision making in com-
plex scheduling environments while guiding the search to preferred regions of
the search space. Each ‘point of view’ is added or removed during the search
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and decision making procedure in a step-by-step procedure while maintaining
transparency for the decision maker.

Apart from the application for scheduling in the printing industry, the me-
thodology is of general use for complex decision problems where the relevant
criteria are changing over time and have to be developed interactively by the
decision maker.
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