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Abstract The methodology of artificial evolution based on the traditional fitness function
is argued to be inadequate for constructing the entities with behaviors novel to
their designers. Evolutionary emergence via natural selection(without an explicit
fitness function) is a promising way. This paper primarily considers the question
of what to evolve, and focuses on the principles of developmental modularity
based on neural networks. The connection weight values of this neural network
are encoded as genes, and the fitness individuals are determined using a genetic
algorithm. In paper we has created and described an artificial world containing
autonomous organisms for developing and testing some novel ideas. Experimen-
tal results through simulation have demonstrated that the developmental system
is well suited to long-term incremental evolution. Novel emergent strategies
are identified both from an observer’s perspective and in terms of their neural
mechanisms.

Keywords:  Natural selection, development neural network, evolutionary algorithm, novel
behavior.

Introduction

The goal of artificial life presents us with the problem that we do not under-
stand natural life well enough to specify it to a machine. Therefore we must
either increase our understanding of it until we can, or create a system which
outperforms the specifications we can give it. The first possibility includes the
traditional top-down methodology, which is clearly as inappropriate for ALife
as it has been proved to be for artificial intelligence. It also includes man-

*Partial funding provided by the Internatioanl Centre for Theoretical Physics, Trieste, Italy



56

ual incremental(from bottom to up) construction of autonomous systems with
the aim of increasing our understanding and ability to model life by building
increasingly impressive systems, retaining functional validity by testing them
within their destination environments. The second option is to create systems
which outperform the specifications given them and which are open to produce
behaviors comparable with those of (albeit simple) natural life. Evolution in
nature has no(explicit) evaluation function. Through organism-environment
interactions, including interactions between similarly-capable organisms, cer-
tain behaviors fare better than others. This is how the non-random cumulative
selection works without any long-term goal. It is why novel structures and
behaviors emerge.

As artificial evolution is applied to increasingly complex problems, the diffi-
culty in specifying satisfactory evaluation functions is becoming apparent—see
[1], for example. At the same time, the power of natural selection is being
demonstrated in prototypal systems such as Tierra and Poly-World[2]. Artifi-
cial selection involves the imposition of an artifice crafted for some cause ex-
ternal to a system beneath it while natural selection does not. Natural selection
is necessary for evolutionary emergence but does not imply sustained emer-
gence (evermore new emergent phenomena) and the question “what should we
evolve?” needs to be answered with that in mind[3]. This paper sets out to an-
swer that question. Further discussion concerning evolutionary emergence can
be found in [4], along with evaluations of other natural selection systems. Note
that an explicit fitness landscape is not a requirement for artificial selection and
so an implicit fitness landscape does not imply natural selection.

General issues concerning long-term evolution have been addressed by Har-
vey’s Species Adaptation Genetic Algorithm’(SAGA) theory[5]. He demon-
strates that changes in genotype length should take place much more slowly
than crossover’s fast mixing of chromosomes. The population should be nearly-
converged, evolving as species. Therefore the fitness landscape (actual or im-
plicit) must be sufficiently correlated for mutation to be possible without dis-
persing the species in genotype space or hindering the assimilation by crossover
of beneficial mutations into the species.

1. Designing Evolutionary Robot

Neural networks are the straightforward choice because of their graceful
degradation (high degree of neutrality). But how should the network structure
be specified? The evolutionary emergence of novel behaviors requires new
neural structures. We can expect most to be descended from neural structures
that once have different functions. There are many known examples of neural
structures that serve a purpose different from a previous use. Evidence from
gene theory tells us that genes are used like a recipe, not a blueprint. In any cell,
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at any stage of development, only a tiny proportion of the genes will be in use.
Further, the effect that a gene has depends upon the cell’s local environment-—its
neighbors.

Two sections above are related: for a type of module to be used for a novel
function(and then to continue to evolve from there), without loss of current
function, either an extra module must be created or there must be one spare’
(to alter). FEither way, a duplication system is required. This could be either by
gene duplication or as part of a developmental process.

Gene duplication can be rejected as a sole source of neural structure dupli-
cation, because the capacity required to store all connections in a large network
without a modular coding is genetically infeasible. Therefore, for the effective
evolutionary emergence of complex behaviors, a modular developmental pro-
cess is called for. For the sake of research validity (regarding long-term goals),
this should be included from the outset.

Gruau’s cellular encoding: Gruau used genetic programming(GP) to evolve
his cellular programming language’ code for developing modular artificial neu-
ral networks[6, 7]. The programs used are trees of graph-rewrite rules whose
main points are cell division and iteration. The crucial shortcoming is that
modularity can only come from either gene duplication (see objections above)
or iteration. But iteration is not a powerful enough developmental backbone.
Consider, for example, the cerebral cortex’s macro-modules of hundreds of
mini-columns. These are complicated structures that cannot be generated with
a repeat one hundred times: mini-column’ rule. There are variations between
modules.

Cellular automata: Many researchers have used conventional cellular au-
tomata (CA) for the construction of neural networks. However, such work is
more at the level of neuron growth than the development of whole networks.
Although CA rules are suited to the evolution of network development in prin-
ciple, the amount of work remaining makes this a major research hurdle.

Diffusion models: while there are a number of examples of work involving
the evolution of neural networks whose development is determined by diffu-
sion along concentration gradients, the resulting network structures have (to
date) been only basic. So as to concentrate on the intended area of research,
these models have also been passed over.

Lindenmayer systems: Kitano used a context-free L-system[8, 9] to evolve
connectivity matrices. The number of rules in the genotype was variable. Boers
and Kuiper used a context-sensitive L-system to evolve modular feed-forward
network architecture[10, 11]. Both these works used backpropagation to train
the evolved networks. Also, the resulting structures were fully-connected clus-
ters of unconnected nodes(i.e. no links within clusters and if one node in clus-
ter A is linked to one node in cluster B then all nodes in A are linked to all in
B). It may be that the results achieved reflect the workings of backpropaga-
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Figure 1. Schematic block diagram of a neuron (from Cliff, Harvey and Husbands, 1992).

tion more than evolution. However, these works demonstrated the suitability
of L-systems to ‘non-iterative modular’ network development.

2. The Neural and Development Systems

The artificial neural networks used here are recurrent networks[12, 13]. Let
the current node be N;, and Ny’s excitatory output at time t is OE;(t), in-
hibitory output is OI;(t). Let the node which links to the current node be Ny,
k=0, - -, K, and the value of noise be Vpoise, then

k k
OBt +At) = V(=3 OLi(t)xT(}_OEik(t)%Vaoise
k=0 k=0

k
U(D_OEw(t))

k=0

OILi(t + At)

‘Where
1 ifr>0

Vi) = { 0 otherwise

1 ifz > 0.75
U= { 0  otherwise

1 ifr>2
T(z) = %:L' if0<z<2
0 otherwise
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Developmental system: A context-free L-system was designed for the evo-
lution of networks of these neurons. Specific attention was paid to producing a
system in which children’s networks resemble aspects of their parents’. Each
node has a bit-string ‘character’(label) associated with it, initialized at con-
struction and modifiable during development. These characters may be of any
non-zero length. A node may be network input, network output, or neither, as
determined by an axiom(birth) network and development.

A production rule matches a node ifits predecessor is the start of the node’s
character. The longer the matching predecessor, the better the match; the best
matching rule (if any) is applied. Thus ever more specific rules can evolve
from those that have already been successful. The production rules have the
following form:

P '—’S'r’ S‘n; bls b2’ b3, b4, b5, b6

Where:

P Predecessor (initial bits of node’s character)

Sy Successor 1: replacement node’s character

Sn Successor 2: new node’s character bits link details [0=no,1=yes]

(b1, bg) reverse types [inhibitory/excitatory] of (input, output) links on Sy,
(b3, by) (inhibitory, excitatory) link from Sy to Sy,

(bs, bg) (inhibitory, excitatory) link from Sy, to Sy

If a successor has no character (0 length) then that node is not created. Thus
this predecessor node may be replaced by 0, 1 or 2 nodes. The ‘replacement’
successor (ifit exists) is just the old (predecessor) node, with the same links but
a different character. The new successor (if it exists) is a new node. It inherits
a copy of the old node’s input links unless it has a link from the old node (bs or
by). It inherits a copy ofthe old node’s output links unless it has a link to the old
node (bs or bg). New network input nodes are (only) produced from network
input nodes and new network output nodes are (only) produced from network
output nodes. Character-based matching of network inputs and outputs ensures
that the addition or removal of nodes later in development or evolution will not
damage the relationships of previously adapted network inputs and outputs.

Genetic decoding of production rules: The genetic decoding is loosely
similar to that in [10]. For every bit of the genotype, an attempt is made to
read a rule that starts on that bit. A valid rule is one that starts with 11 and has
enough bits after it to complete a rule.

To read a rule, the system uses the idea of ‘segments’. A segment is a bit
string with its odd-numbered bits (1%¢, 374, 5A,...) all 0. Thus the reading of
a segment is as follows: read the current bit; if it is a 1 then stop; else read
the next bit—this is the next information bit of the segment; now start over,
keeping track of the information bits of the segment. Note that a segment can
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Table 1. The six link-details bits represented by the binary strings

Genotype: 1 1 1 0 1 1 0 01 0O 1 1 101100
Decoding: + + + — 1. * 0. * 0 1 1 1 01
+ + + .- 0. x= 0 1 1 101100
Rule 1: P — S , Sa g link bits
Any - 1 , 0 , 0 1 1 1 01
Rule 2: P - 8, y Sn : link bits
1 —» 0 , 1 1 0 1100

be empty (have O information bits). The full procedure to (try to) read a rule
begins with reading a segment for each of the predecessor, the first successor
(replacement node) and the second successor (new node). Then the six link-
details bits represented by the binary strings are read, if possible. This example
is represented in table 1.

3. Experimental Scheme

To develop and validate the method above, a simple ALife system has been
created. ‘Life’ is a two-dimensional world of artificial organisms each of which
controlled by a neural network using the developmental system above. Evolu-
tion is strictly controlled by natural selection. There are no global system rules
that delete organisms; this is under their own control.

The experimental world (Figure 2) is divided into a grid of squares; usually
20 x 20 of them. No two individuals may be within the same square at any
time. This gives the organisms a ‘size’ and puts a limit on their number. They
are otherwise free to move around the world, within and between squares. As
well as a position, each organism has a forward (facing) direction, set randomly
at birth.

Algorithm

Initialization

Every square in the world has an individual with a single-bit genotype ‘0’ born
into it.

Main Loop

In each time step (loop), every individual alive at the start of the cycle is pro-
cessed once. The order in which the individuals are processed is otherwise
random. These are the steps involved for each individual:

& Network inputs are updated.
®  Development—one iteration.

&  Update all neural activations including network outputs.
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Figure 2.  The experimental world (a two-dimensional toroidal virtual world containing au-
tonomous organisms).

®m  Actions associated with certain network outputs are carried out accord-

» o«

ing to those outputs. These actions are: “reproduce”, “fight”, “turn clock-
wise”, “turn anti-clockwise”, and “moveforward”.

Neural Network Details
The axiom network consists of three nodes with two excitatory links:
Network input: 001—000—01—network output

The network output node’s character (01) matches reproduction. The network
input node’s characters(left input 01) match this, without matching any of the
other action characters. Finally, the hidden node’s characters neither match
other node’s characters or the action characters nor are matched by the other
nodes’ or the action characters. Development takes place throughout the indi-
vidual’s life, although necessary limits on the number of nodes and links are
imposed.

Interactions Between Organism and Environments

Five built-in actions are available to each organism. Each is associated with
network output nodes whose characters start with a particular bit-string:

01* Try to reproduce with organism in front
100* Fight: Kill organism in front (if there is one)
101* Turn anti-clockwise

110* Turn clockwise
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111* Move forward (if nothing in the way)

For example, if a network output node has the character string 1101001, the
organism will turn clockwise by an angle proportional to the node’s excitatory
output. Ifan action has more than one matching network output node then the
relevant output is the sum of these nodes’ excitatory outputs, bounded by unity
as within any node. If an action has no output node with a matching character,
then the relevant output is noise, at the same level as in the (other) nodes.

Both reproduce and fight are binary actions. They are applied if the relevant
output exceeds a threshold and have no effect if the square in front is empty.
To turn and move forward are done in proportion to output.

When an organism reproduce with a mate in front of it, the child is placed
in the square beyond the mate if that square is empty. Ifit is not, the child
replaces the mate. An organism cannot reproduce with an individual that is
fighting ifthis would involve replacing that individual. Reproduction involves
crossover and mutation. Life’s crossover always offsets the cut point in the sec-
ond individual by one gene, with equal probability either way—which is why
the genotype lengths vary. Mutation at reproduction is a single gene-flip(bit-
flip). An organism’s network input nodes have their excitatory inputs set to
the weighted sum of ¢ matching’ output nodes’ excitatory outputs from other
individuals in the neighborhood. If the first bit of an input node’s character
is 1 then the node takes its input from individuals to the right hand side (in-
cluding forward-and back-right), otherwise from individuals to the left. An
input node ‘matches’ an output node if the rest of the input node’s character
is the same as the start of the character of the output node. For example, an
input node with character 10011 matches(only) output nodes with character’s
starting with 0011 in the networks of individuals to the right. Weighting is in-
versely proportional to the Euclidean distances between individuals. Currently
the input neighborhood is a 5 x 5 area centered on the relevant organism.

4. Experimental Results

Kin similarity and convergence: When two Life organisms (with networks
developed from more than just a couple of production rules each) reproduce,
the child’s network almost always resembles a combination of the parents’
networks. Examination of networks from Life’s population at any time shows
similarities between many of them. The population remains nearly converged,
in small numbers of species, throughout the evolution. The criterion of a suf-
ficiently correlated (implicit) fitness landscape has been met by the develop-
mental system, making it suitable for long-term evolution.

Emergence of increasing complexity: Once Life has started, there is a short
period while genotype lengths increase until capable of containing a produc-
tion rule. For the next ten to twenty thousand time steps (in typical runs),
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Figure 3. A neural network of a dominant organism.

networks resulting in very simple strategies such as ‘do everything’ and ‘al-
ways go forwards and kill” dominate the population. Some networks do better
than others but not sufficiently well for them to display a dominating effects. In
every run to date, the first dominant species that emerges has been one whose
individuals turn in one direction while trying to fight and reproduce at the same
time. Figure 3 shows an example of such an individual, after the user dragged
the nodes apart to make detailed examination possible. Note the outputs 0101,
001 and 0100 (turn anti-clockwise, reproduce and fight). Note also the large
number of links necessary to pass from inputs to outputs, and the input char-
acters which match non-action output characters of the same network (0000,
000). Individuals of this species use nearby members, who are also turning in
circles, as sources of activation (so keeping each other going).

Although this is a very simple strategy, watching it in action makes its suc-
cess understandable. Imagine running around in a small circle stabbing the air
in front of you. Anyone trying to attack would either have to get his timing
exactly right or approach in a faster spiral-both relatively advanced strategies.
These individuals also mate just before killing. The offspring (normally) ap-
pear beyond the individual being killed, away from the killer’s path. Because
of the success of this first dominant species, the world always has enough space
for other organisms to exist. Such organisms tend not to last long; almost any
movement will bring them into contact with one of the dominant organisms.
Hence these organisms share some of the network morphology of the dominant
species. However, they can make some progress: Individuals have emerged
that are successful at turning to face the dominant species and holding their di-
rection while trying to kill and reproduce. An example of such a ‘rebel’ (from
the same run as Figure 3 is shown in Figure 4.

Running averages of the number of organisms reproducing and killing (Fig-
ure 5) suggest that further species emerge. However, organisms have proved
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Figure 4. A neural network of a rebel organism.
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Figure 5.  Typical running averages of the number of organisms reproducing and killing.

difficult to analyze beyond the above, even at the behavioral level. All that can
currently be said is that they share characteristics of the previous species but
are different.

5. Conclusions

The algorithm proposed in this paper is novel, feasible. Although the behav-
iors that emerged are very low-level, they are encouraging nonetheless, for the
increases in complexity were in ways not specified by the design. It is difficult
to evaluate any ongoing emergence because of the difficulty in analyzing later



65

organisms. Either tools to aid in such analysis will have to be constructed, or a
more transparent system should be created.

In work involving pure natural selection, the organisms’ developmental and
interaction systems are analogous to the fitness functions of conventional ge-
netic algorithms. While the general aim involves moving away from such
comparisons, the analogy is useful for recognizing how the epistasis of fitness
landscape issue transfers across: Certain ontogenetic and interaction systems
can result in individuals with similar genotypes but very different phenotypes.
The results show that Life’s developmental system does not suffer from this
problem, making it suitable for long-term incremental evolution. This is a sig-
nificant result for a modular developmental system.

This work has made it clear that the specification of actions, even at a low-
level, results in the organisms being constrained around these actions and limits
evolution. Alternatives in which the embodiment of organisms is linked to their
actions that need to be further investigated.

1 The evolutionary robots can learn and integrate the visual behaviors and
attention autonomously with biologically motivated visual behaviors co-
operated as parallel, complementary and “highly coupled processes™ in
the tracking systems, simplifying the acquisition of perceptual informa-
tion and system modeling and control;

2 Combining competitive coevolutionary genetic programming with evo-
lutionary learning, and creating evolutionary robotics with advanced com-
plex vision systems, performing more complex obstacle avoidance be-
havior and target approach activity;

3 Evolutionary robots can solve out problems on obstacle avoidance and
target approach autonomously by self-learning environments knowledge
based on competitive coevolutionary genetic programming.
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