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Abstract: The concept of yield management for IT infrastructures, and in particular for
on demand IT utilities was recently introduced in [17]. The present paper pro-
vides a detailed analysis of that model, both in simplified cases where an ana-
lytical analysis is possible, and numerically on larger problem instances, and
confirms the significant revenue benefit that can accrue through use of yield
management in an IT on demand operating environment.
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1. INTRODUCTION

In [17], a model for performing yield management in the context of IT
provisioning was presented. This model is especially valuable in the context
of an on demand operating environment. On demand IT services allow users
to arrive at will into an IT system, in which scheduled jobs have already re-
served the resource. Many potential applications of this type of IT infrastruc-
ture exist and a few are already in operation.

One example of an on demand IT service that exists today is the case of
dynamic off-loading of web content. When a customer, such as an online
retailer, experiences very heavy web site traffic, that retailer may have its
excess traffic automatically redirected to an off-loading service. The process
is invisible to end-users of the retailer. The yield management system as de-
scribed in [17] could be used by the off-loading service provider to allocate
its own capacity optimally and profitably. Many other potential applications
of this technology are on the horizon: application service providers may run
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software applications on their own cluster of servers and allow customers,
for a fee, to use those applications remotely. Yield management in this case
sets capacity allocations (server use, storage, and bandwidth) and multiple
price points to offer to those customers, depending on the available resource
level of the service provider, as well as the market demand. Similarly, com-
puting centers, that rent processing capacity to customers, can operate more
profitably and more efficiently through use of a system of yield manage-
ment.

Yield management is the technique used by the airline reservation sys-
tems to set booking limits on seats at each price class. In an on demand op-
erating environment, customers and jobs, or service requests, arrive at ran-
dom. Whereas some of the IT system resources are pre-reserved, the real-
time arrival of new customers introduces the possibility to accomplish any
number of desired service objectives. The service objectives are achieved by
the yield management modules by setting prices judiciously, as a function of
the resource utilization and user demand levels.

For example, when spare capacity exists, introducing dramatically low
prices serves to introduce new demand into the system. Yield management
allows the provider to set the dramatically low prices without sacrificing
profits. On the contrary, it was proved in [17] that, under certain conditions,
as the number of price points increases, the revenue increases. When usage
costs are increasing linearly or sublinearly in the number of users, as is gen-
erally the case, profits can be shown to increase monotonically as the num-
ber of price points increases as well, in spite of the fact that some price
points can be set below cost. The key to the remarkable increase in revenue
and profits is that the number of slots available at each price point is limited,
and set optimally so as to maximize revenue, given the demand model and
available resource level.

In this paper, we analyze the model introduced in [17], both analytically
and numerically. The analytical study is carried out on a simplified version
of the model with only price points and fixed job sojourn times; as such it
provides a bound on what can be said about the full-scale model. The nu-
merical study then illustrates the benefits that the approach and our model
can provide and confirms the tractability of the yield management paradigm
to the IT On Demand context.

While the literature on airline yield management is clearly of great rele-
vance to our problem of yield management in on demand IT services, there
are notable differences which lead to significantly high complexity in our
setting. First and foremost, the service under consideration in IT on demand
does not have a fixed duration nor does it occupy a predetermined percent-
age of the resource capacity. That is, an airline seat is occupied precisely for
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the duration of the flight, and the number of seats to sell on any flight is
known in advance.

On the other hand, in On Demand IT utilities, the duration of a job de-
pends upon the type of server upon which it is run, and the number of serv-
ers, if it is parallelizable; further, the number of servers it requires depends
upon the type of servers that are used. In other words both the capacity
needed and the time taken by a job are not simple, exogenous parameters in
the compute On Demand yield management problem. Some features of this
time variability can be observed in other sectors, such as hotellerie, restau-
rant yield management, and even golf course yield management (see, for
example, [7] and [8], and other references by those authors). Nonetheless,
the capacity and percentage of capacity occupied in these latter examples are
still fixed and exogenous, as opposed to the setting with which we are faced.

Research work on the pricing of information and telecommunication ser-
vices, such as the pricing strategies of internet service providers (ISPs) has
traditionally considered some of these issues of job duration and capacity
occupation through queuing formulae. The literature on that and related ar-
eas is quite vast and a thorough survey ofit is not the focus of our work here,
but a few relevant references are [4, 5, 6, 11, 12, 13, 15]. The difference be-
tween the decisions optimized in those and related work is the degree of
segmentation. In the Internet pricing world, a single price per type of service
is proposed. It is sometimes the case that multiple qualities of service (QoS)
are discussed, but in that case, each QoS level has associated with it a single,
fixed price. The number of such price levels is generally limited to three, for
example, gold, silver, and bronze-level service. The yield management strat-
egy takes customer segmentation to a much finer level, and does so through
the incorporation of demand models.

In short, what makes this yield management approach to IT resource
pricing and management so appealing is that it allows an IT provider to very
tightly couple her IT resources to the demand. By so doing, the IT provider
can substantially increase profit margins on the existing capacity, and fur-
thermore modify the demand through targeted pricing/offering definition. As
a by-product, the IT provider can accomplish other objectives, such as
smoothing the demand over time, to avoid, for example, weekly peaks and
excess spare capacity on the week-ends. Existing approaches to pricing IT
resources that do not make use of this yield management approach do not
have sufficient segmentation, in time or in the description of user demand, to
accomplish these management objectives.

The structure of the paper is as follows. In Section 2, we propose and
study an analytically tractable version of the model of [17] so as to gain
qualitative insights on the nature of the problem. Section 3 contains a nu-
merical study of the model. Finally, we conclude in Section 4.
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2. THE MODEL

In this paper, we shall assume that the on demand service infrastructure is
composed of a pool of homogeneous nodes (processing units) to allocate to
different fee classes. The optimization problem that we will need to solve is
then the following: in a particular time epoch (in this paper we consider only
one), we would like to reserve the available resource for the different fee
classes. The resource should be allocated so as to maximize expected pro-
vider profits, that is, expected revenue less expected costs, where expected
provider revenue is related to the distributions of different customer arrival
types, their preferences (in terms of service/price trade-offs) as well as their
service requirements, and to the number of nodes assigned to each fee class,
on each server type.

Fee classes are defined as follows: for an identical resource several dif-
ferent prices may coexist; each fee class then has a maximal number of us-
ers, and once that number is reached within the time period for that fee class,
new requests are offered only the next higher level fee for that resource.

Resources are also defined in a broad way. While a server and storage are
clearly aspects of the resource, the service-level (SLA) parameters are as
well, such as availability, advance notice, penalties in case of non-
satisfaction of service level by the provider, etc. The broad scope of the re-
source in this manner allows the price differentiation to become still finer-
grained; that is, for an identical server/storage combination, different SL of-
ferings create new sets of fee classes.

With respect to notation, T is the (here, deterministic) sojourn time of a
job of class ¢ = 1... C in the system. The decision variables, denoted by n,
represent the number of resource slots to reserve for price segment k = 1...
K. Further, let n = (n) be the vector of all #s, and N the total amount of re-
source; while this could be extended to heterogeneous resource types, here
for notational simplicity, we make use of a single resource type, of which
there are N units. In general, job sojourn time depends on the workload, or
size, of the job, W, the number of slots allocated n, and the type of job, c.
However, modeling explicitly that dependence leads to a non-convex feasi-
ble set, in that the sojourn time appears in the definition of the constraints.
Therefore, in this paper, we have assumed the job sojourn time, T, to be
externally provided.

The choice probability of a user with job class ¢ accepting a slot of seg-
ment-type k is given in general by P/ (W, n), but again for simplicity, we
have suppressed dependency on the particular workload, and made use of a
choice probability of the form B/ (n) The probability of an arrival of job
class ¢ is given by G,. Recall that we are considering here only one time ep-
och. The parameters #; are the price points of the resource. By enumerating a
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wide range of such prices, the optimization model works by identifying
those price segments which are most profitable to offer, given the character-
istics of the available demand and resource levels.

As stated earlier, we consider, in this paper, a simplified model in which
two different prices per node are offered, i.e. »; # r2 Furthermore, we shall
consider two different user, or job, classes, ¢ = 1,2. Under these simplifica-
tions, we shall be able to examine the model analytically and obtain bounds
on the decision variables. The simplified yield management for IT resource
model can be expressed as:

c 2
E E TerngPE(n)L,.

e=1 k=1
m+n < N

max F
n1,n230 (nli n2)

Alternatively, one can assume that the resource limits are soft constraints
and include the possibility to surpass those limits, at a cost associated with
having to make use of remote resources or to pay a penalty to the customers.

While these results cannot be extended in general to any number of pa-
rameters, they, along with the larger-scale numerical results, provide valu-
able insight into the nature of the problem under study.

To model the behavior of customers, or job requests, we introduce a de-
terministic discrete choice function That is, we use the normalized ratio of
the utility of choice i to the sum of all choice utilities, that is, V¢, and V&,

1 £(ns)
petny = L (1 Uk
his! K-1 (l Yi=1 Uf("J))

The first term normalizes the quantities Pck (n) so that they sum to 1 for
each customer class, ¢. The second term is expressed as 1— ratio, since the
U ck (n) are actually dis-utilities and hence decreasing in price and delay.
With only two price segments, we have, forc = 1, 2,
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Uf(m)
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where the (dis-)utility functions are:

UL( Uk (nk) = (Terene + GTe.

The parameters §; and &, are constants that define the price-time trade-
offs, and render the utility U unitless. There are different ways to define
these parameters, but we have chosen to use a single, deterministic, pa-
rameter vector for all customers. Recall also that T, is a constant that de-
pends only on job class. The utility function is thus linear in the decision
variable, #4.

Explicitly including the deterministic discrete choice model into the ob-
jective function for this two-price-segment model, we obtain:

c
maon(nl,ng) = ;FcTc(f(m,nz)+g(n1,ng)) (1.1)

nL N2>

np+ny < N (1.2)

with

Ciranyng + (any
ni, n =7r
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g(ni,ng) =ry

As the revenue increases in the number of nodes reserved to all price
segments, the inequality constraint expressed in (1.2) will be active. In this
simplified setting, we have the following result.

Proposition 1 The nonlinear yield management reservation problem of
1.1 has a unique maximum

Proof: We shall seek a maximum of the objective function on the in-
duced, linear subspace defined by the active capacity constraints. To do so,
we shall define the Hessian of the objective function augmented by the La-
grange multipliers and capacity constraints; this Hessian matrix is sometimes
referred to as the “bordered Hessian”.



Analysis of a Yield Management Model 365

First, the Lagrangian function is :

c
L(ny,ng,p) = Y LTe(f(r1,m2) + g(n1, m2)) — pG(ny, my),
c=1
with Lagrange multiplier ¢ € R, , and constraint function: G(n,n;) =
n+n,— N.
Again, as mentioned, at optimality, the capacity constraint, G(n;,n < 0,
will be active, hence n;+ n; = N. After some manipulation of the Lagran-
gian, we obtain the following system:

11 50 PoTo(Erind+4¢iCarana+2¢3) _

(Cirini+1ran2+2(2)? #=0,
raxo, F¢T¢!2(rr'fn§+4£1§2nm+2§23! —u=0
Gring+irana+2(; A=0

ny +ny = N,

from which we obtain:

2
(Girome + (2)% - ( E—m((mm +irong + 2(2)) =
2
(Girams +¢2)? - ( a5l Tor, (Girm + Guramg + 2(2)) =
cu] * 6%0
ny +ng = N.

Noting that each of the first two equations is a quadratic, we obtain four
sets of equations. However, of those, only one has a feasible solution, which
we shall show is the unique maximum. The solution is given by:

1

nng) = (N—Y2 _ 4y, N—Y_ g

( 11 2) ( J_ + J— ’ \/"_1+ \/"_2 ))

with H = m + - ‘/%) The optimal Lagrangian multiplier,
4%, is then:

rirg
(V7L +vr2)?

.. * . .
Additionally, as #; and n; are non-negative, we obtain two necessary
conditions on the feasible range of prices, r; and ¥, for a solution:

C
pt =2 T,
c=1
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Thus, depending on the values of the problem constants, we can deter-
mine the range of prices for which a solution exists. Figure 1 illustrates this
range for a capacity level N = 10, and for a range of a new parameter, &,
which is defined as § = /&,

r &l

Figure 1. Existence area of the solution when N = 10

To prove that the solution we have found is indeed a maximum, we ex-
amine the second-order conditions for this constrained maximization prob-
lem. The Hessian of the Lagrange function is defined by:
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where z := [p#,n;,n;] We then must determine whether the Hessian of the
Lagrangian function D, evaluated at the possible optimum, is negative semi-
definite subject to the linear constraint w'Dw < 0forall we "’ satisfying
(&G/&)(w) = 0, where the index on z indicates the element of that vector,
and similarly for w. This negative-definiteness condition implies that the
principle minor determinants of the Hessian of the Lagrange function alter-
nate in sign. In our two-variable, one constraint, setting, the second-order
condition amounts to the 3x3 determinant (including the constraint) being
positive. Note, from the alternating signs, that in a three-variable, one-
constraint problem, the corresponding 4x4 determinant would need to be
negative, etc...

The second derivatives of the Lagrangian function are:
L 2011
(irina + Qurang + 2¢2)8°

(n1,n3) = T PeTo(2¢Er1rdnd+4¢iCarirana+2n1¢d) o

Lnyny =
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2na ong\ : 0‘;1 1°1re DR YR YL ((lflﬂl"'(l"?nﬁ'f'z(?)s’

8L p A s 12 433 3
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The determinant of the Hessian is:

where Gn; = G,z = 1. Thus we obtain that the detemlinfmt 9f D is indeed
positive for all n; 2 0 and n; 2 0, and we conclude that (n, , 1, ) is indeed a
maximum over the frontier.

3. YIELD MANAGEMENT FOR WEB TRANSAC-
TION DATA

We apply our optimization model to web transaction data over an eight-
day horizon. The data we have does not include job durations; therefore we
consider all jobs to have unit duration (here, the time unit is one hour). The
yield management reservation (YMR) system functions similarly when jobs
have heterogeneous durations. The subscription works as follows: some us-
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ers, not willing to pay high prices for service, subscribe only if they can ob-
tain the service at an acceptable price level to them. If no such acceptable
price is available (not offered, or the maximal quantity is attained) then those
customers go elsewhere”. Other users with higher willingness-to-pay can
still subscribe, until their threshold is reached, and so on. Therefore, depend-
ing upon the prices offered, and the available quantities of each, a different
share of the market can be captured, and revenue will thus vary as well.

The objective ofthe YMR system is to determine which offerings to pro-
pose to customers, and the optimal quantity to propose of each offering, so
as to maximize potential revenue. Here, we illustrate the output of the YMR
system in terms of the optimal number of slots to propose at each of the
price levels, and then compare the resulting revenue stream with the base-
case, in which a single price per QoS is charged.

The transaction data represents the demand at each point of time. The
YMR model allows for the possibility that a user does not accept any of the
offerings proposed. In this series of examples, we have considered a single
QoS level and multiple prices for that QoS, with the quantities of slots avail-
able at each price limited, by a number to be determined by the YMR. Possi-
ble price levels are determined in advance, with not necessarily all price lev-
els open in the optimal solution; the possible set of price points are given in
Table 3. On the left column of the table, we consider a variable number of
price segments in each optimization run, from 1 single price (be it high, me-
dium, or low) to 6 price points.

Table 1. Input data on the possible prices for each simulation, in which 1
to 6 price segments are offered to customers, in limited quantities

K Actual price levels
max. number of price points avail. | normalized to vary in [0,1]
1, single low price 2
1, single medium price 6

1, single high price 1
2 4 8
3 3 6 9
4 2 4 6 8
5 2 4 6 8 1
6 2 3 b5 65 8 .9

The first figure illustrates the optimal revenue over time when 2 to 6
price segments are made available to customers, in limited quantities. Note
that the topmost curve is the total demand, not the revenue. The revenue
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accrued under each simulation (2 through 6 price segments on offer) is
indicated in the lower series of curves. The larger numbers of price
segments (5-6) clearly gives higher revenue during peak periods, whereas
during periods of lower use, 2-3 price segments on offer is optimal.
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Figure 2. Revenue stream for different numbers of price segments on offer.

The highest curve gives the total demand over time, and serves only to il-
lustrate the peaks and valleys.

Figure 3 summarizes the data of the first two figures for certain time pe-
riods, for increased clarity. In particular, we have chosen 5 time periods,
with alternating peak flows and off-peak flows, to illustrate how the optimal
number of price segments to offer varies.

The last set of figures (Figures 4 and 5) compares the revenue when only
one price segment is offered (for three cases: a low, medium or high price)
with a strategy of offering five price points (irrespective of the demand
level).

Observe that the 5-price-segment offering is always superior to offering a
single price, irrespective of whether a low, medium, or high single price is
offered. Furthermore, from the above figures, we know that the YMR system
would not suggest always proposing 5 price segments irrespective of the
load level, but would allow further revenue increase by modulating the num-
ber of segments to offer with the demand level (less segments when demand
is low, more when it is high).
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Figures 5 illustrates the optimal numbers of slots to offer at each of those
5 price levels and demonstrates that the optimal number of price segments
varies with the total demand, or load, in that the higher

150 t T

100

Revenue

40 80 120 160 200
eooch

Figure 3. Optimal revenue for 5 diflferent time periods (periods oflf-peak(40), medium (80),
peak (120), peak (160) and oflf-peak (200)) over the 5 diflferent YMR strategies (offering 2-6
price segments).

the demand, the higher the number of segments should be to maximize
revenue. This implies furthermore that the YMR should be re-run as new
and better demand data become available. Figure 5 shows the entire break-
down over the 8-day time horizon.

4. CONCLUSION

In this paper, we have presented a yield management model for on de-
mand IT services such as e-commerce services, or data processing centers.
We have provided an approach for determining an optimal reservation of
resources in order to maximize expected revenue, as well as a detailed ana-
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Iytical analysis of the resulting optimization problem when the number of
class of prices is small. Finally, we provide numerical results on time series
data of web transactions that illustrate the impact of the approach on service
provider revenue.

1400

1200 -

400

Figure 4. Comparison of YMR strategy of offering 5 price segments with a single-price of-
fering, where the single price is either low, medium, or high
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