
INTER-ORGANISATIONAL COLLABORATIONS
SUPPORTED BY E-CONTRACTS

Zoran Milosevic1, Peter F. Linington2, Simon Gibson1, Sachin Kulkarni1

and James Cole1

1Distributed Systems Technology Centre, The University of Queensland, Brisbane, QLD
4072, Australia; 2University of Kent, Canterbury, Kent, CT2 7NF, UK.

This paper presents a model for describing inter-organizational collaborations
for e-commerce, e-government and e-business applications. The model, re-
ferred to as a community model, takes into account internal organizational
rules and business policies as typically stated in business contracts that govern
cross-collaborations. The model can support the development of a new genera-
tion of contract management systems that provide true inter-organizational
collaboration capabilities to all parties involved in contract management. This
includes contract monitoring features and dynamic updates to the processes
and policies associated with contracts. We present a blueprint architecture for
inter-organizational contract management and a contract language based on
the community model. This language can be used to specialize this architec-
ture for concrete collaborative structures and business processes.

Community Model, Contract Specification, Contract Monitoring, Business
Contract Language

1. INTRODUCTON

Business contracts are the key governing mechanism for inter-
organizational collaborations and they are increasingly taking a central role
in e-commerce, e-business and e-government applications. This is driven
mostly by business demands for more transparent, cost efficient and ac-
countable processes and for the preservation of corporate knowledge associ-

Abstract:

Key words:



Zoran Milosevic et al.

ated with contract-related procedures and artifacts. As a result, there is a
need for a new generation of contract management systems that go beyond
the intra-enterprise contracting focus as typically supported by today’s En-
terprise Resource Planning (ERP) systems or even more frequently, by nu-
merous spreadsheets or simple databases that many organizations use to re-
cord their contract information. Increasingly, organizations require new con-
tract management capabilities to facilitate collaborative aspects in cross-
organizational arrangements – to enable better insight into capabilities, ac-
tivities and performance of their partners.

This paper presents our generic contract architecture solution for building
a new generation of contract management systems. This solution makes use
of Web Services to support the cross-organizational nature of collaborations
and to integrate contract management services into the overall business
processes between organizations. The solution consists of:

a repository of contracts to provide access to contract related information
such as start and end date of contract, the status of contracts, parties in-
volved as well as relationships between contracts;
a contract monitoring facility that performs checking of the fulfillment of
obligations and compliance monitoring;
a contract notification component that sends various contract notifica-
tions to the parties involved in contract management;
other components and facilities to support contract negotiations, en-
forcement and also dynamic configurations of the system to reflect new
business rules and structures
This architecture can be regarded as a blueprint architecture for contract

management. Its full potential can be achieved by having a powerful contract
language that is used to configure the architecture for a particular contract
arrangement. In the paper we also present our Business Contract Language
(BCL) developed to support such configuration. The BCL expresses the se-
mantics of contracts although it can be applied to express many other enter-
prise policies and collaborative arrangements. Essentially, BCL is a domain
specific language developed for the contracting domain and can be used to
express concrete models for specific contracting environments. Our ap-
proach follows the model-driven development philosophy which is currently
being proposed by the Object Management Group (OMG) Model-Driven
Architecture (MDA).

The next section provides the description of the community model that
provides a basis for describing cross-organizational collaborations. We then
present our architectural model for cross-organizational contract manage-
ment. This is followed by an overview of the business contract language that
we developed to support contract monitoring capabilities and an example of

414



a procurement related contract to illustrate this language. The paper con-
cludes with a list of open issues and future research directions.

Web Services provide a way to integrate applications running across the
Internet and are well suited to support cross-organizational interactions.
However, collaborative arrangements require the capability to express the
business rules and constraints of each enterprise and the rules/constraints of
engagement with other enterprises – which is an abstraction layer above
Web Services. These rules, be they organizational structure rules, business
process rules or enterprise policies, together constitute an enterprise model
for collaboration. With emerging tools that support model-driven develop-
ment it will be increasingly possible to use such an enterprise model to gen-
erate collaborative applications that can run on top of any middleware infra-
structure, including Web Services. The power of a model-driven approach
derives from the ability to flexibly and efficiently add new business rules or
modify existing ones.

In this paper we present one such enterprise model, a community model,
which was developed based on the ODP standards1,2. The aim of this model
is to capture, in an object based way, the organizational structure of the en-
terprise and the various localized constraints within it. The community is the
basic element of specification, and so is the element used to capture common
reusable patterns of constraints3.

A community is a configuration of objects defined to express some
common purpose or objective1. It is decoupled from the individual objects
representing actors and resources in the distributed enterprise by the use of
the role concept. A community defines constraints on the behaviour of the
roles it declares, and in any instance of the community these various roles
are each filled by particular objects. By forcing its member objects to honour
the constraints defined for the roles they fill, the community progresses its
objectives. A number of separate communities can be defined to capture dif-
ferent aspects of the community behaviour, so that a particular object might
be fulfilling roles in a business process community, a security management
community and an auditing community; the result is an enterprise with be-
haviour satisfying all the different aspects.

The behaviour defined for a community can include, but is not limited to,
simple sequences of algorithmic steps. Much of the behaviour specification
is concerned with defining the bounds of reasonable behaviour and express-
ing preferred choices within them. Because of this, many of the constraints

Inter-Organisational Collaborations Supported by E-Contracts 415

2. MODELLING OF INTER-ORGANIZATIONAL
COLLABORATIONS



Zoran Milosevic et al.

are modal in nature, expressing permissions, prohibitions or obligations on
the objects filling the roles, rather than giving a single acceptable sequence
of actions.

In general, however, the definition of a community in terms of a set of
roles allows great flexibility in deciding how the roles are to be filled, lead-
ing to considerable flexibility for the reuse of communities to express, for
example, common contract elements. However, in some cases a community
may also place additional constraints on how a role is to be filled. For exam-
ple, a separation of duties concern may be expressed by prohibiting a pattern
of role-filling in which two particular roles are filled by a single object.

In addition to the construction of business rules by the parallel composi-
tion of communities indicated above, there can be hierarchical composition,
so that a single role in a high-level community is filled by an object that has
resulted from the definition of some smaller-scale community. For example,
a single role in confirming the correctness of a tender in some bidding proc-
ess might, in detail, be filled by a community formed by a quality assurance
team.

Another structuring technique in the modeling of inter-organizational
processes is the definition of policies. The main idea here is to acknowledge
the fact that the structures being defined are organic and evolving, and to
distinguish between parts of the specification that are essential to the process
being described, and so cannot be varied without effectively starting over
again, and those parts that can be expected to vary, either by local choice or
by a foreseen process of renegotiation. These circumscribed areas of vari-
ability are the policies associated with the enterprise communities. In an e-
contracting environment, policies can be a very powerful tool for tailoring
general contract behaviour to the specific circumstances in which the con-
tract instance is to operate. A policy can be defined, for example, to indicate
how the progress from stage to stage is to be signaled, or how various kinds
of foreseeable violations, such as late payment, are to be acted upon.

Policies can also be defined to control the extent to which the structure of
the contract can be allowed to evolve with time, indicating, for example,
whether the way objects fill roles can be updated, or even whether the num-
ber of instances of some general kind of role can be increased or decreased
to accommodate changing levels of interest, and if so whether there is a spe-
cific limit to ensure a sensible quorum for the activity.

The community specifications discussed here are templates, in the ODP
sense, in that they are generally parameterised, and that they are used to cre-
ate community instances by applying a set of instantiation rules derived from
the context of the creation action; the term template is used in this paper to
highlight the distinction from the more neutral term model.

416



A more detailed description of community model is described in our ear-
lier paper3 and also in our recent publication4.

Inter-organizational collaborations in the extended enterprise increas-
ingly require tighter electronic links between organizations while preserving
their individual processes and practices as an element of their competitive-
ness. This means that organizations are to be involved in cross-
organisational business processes but the nature of such processes is differ-
ent from the nature of internal business processes.

In the cross-organisational space the emphasis is on coordinating mes-
sage exchanges sent between organizations that typically carry business
documents, as shown in Figure 1. Messages can be created as a result of
various events, such as actions of objects filling roles, deadlines events or
arrival of other messages. Here, there is no centralized engine that coordi-
nates message transfer – rather every organization implements its own deci-
sion logic about how to process incoming messages, what internal activity is
to be carried out and where and when to send outgoing messages. There are
several standardization activities that are attempting to define how Web Ser-
vices can be used in the cross-organisational business process context such
as BPEL5. We note that the focus of internal processes is primarily on the
control flow and data flow between tasks in a business process.

Contracts are the key mechanisms to govern cross-organisational col-
laboration. From a legal point of view contracts state what obligations, per-
mission, or prohibitions parties have in respect to each other and what ac-
tions are to be undertaken in cases of contract violation, either as a result of a
contract breach or due to circumstances in which force majeure is applied.

The legal jargon in contracts can to some extent be mapped onto a num-
ber of more formalized modeling concepts which can be used to facilitate
integration of the contracts with cross-organisational business processes and
other enterprise systems. However, this mapping is a non-trivial problem and
in this paper we present our solution for expressing contracts in terms of
modeling concepts suitable for supporting automation in cross-
organisational collaborations. These modeling concepts are based on the
community model introduced in section 2, and can be grouped in three broad
categories:

Inter-Organisational Collaborations Supported by E-Contracts 417

3. BLUEPRINT CONTRACT ARCHITECTURE

3.1 Extended Enterprise: role of contracts



418 Zoran Milosevic et al.

expression of roles and their relationships as part of a contract; roles can
then be included as part of the basic behavior concepts and policies listed
below
expressions of basic behaviour, e.g. a set of actions carried out by the
parties filling the roles and being involved in business transactions and
various styles of constraints on these actions including temporal con-
straints;
expressions of policies such as obligations, permissions and prohibitions
as refinement of basic behaviour; both policies and basic behaviour ex-
pressions use more primitive behaviour expressions such as states, events
and event relationships

The electronic representation of contract templates can be stored in ap-
propriate repositories and it can be used either for accessing and navigating
information related to a contract or for real-time monitoring of contract exe-
cution. The latter includes monitoring of events that are occurring (or not
occurring) as part of business transactions carried out in the related enter-
prise systems, such as e-procurement, payment systems and so on.

Figure 1. Contracts and cross-organisational interactions

3.2 Contract architecture components

To support the full contract life cycle and satisfy the most common con-
tract management procedures we propose a minimum number of architec-



Inter-Organisational Collaborations Supported by E-Contracts 419

tural components that can be deployed either within one or more collabora-
tive organizations or as a stand-alone system. This Business Contract Archi-
tecture (BCA), originally proposed by Milosevic6, consists of the following
core components (see Figure 2).

A Contract Repository, which stores standard contract forms (or contract
templates), and if necessary standard contract clauses that can be used as
building blocks when drafting new contract templates; there are several
deployment options for the Contract Repository role – it can be deployed
within either or both of the trading partners or it can be owned by a
trusted third-party authority;
A Notary that stores evidence of agreed contract instances after a contract
has been negotiated to prevent any of the parties repudiating it; this com-
ponent can also store relationships between contracts as necessary;
An Interceptor, whose purpose is to provide non-intrusive interception of
specific messages exchanged between business parties so that they can
be further processed for contract monitoring purposes; this is a plug-in
component allowing integration with any enterprise system and will vary
from one implementation to another, as it implements different message
protocols;

Figure 2. Business Contract Architecture blueprint



Zoran Milosevic et al.

A Business Activity Monitoring (BAM) component, which facilitates the
processing of events obtained from the interceptor, managing internal
states related to the contract and access to various enterprise data needed
for policy evaluation performed by the Contract Monitor component; we
note that this component represents an extension of the original BCA in
order to enable more powerful event-based monitoring capability;
A Contract Monitor, that performs the evaluation of contract policies, to
determine whether parties’ obligations have been satisfied or whether
there are violations to the contract; this component makes extensive use
of the BAM component for event pattern and state processing; it then
sends appropriate messages to the Notifier component mentioned below;
A Contract Notifier, whose main task is to send notification messages
(human readable format) to contract managers such as reminders about
the tasks that need to be performed, warnings that some violation event
may arise or alarms that a violation has already happened;
A Contract Enforcer, which can perform some corrective measures such
as preventing further transactions if some violation has been detected.

420

The architecture components above represent core functionality needed
for most contract management processes. A contract architecture can also
have additional components that can provide further value to the decision
makers in the contracting processes such as:

Contract mediator and arbitrator roles that can be used for discretionary
contract enforcement capabilities7. The contract mediator essentially col-
lects evidence of parties’ behaviour according to the contract. In case of
some dispute it can be used as an intermediary to assist the signatories to
the contract in determining a future course of corrective actions to ensure
contract compliant behaviour. A contract arbitrator can be used in con-
junction with a contract mediator as a party that makes decisions about
who is at fault (just as judges make their decisions) and whose decisions
must be obeyed by a party determined to be at fault. These two roles are
to be used as an alternative or in combination with the non-discretionary
enforcement capabilities of a contract enforcer;
A Contract negotiator, which is a role that facilitates negotiation between
contracting parties, possibly as a third party mediator that might have ac-
cess to business information of relevance for future contracts, and which
is not accessible to either of the parties;
A Contract validitor which can perform a range of activities to ensure
that a contract that is being negotiated is valid; this can include checking
consistency of contracts8, or checking the competence aspect of a con-
tract9;



Our architecture is easily configurable so that additional roles can be
added as necessary.

Thus, BCA identifies the main components involved in contract creation,
execution and monitoring, but it leaves great flexibility in the way responsi-
bilities can be assigned to organizational units. For example, the trust model
associated with the monitor will vary depending on whether there is first,
second or third party monitoring. Similarly, the event management infra-
structure may be associated with the participants or run by a trusted third
party, and this will alter the way that events are analysed.

We note that in the inter-organizational setting these components can be
integrated using Web Services technologies. For example, in our prototype
the back-end system for Contract Repository and Notary are implemented
using IBM Web Sphere platform and the front-end for manipulating and
viewing data in the repositories is implemented using Microsoft’s ASP.Net
technology.

The Business Contract Language (BCL) currently under development4,10

is aimed at describing contract semantics for the purpose of automating con-
tract management activities. Although BCL covers the structural aspects of
contracts, describing their composition in terms of contract clauses and sub-
clauses, in this paper we concentrate on the part of BCL that is concerned
with support for the automation of contract monitoring during contract exe-
cution, i.e. after a contract is agreed and the fact stored in the Notary. This
automation is aimed at supporting various contract management roles during
a contract’s lifetime in their activities and decision-making.

BCL is a domain language specifically developed to express contract
conditions needed for contract monitoring and to some extent contract en-
forcement. BCL is a largely declarative language with a minimum number of

Inter-Organisational Collaborations Supported by E-Contracts 421

A Contract performance repository, that stores various information of
relevance to the performance of parties to the contract and that can be
used when future contracts are to be negotiated;
A Contract approval manager, which ensures that only parties with corre-
sponding privileges can execute actions governed by a contract such as
role-based or price-based purchase order issuance;
A Community manager, which allows the contract administrator to make
dynamic updates of roles, policies and other community model elements;
these updates will need to be checked for their validity and approval by
the contract monitor and BAM component.

4. BUSINESS CONTRACT LANGUAGE CONCEPTS



422 Zoran Milosevic et al.

imperative fragments. BCL interpreter is embedded as part of the BAM and
contract monitor components of which implementation details are beyond
the scope of this paper.

The BCL language concepts can be grouped in three categories as de-
scribed next and shown in the figure below:

BCL concepts related to communities and policies define organizational,
basic behavioural and modal constraints that apply to inter-organisational
interactions. Of all of the BCL concepts they are closest to the domain of
contracting as they resemble natural language terms and expressions used in
contracts.

Organizational constraints can be expressed using a community model
that specifies the roles involved in a contract and their relationships, includ-
ing hierarchical relationships (through the notion of a nested community or
sub-community). The roles can represent organizations as part of their col-
laboration governed by a larger community, viz contract, or structures within
organizations so that it is possible to model internal relationships as well. In
order to support the notion of a contract template as a basis for the creation
of the corresponding contract instances we introduce the concept of a com-
munity template and instantiation rules that specify condition for the creation
of contract, as explained in the example below.

Basic behavioural interactions between roles in a contract express the or-
dering of their actions or steps in a business process carried out by the signa-
tories in a contract. In BCL most basic behaviour constraints are expressed
using event patterns as described in section 4.2. Similarly, policies apply to
the roles involved specifying refinement of their behavior, in particular mo-

Figure 3. Business contract language modeling concepts

4.1 Community and Policies



BCL concepts covering the definitions of Events and internal States are
used to describe detailed behaviour constraints that are used as part of com-
munity and policy descriptions in the community model. These are funda-
mental behaviour concepts that can be used for most Business Activity
Monitoring (BAM) applications, and are not related only to business con-
tracts. This group includes concepts for the expression of:

event patterns which are to be used to detect certain occurrences related
to the contract either as a single event or as multiple events related to
each other;
internal states and their changes in response to the events;
event types to be created when certain conditions have been matched,
e.g. creation of contract violation or contract fulfilment events
The purpose of BCL’s event and state concepts is to support real-time

evaluation of the execution of basic behaviour and policies as stated in the
contract with the aim of detecting contract violations or contract fulfillments.

In terms of states, this evaluation can, for example, consist of checking
whether a certain internal state related to a contract has been reached, such
as detecting whether the total number of cost-free withdrawals per month
has reached its maximum.

In terms of events, the evaluation can also involve checking whether one
or several events have occurred. In BCL an event represents an occurrence
of a certain type. An event can be atomic or it can have a duration. In the
case of multiple events the BCL provides a rich set of options for expressing
relationships between events, namely event patterns. BCL provides a rich set
of event pattern expressions and their full description is beyond the scope of
this paper. We provide here some examples of event pattern expressions:

Sequence of events - the event pattern is satisfied when all the events
have occurred in the order specified in the sequence

Inter-Organisational Collaborations Supported by E-Contracts 423

dal constraints such as obligations, rights, permissions, prohibitions, ac-
countability, authorizations and so on. As with basic behaviour, policy con-
ditions can be expressed in terms of event patterns.

The main purpose of this group of concepts is to define collaborative ar-
rangements between parties. We note that, although community and policy
aspects of the BCL language are developed for the contracting domain, they
also have wider generality such as for example the description of internal
policies within organizations.

As with other aspects of BCL, these language descriptions are stored in
the Notary and will be used by the Contract Monitor and BAM engine to
initiate contract monitoring activities.

4.2 Events and States



Zoran Milosevic et al.

Disjunction of events - the event pattern is satisfied when either of the
events have occurred
Conjunction of Events - this pattern is satisfied when all the events have
occurred
Quorum – this pattern is satisfied when a specified number from the set
of all events have occurred
Event Causality - the event pattern is satisfied when the currently
matched event is causally derived from a specific preceding event.
A special kind of event pattern is introduced to allow for the detection

of certain conditions that need to be determined during some ‘sliding’ period
of time. This event pattern is called a sliding Time Window event pattern.
The time window is defined by the window’s width, the specific condition
that needs to be checked within that window (e.g. maximum number of PO
requests issued per day), the expressions stating what to do when a condition
is found or is not found, and if, appropriate, how to move the window for-
ward.

The event pattern mechanism in BCL has many similarities to the speci-
fication of complex event processing13. Most of the event pattern language
concepts are implemented as part of the BAM component. This component
uses event subscription mechanism to listen for the events generated either
by external system (through the Interceptor component) or internally from
within BCA (e.g. timeout events). Some of the events would require further
processing such as the evaluation of policies by the Monitor or creation of
new events by an Event Condition Action mechanism. The flexibility of our
design and implementation comes from the fact that the interceptor can sub-
scribe to any events such as the events generated by sending and receiving of
messages in the cross-organizational settings, either initiated by machines or
by humans.

424

4.3 General language concepts

While the Communities, Policies and BAM aspects of BCL are used to
express key concepts of the contracting domain we needed additional lan-
guage constructs familiar in most programming languages to support as-
signment of mathematical or logical expressions to variables, control of
loops, conditional constructs, and so on.



Consider a simple e-procurement scenario that focuses on a process
around the issue of a purchase order (PO) and dispatch of the requested
goods. A community template is defined to describe this cross-organisational
behaviour involving purchaser and supplier roles, and this may be specified
in an umbrella contract.

The contract clauses outline the following behaviour fragments:
Purchaser is obliged to issue the PurchaseOrder whose integrity must be
correct with regard to quantities and pricing.
Once a PurchaseOrder is received then the goods must be dispatched
within some number of days of receiving the purchase order.
Payment must then follow within so many days of the goods being dis-
patched.
If the total of the purchase order is above some threshold then the goods
must also be insured.
Once a cumulative total of purchase orders is reached some discount may
then be applied.
This example has been kept simple for reasons of brevity. Realistically it

should be extended to handle other likely possibilities such as partial pay-
ment and delivery, shipping problems and a plethora of other atypical but
possible events and scenarios.

We first introduce a contract template that corresponds to this e-
procurement umbrella contract. Since we have defined only a template then
the actual values must be defined during some negotiation phase to create a
contract instance. These values will include the roles involved, durations for
dispatch and payment and thresholds for insurance and discounts. We pro-
vide a community instantiation rule that specifies the event which will trig-
ger creation of a community instance. Note that we also define an activation
rule to specify a condition after which this contract (i.e. community instance)
may start to be monitored say for the purpose of checking whether the above
policies are satisfied.

This example also involves the definition of a nested sub-community for
each purchase order (PO) in order to handle monitoring for each individual
PO instance separately. Note that the example also shows our policy expres-
sions which follow the spirit of deontic constraints and that some policies are
defined in the context of a main community and others as part of a sub-
community. We also show how the internal states to the contract are ex-
pressed and updated in response to events. This example expressed in
pseudo BCL syntax is included below.

Inter-Organisational Collaborations Supported by E-Contracts 425

5. EXAMPLE: E-PROCURMENT SCENARIO



426 Zoran Milosevic et al.

CommunityTemplate: E-Procurement

InitialisationSpecification:
CreateE-ProcurementContractEvent

ActivationSpecification: StartDate

Role:
Role:
Value:
Value:
Value:
Value:
Value:
Value:

Purchaser
Supplier
StartDate
DespatchThreshold
PaymentThreshold
InsuranceThreshold
DiscountThreshold
PurchaseOrderCumulativeTotal

Policy: POverification
Role: Purchaser
Modality: Obligation
Condition: On POEvent verify content

State: CumulativePoTotal
InitialisationSpecification: 0
CalculationExpression:

POCumulativeTotal += POEvent.total

---Purchase order sub-community defined below -

CommunityTemplate: PO
InitialisationSpecification: POEvent

ActivationSpecification: OnInitialisation
EventPattern: GoodsDespatchDeadlineEvent
GenerateOn:

POEvent + DespatchThreshold DAYS

Eventpattern: PaymentDeadlineEvent
GenerateOn: GoodsDespatchEvent

+ PaymentThreshold DAYS



Inter-Organisational Collaborations Supported by E-Contracts 427

Note that this example only shows a small set of key BCL concepts and
that a more detailed description of BCL features is presented elsewhere4.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our solution to the problem of integrating
contracts as part of cross-organizational collaborations. The solution consists
of a generic architecture based on our earlier work6, which can be tailored to
specific contract situation by using Business Contract Language developed
for contract domain. This architecture and this language used together facili-
tate fast deployment of enterprise contract management systems to fit spe-

Policy: GoodsDespatchWithinThresholdPeriod
Role: Supplier
Modality: Obligation
Condition: GoodsDespatchEvent

BEFORE GoodsDespatchDeadlineEvent

Policy: PaymentMadeWithinThresholdPeriod
Role: Purchaser
Modality: Obligation
Condition: PaymentEvent

BEFORE PaymentDeadlineEvent

Policy: GoodsInsuredOverValueThreshold
Role: Supplier
Modality: Obligation
Condition:
If PurchaseOrderEvent.total GREATERTHAN

InsuranceThreshold
Then Action (Insure Goods)

Policy: ApplyDiscountOverCumulativeTotal
Role: Supplier
Modality: Obligation
Condition:
IfPurchaseOrderCumulativeTotal GREATERTHAN

DiscountThreshold
Then

Action (Apply discount to goods)



428 Zoran Milosevic et al.

cific organizational requirements. These systems are needed to support im-
portant collaborative processes as part of broader inter-organizational ar-
rangements. In particular they support more effective and efficient activities
of people responsible for contract management activities.

Our work on BCL adopts a similar approach to the early work of Lee 11

on electronic representation of contracts. Lee proposed a logic model for
contracting by considering their temporal, deontic and performative aspects.
BCL is developed from a different angle – the enterprise modeling consid-
erations related to open distributed systems. Our approach, based on the
ODP community concept 1,2 and inspired by deontic formalisms, gives
prominence to the problem of defining enterprise policies as part of organ-
izational structures. Further, we treat contracts as a group of related policies
that regulate inter-organizational business activities and processes. In this
respect we take a similar approach to that of van den Heuvel and Weigand12,
who developed a business contract specification language to link specifica-
tions of workflow systems.

In addition, we consider contracts as the main coordination mechanism
for the extended enterprise and, considering possible non-compliance situa-
tions, we provide architectural solutions to the problem of monitoring the
behaviour stipulated by a contract as firstly proposed in the BCA solution6.
In addition, this monitoring makes use of sophisticated event processing ma-
chinery similar to that of Rapide language13.

In near future we plan to test our solution in a pilot e-business, e-
government or e-commerce environment. This would help us determine ex-
pressive power of the language and its acceptability by contract domain ex-
perts and practitioners. We also plan to explore the use of existing and
emerging tools that support model-driven development to minimize the cost
of language maintenance. Another alternative is to consider suitability of
high level languages to implement BCL constructs. Finally, we expect that
some of the BCL ideas can be used as part of OASIS legalXML e-contracts
standardization14.

ACKNOWLEDGEMENTS

The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government’s CRC Programme
(Department of Industry, Science & Resources).



Inter-Organisational Collaborations Supported by E-Contracts 429

This project was supported by the Innovation Access Programme-
Intemational Science and Technology, an initiative of the Government’s In-
novation Statement, Backing Australia’s Ability.

REFERENCES

ISO/IEC IS 10746-3, Open Distributed Processing Reference Model, Part 3, Architec-
ture, ISO 1995
ISO/IEC IS 15414, Open Distributed Processing-Enterprise Language, 2002
P.F. Linington, Z. Milosevic and K. Raymond, Policies in Communities: Extending the
ODP Enterprise Viewpoint, in Proc. 2nd International Workshop on Enterprise Distrib-
uted Object Computing (EDOC’98), San Diego, USA, November 1998.
P.F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, S. Neal, A unified behav-
ioural model and a contract for extended enterprise, Data Knowledge and Engineering
Journal, Elsevier Science, to appear.
Business Process Execution Language for Web Services, 1.1, May2003, http://www-
106.ibm.com/developerworks/library/ws-bpel/
Z. Milosevic. Enterprise Aspects of Open Distributed Systems. PhD thesis, Computer
Science Dept. The University of Queensland, October 1995
Z. Milosevic, A. Josang, T. Dimitrakos, M.A. Patton – Discretionary Enforcement of
Electronic Contracts. Proc. EDOC ’02. pp(s): 39 -50. IEEE CS 2002
Z. Milosevic, G.Dromey, On Expressing and Monitoring Behaviour in Contracts,
EDOC2002 Conference, Lausanne, Switzerland
Z. Milosevic, D. Arnold, L. O’Connor - Inter-enterprise contract architecture for open
distributed systems: Security requirements. Proc. of WET ICE’96 Workshop on Enter-
prise Security, Stanford, June 1996
S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, S. Kulkarni, Identifying re-
quirements for Business Contract Language: a Monitoring Perspective, IEEE
EDOC2003 Conference Proceedings, to appear.
R. Lee, A Logic Model for Electronic Contracting, Decision Support Systems, 4, 27-44.
W-Jan van den Heuvel, H. Weigand, Cross-Organisational Workflow Integration using
Contracts, Decision Support Systems, 33(3): p. 247-265
D. Luckham, The Power of Events, Addison-Wesley, 2002
OASIS LegalXMLTC http://www.oasis-open.org/committees/legalxml-
econtracts/charter.php

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.
14.


