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Function allocation, as a process used in the construction of dependable
complex systems, is a significant aspect of the design and implementation of
interactive systems. It involves a documented and rational process for deciding
what aspects of the system should be controlled by which human roles in the
system and how the system should be automated to support these roles
effectively. As computer systems have become more advanced, and the
control of systems more complex, the notion of dynamic function allocation
becomes increasingly desirable where in certain situations the automation may
take over or give back function to the human user. In this paper we explore a
further variant of dynamic function allocation that reflects typical work
activity where the dynamic scheduling of activities takes place on the time
dimension. The paper discusses this approach to dynamic function allocation
called dynamic function scheduling and discusses the role that timed model
checking may play in helping identify dependable dynamic function
scheduling solutions.

Dynamic function scheduling; timed model checking.

1. INTRODUCTION

Complex work systems typically involve teams of people co-operating
and using technology to achieve work goals. These goals are usually
achieved under time constraint. In order to achieve them in a timely and
reliable manner, the implementation of the functions that achieve the goals

11 The DIRC project (see http://www.dirc.org.uk) is funded by the UK EPSRC, Grant
N13999.
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may vary according to situation. How functions are most reliably
implemented in different situations is a vital and somewhat under-
represented aspect of building a dependable system. This topic is dealt with
in research into dynamic function allocation – see (Hancock and Scallen,
1998) and (Scerbo, 1996) for an overview. The overall focus of this work is
about how automation can be used adaptively, according to the current
demands on the system, and the capabilities and workload levels of the
agents involved, in order to offer optimal support to the human operator.

The problem of function allocation is to take a set of functions that
describe the work that the system is to do, in the contexts in which the work
is to be carried out, and to decide how these functions should be
implemented by the roles that are defined within the system. Methods are
required that will enable system engineers both to take task descriptions and
consider how the actions within the tasks should be implemented, and to
take specific dynamic function allocation designs and analyse their
implications. Typically the methods that exist are concerned with static
allocations, that is, the decision about how roles are allocated to function
occur at design time, see for example (IJHCS, 2000). In practice, it makes
sense to consider the appropriateness of different configurations in different
situations under different conditions of workload and different requirements
of criteria such as situation awareness. Hence an in-car navigation system
may have a different level of automation in which certain default inputs are
presumed when the car is moving or in gear than when the car is stationary
and in neutral.

In addition to sharing and trading functions among humans and
automation, it may be possible to change the way functions are allocated in
time in order to meet the required deadlines. Given that many modern work
situations are rapidly evolving or highly scheduled, it is surprising how few
human factors studies have attempted to make a conceptual or empirical
contribution to understanding the temporal organisation of work – however,
see for instance (DeKeyser, 1995), (Svenson and Maule, 1993) or
(Hollnagel, 2000) for exceptions. Of particular relevance for designing
function scheduling processes is a better understanding of temporal
awareness (Grosjean and Terrier, 1999) and of the use of time as information
(Michon, 1990), (Block, 1990). The authors are aware of little work that has
been published on analytic approaches to function allocation, such as the
analysis of a hydraulics system by (Doherty et al., 2001) using the HyTech
hybrid checker (Henzinger et al., 1997).

There are a number of properties of temporal decision processes that are
important to be understood if dynamic function scheduling is to enhance the
dependability of systems. These include: (i) task arrival rates,
(ii) predictability of task arrival, (iii) the agents’ awareness of task arrivals
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and event durations (and situation awareness in general), (iv) the agents’
control mode (event-driven or anticipative; scrambled, opportunistic, tactical
or strategic), (v) the uncertainty about future system states, monitoring and
control lags, (vi) the pre-emptability of tasks, (vii) the deadlines of tasks
relative to each other, (viii) a task’s contribution to the system’s objectives
(value), (ix) the current priorities among system objectives, (x) the
available resources and their service rates, (xi) the compatibility of
concurrent tasks, (xii) the feasibility of combining, interleaving, postponing
or dropping tasks, and (xiii) the discretion for satisficing and trading-off
among system objectives.

This paper shall focus on a subset of these issues in the context of a
particular system. The aim is to assess the role that timed model checking
can play in helping to understand the trade-offs associated with decisions
and thereby illustrate how the design of dynamic function allocation in
general, and dynamic function scheduling in particular, can be aided by such
checking. The paper is concerned with analysis techniques to support further
exploration of dynamic function scheduling.

In Section 2 a case study based on a paintshop (Hildebrandt and
Harrison, 2003) is introduced that illustrates a simple situation in which
decision to delay or interrupt a function can be of value. Although it is
relatively uncomplicated, this system raises important issues about the
appropriate use of analysis techniques and problems associated with scaling
these techniques. In Section 3 the uppaal (Larsen et al., 1997) model of
the paintshop system is described, and this is used as the basis of the analysis
in Section 4. The uppaal hybrid model checker is capable of finding traces
or counter-examples where constraints are broken. In a work design process,
these traces can be used to generate scenarios where the timing constraints
are violated. These scenarios form the basis for developing more appropriate
scheduling and resource allocation mechanisms. The paper describes the
model, the constraints that were used, and discusses the results of checking a
variety of safety properties. The paper concludes with a discussion.
Conclusions are drawn about how these techniques might be used more
systematically, and objectives for future work are discussed.

2. CASE STUDY

The purpose of the example is that the following features of the design
may be considered.
1.
2.

How resources can be allocated flexibly among multiple functions.
How functions can be allocated to agents along the system’s time-line.
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The action sequence of operators and what overall strategies for the
implementation of a given function may be available. For instance,
decisions may have to be made regarding the postponement, interleaving,
synchronisation, speeding up or slowing down of function servicing, or
regarding manual or automatic control. It may be appropriate to attach a
notion of “value” to functions to describe the relative importance of a
function and to allow the creation of priority structures among concurrent
functions. Temporal properties of functions and agents are parameters in
the decision process as well as variables that can be manipulated, i.e.,
temporal decisions are both based on and about time.

3.

Figure 1. Sketch of the paintshop (Hildebrandt and Harrison, 2003).

PaintShop involves a conveyer belt that transports boxes to two parallel
paint stations (Figure 1). Items to be painted enter the system at varying
frequencies. A monetary reward is earned depending on the number of boxes
painted, the number of boxes spoiled and any repair costs incurred. This
system is also designed as a micro-world experiment and actual user
strategies have been explored using experiment rather than model checking
(Hildebrandt and Harrison, 2003). Boxes arrive at a distribution lift that
allocates items to one of the stations. This process can be done automatically
whereby the system allocates the box to an empty station. It can also be
achieved by the operator overriding the decision of the distribution algorithm
by using the ‘up’ and ‘down’ buttons forcing the lift in the specified
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direction. Once the designated production line becomes available, the box is
moved onto the paint station and the lift returns to the default position. The
paint station can be set to automatic mode (which is the default) or manual
mode. In automatic mode, the paint station will automatically specify the
number of coats to be painted. The paint cycle for each coat of paint consists
of a spraying period and a drying period. With each paint coat, the box
whose initial colour is white will become darker. The rate of paint flowing
through the nozzles is displayed just above each production line. The flow
rate may decrease if nozzles become blocked or increase if the nozzle leaks.
The paint process can also be performed manually. To paint an item, the
operator has to click on a box and keep the mouse button pressed for a
specified period of time. After this period the item will assume the new
shade. If the mouse button is released before the minimum paint time the
box is not painted and a spoiled box is released. In the model described in
the next section, painting takes five time units in the automatic case and two
time units in the manual case. When a nozzle ceases to function properly it
can be repaired or replaced. Replacing a nozzle incurs no time cost but does
incur a certain monetary cost. Repairing the nozzle incurs no monetary cost
but causes a delay before the nozzle can be used again. In both the micro-
world experiments and the model the cost and time variables were
manipulated. Depending on the rate at which boxes arrive at the station, the
state of the nozzles and the strategy used to employ the paint stations a
certain proportion of the possible boxes will be painted. Boxes can fail to be
painted and therefore rejected either because the appropriate procedure has
not been carried out inside the paint station or because the queue of boxes
waiting to be painted exceeds a certain number.

3. THE MODEL

The uppaal tool (Larsen et al., 1997) was chosen to perform the
modelling and analysis, as it permits the analysis of networks of linear
hybrid automata with clocks whose rates may vary within a certain interval,
is readily available and easy to use. The makes it possible to take different
temporal reference systems into account, for example, the real-world
frequency of items on the belt and the operator’s perception of the frequency
under varying workload. Automata may communicate either by means of
integer variables (which are global) or by using binary communication
channels. Communication occurs as a result of two process synchronisations
using receiving actions a? and sending actions a!. Guards are used to
describe the circumstances in which communications can take place.
Automata may be guarded by conditions involving clocks that can be used to
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represent delays or time invariants. It is not within the scope of this paper to
describe the syntax and semantics of uppaal in detail, however the
examples given below should be sufficiently clear to give the spirit of the
approach. Uppaal provides tools for the simulation of systems – the state
transition diagrams are animated, and the inter-process communication is
displayed as an animated message sequence chart. The tool also supports
analysis by state exploration. Thus it is possible to express and check for
reachability properties such as:

“Is it possible to reach a state where the clock x is greater than 20?”
“Is it possible to reach a state where all boxes have been painted?”

1.
2.

It is beyond the scope of the paper to describe the details of the verifier
– it suffices to describe both the properties that have been checked and those
that could be checked.

The model consists of seven concurrent processes. The physical
characteristics of the system are modelled as follows:

A dispatcher automaton dispatches objects to the incoming queue with a
frequency that is determined by the workload – frequency is manipulated
in the micro-world experiments. In the model that is illustrated in Figure
2a constantly high workload is assumed. This is encoded in terms of
frequency, i.e. a new box arrives on the belt every two units (i.e.
workload=2, values representing a medium and low workload are 3
and 4, see Section 4.5). In order to reduce the complexity of the analysis,
the number of boxes in the model is limited to 10. While it is
acknowledged that this is a great simplification in comparison to the real-
world continuous flows, this small model is sufficient for the purposes of
this paper.

1.

Figure 2. The (a) incoming and (b) receiving conveyor belts. (Key: t: clock, num: number of
boxes yet to be dispatched, workload: encoding of workload as dispatch frequency,
painted: number of finished boxes, win: win).
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The paint station automaton (see Figure 3) – of which there are two
instances (station1 and station2) – models automatic and manual
operation (top and bottom part of the automaton), fault occurrence and
repair and replace costs. The severity of faults increases over time. A
nozzle may break as soon as two items are painted but it will break for
sure once four items are painted. Repairs cost 24 time units (see locations
repairingA and repairingM). For a particular user, replacing a
nozzle costs four tokens (see user automaton discussed below – note
that such costs can vary, for instance, depending on a user’s skills).

Figure 3. The paint station (Key: u: clock, fault: fault severity, mbutton: toggle manual/auto-
matic painting, sbutton: press/release manual paint button, mstat: global flag denoting that
manual painting is in progress, leaveauto: decoration that flags a mode change to manual
mode).

The waiter automaton models the part of the system containing the queue
of boxes waiting to be serviced by the paint stations as well as the lift
that causes the boxes to be moved to one paint station or the other. It also
models a repository for unpainted boxes that have fallen of the queue
because the queue is too long, see Figure 4.
The final physical element, the receiver, models the belt of finished items,
see Figure 2b.

3.

4.

2.
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3.1 The human interface and scheduling mechanism

Two processes are designed to reflect what the user does. User
dispatches conditional user inputs and models simple repair/replace
decisions: “if the fault (variables p1fault and p2fault) is bigger than 3
and sufficient funds (variable win) are available, replace a nozzle, otherwise
perform a repair”, see Figure 5a.

Figure 4. Boxes waiting to be channelled to the appropriate station (Key: wait: dispatched
items waiting in queuing area, unpainted: overflow queue ot items failing to reach paint
station, p1clock, p2clock: local clocks of paint stations).

Figure 5. Simple models of (a) a user who implements a simple strategy and (b) a random
user (Key: win: current earnings; p1fault,p2fault: fault severity of stations 1 and 2;
repair1,repair2,replace1,replace2: repair/replace decision; auto: toggle
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automatic station selection; up/down: select paint station manually; m1button,
m2button: toggle manual/automatic painting; s1button, s2button: press/release
manual paint button).

The randomizer (Figure 5b) provides an alternative process to the user
which dispatches unconditional user inputs that are consumed by other
processes (“monkey at the keyboard” style) but only generated when no
internal synchronisations can be performed.

4. THE ANALYSIS

Analysis was performed on the system in a number of steps. Starting with
some sanity checks to gain confidence that the model performs as intended,
properties are then formulated in order to investigate possible scheduling
decisions.

4.1 Sanity Checks

At this level properties are intended to assess whether the model provides
the base functionality of the system effectively. Properties in this category
include deadlock freedom and the reachability of system states that represent
crucial system features, such as (i) different lengths of the drop-out queue,
(ii) switching between automatic and manual paint mode, (iii) switching
between paint stations and (iv) the concurrent operation of both paint
stations.

4.2 Reachability of system goals

Once the results of the analysis in Section 4.1 give confidence that the
model behaves as intended, the next stage is to assess whether system goals
can be reached. For instance:

P1: Can all n items be painted?
The property (“E<> painted==n”) is true for 

When the negated property (here, the never-claim “A[] painted!=n”
– “n items can never be painted”) is checked, the model checker produces a
trace that can be simulated. Stepping through that trace, the analyst is guided
through a scenario where both manual and automatic mode of painting are
applied. The simulation and the sequence chart provided by uppaal can
point to simple flaws or instances of unexpected behaviour of the model. In
order to obtain a broader understanding of the reasons behind flaws,
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additional traces of similar instances are required. However, the tool only
produces a single trace for each property. Additional traces, focussing on
different aspects that may be considered contributing factors to a discovered
problem, require a refinement of the property. For instance:

P2: Can all n items be painted, using only a single paint station?
For the analysis of this property the verifier shall explore only paths that
involve a single instance of the paint station process. This is achieved by
temporarily decorating the paint station by a write-once flag
stationUsed (see Figure 3) that cannot be reset and that would be set
to 1 if the second paint station was used. Property P1 then needs to be
extended by a condition “stationUsed==0”.

4.3 Finding out minimal durations under different
conditions

Having considered properties associated with the verification of the
model and with the reachability and mechanisms for achieving specific
goals, the next stage is to consider temporal issues associated with the paint
shop model.

P3: Can all n items be painted in m time units, using only a single paint
station?
“E<>(painted==n and stationUsed==0 and gtime==m)”
This property was checked for different values m of a global clock gtime,
in order to establish the minimal duration12 (in this case 22 units for ten
items, but the nozzle needs to be replaced at least twice, so the win is
only two units – see first row of Table 1). Similarly, one can ask:

P4: Can all items be painted in m time units, using both paint stations?
Again, a minimal duration of 22 time units was found. However, while
the execution time remains the same this time, only one of the nozzles
needs to be replaced, so the monetary win is six units.

All traces above confirm that the fastest way to perform the work is to opt to
paint it manually (compare top and bottom of Table 1). The effect the
automatic strategy had on the duration was then analysed.

12 From version 3.4 of uppaal it is possible to access execution duration for the trace that is
generated. This is achieved using the “fastest” option within the “diagnostic trace” menu.
This feature of the tool consumes a lot of resources and it turned out to be easier to use the
cruder approach of iterating over m.
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P5: What is the minimal time required to paint all items automatically?
Here, user intervention is recorded by decorating the paint-station
automaton with a temporary global write-once flag leaveauto
(following the procedure described for property P2 above). The minimal
time required to paint all items without manual intervention and by using
both stations is 29 units.

The remaining row in Table 1 was obtained by analysing property P3
extended by condition “leaveauto==0”. The analysis so far yields the
following findings that might be used to devise operation strategies:
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Painting items manually is faster than automatic painting.
Using both stations does not necessarily gain a time advantage over using
a single station only.
However, using both stations can save repair costs if the operator is
prepared to take the risk and leave one station broken.

1.
2.

3.

It should be noted that the temporal properties of this stage could have
been calculated in an alternative way by using a simple numeric model of
the processes. However, the additional effort of creating the uppaal model
pays off when multi-valued decisions are considered, as the following
section demonstrates.

4.4 Focussing on monetary costs

So far the analysis has only been concerned with temporal costs and
effects. The following properties have been used to check temporal and
monetary costs associated with replacing faulty nozzles.

P6: Can all boxes be painted without losing money?
This property forces a search strategy where nozzle replacements are
avoided. The resulting trace demonstrates that the task can be completed
in 50 time units. The simulation demonstrates that both stations are used
to paint in automatic mode until they break; then one station is repaired.

P7: What is the shortest time for painting everything without losing
money?
The analysis yields that best performance (finishing the task in 44 time
units) can be achieved, and the new trace suggests that this performance
can only be achieved if manual control is selected. Again, both stations
break, but the trace indicates that only one station needs to be repaired.

P8: Can all items be painted without losing money, using only one paint
station?
This analysis is dual to P6, but focussing on a single paint station only
(using the boolean flag procedure described in P3). This property is
concerned with the robustness of the system and the additional temporal
costs. The strategy exhibited by the model-checking trace could be used
by an operator who does not have time pressure and therefore aims at
maximising the win.

Analysing the durations under the assumption that temporal costs are
secondary to monetary costs (see summary in Table 2) reveals again that the
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best possible performance can be achieved by using both stations in manual
mode, but the required duration increases to 44 units.

The results produced so far give some indication of what a good
operation strategy might be under temporal and monetary cost extremes.
However, it remains the task of the system designer to resolve if any of these
strategies are suitable, and if they should be implemented as part of the
system or as part of the operator training. For an informed decision it also
remains necessary to draw on human-factors experience. A crucial additional
factor that will influence this decision is the operator workload.

4.5 Variable workload

The analysis so far was performed assuming a constantly high workload,
given by the dispatcher model in Figure 2a. The analysis can be repeated –
using increasing, decreasing or alternating workloads – in order to collect
insights about further strategies. Possible modifications of the dispatcher
automaton are shown in Figure 6. However, for the purpose of this paper this
analysis is omitted here.

Figure 6. Modelling (a) increasing, (b) decreasing and (c) alternating workloads.

5. CONCLUSIONS

This paper discussed the feasibility of using model checking techniques
to explore scheduling constraints in dynamic production systems under
worst-case fault conditions. How the process might help in articulating the
problems that must be resolved by human factors experts has also been
briefly considered.

A number of problems emerged during the modelling and the analysis
which could limit the utility of a model checking approach. First, model
checking is not yet a light-weight method. Generating a state model is an
effortful and time-consuming exercise, unless a model of the physical
characteristics of the system has been produced in earlier stages of the
design process. This is a problem which occurs equally with most other
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formal modelling approaches, such as for instance micro-world simulation
and is reduced as the modeller’s skill increases.

Simplification of some physical characteristics (see Section 3) makes the
model less representative of the physical system, and failures related to the
interactions of these non-linear processes might be missed.

Another problem is introduced when the human operator is to be
modelled. It is important to make the right assumptions about the operator’s
control mode (scrambled, opportunistic, tactical or strategic), the accuracy of
the operator’s temporal awareness (knowledge of available and required
time, dynamics of change, probability of events, and so forth) and the
operator’s general situation awareness when modelling temporal reasoning
performance. Formal modelling may improve the design process as it makes
explicit the designer’s assumptions about agents’ capabilities, performance
and availability, about the value and priority structure of functions in the
system, and about the costs and benefits of a particular control strategy.
Although the richness of naturalistic planning and control processes, and the
complexity of scheduling decisions, may not be captured by these models,
they help to assess how robustly a set of prototypical control strategies
perform across a range of operational circumstances. This preliminary
investigation explored only very simple strategies, and only analysed the
effects on safety properties. These strategies tend to be focussed on extreme
situations, such as gaining maximal earnings in a minimal duration.
Consequently, the stated goal of assessing under what circumstances certain
action can and should be delayed is limited to extreme behaviour. This is
useful, since it is often extreme situations where failure has particularly
dangerous effects. Although solutions to resolve extreme situations are
relevant, it is essential to also consider the “normal” operating conditions. It
is argued that these techniques are also useful in posing the problems clearly
that must be solved by human factors experts for the particular system.

For the purpose of informing design decisions the value provided by
traces that are obtained from the model checker is limited. The traces that are
obtained represent single instances of behaviour that may indicate problems
in the design. The uppaal tool supports the understanding of the
component behaviour in a trace by providing animations of the automata.
Additionally, the message sequence chart visualisation provides insights
about the inter-process communication in the trace. However, single
instances of behaviour rarely provide sufficient insights to discover problem
tendencies. For a broader understanding of a problem, a set of traces that
describe the same problem would be required. To our knowledge, no tool
currently provides such information. The analysis of scheduling trade-offs
will most likely require a combination of several different approaches. These
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will include queuing models, production scheduling models, simulation
approaches, work and task analysis techniques, and experimentation.

Future work will concentrate on assessing the contributions that each of
these approaches can make towards improving our understanding of
temporal planning and control, and their limitations in representing temporal
properties. The appropriate method or methods for analysing flexible
scheduling might be domain specific, as work domains themselves differ
dramatically in their temporal properties (e.g. slow versus fast, synchronised
versus independent, continuous versus discrete, periodic versus aperiodic,
concurrent versus sequential, event-driven versus self-paced).

Work on elaborating the uppaal model of the paintshop continues.
Parallel to this activity, a javascript micro-world simulation of the system
has been developed in order to perform experimental studies (Hildebrandt
and Harrison, 2003). In these studies, a human operator had the task of
controlling paintshop. The study is currently being evaluated, and the results
will be used to refine the uppaal model.
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