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Abstract: As complexity of computer and communication systems increases, it becomes hard
to analyze the system via analytic models. Measurement based system
evaluation may be too expensive. In this tutorial, discrete event simulation as a
model based technique is introduced. This is widely used for the
performance/availability assessment of complex stochastic systems.
Importance of applying a systematic methodology for building correct,
problem dependent, and credible simulation models is discussed. These will be
made evident by relevant experiments for different real-life problems and
interpreting their results. The tutorial starts providing motivation for using
simulation as a methodology for solving problems, different types of
simulation (steady state vs. terminating simulation) and pros and cons of
analytic versus simulative solution of a model. This also includes different
classes of simulation tools existing today. Methods of random deviate
generation to drive simulations are discussed. Output analysis, involving
statistical concepts like point estimate, interval estimate, confidence interval
and methods for generating it, is also covered. Variance reduction and speed-
up techniques like importance sampling, importance splitting and regenerative
simulation are also mentioned. The tutorial discusses some of the most widely
used simulation packages like OPNET MODELER and ns-2. Finally the
tutorial provides several networking examples covering TCP/IP, FTP and
RED.

Key words: Simulation, Statistical Analysis, random variate, TCP/IP, OPNET MODELER
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In many fields of engineering and science, we can use a computer to
simulate natural or man-made phenomena rather than to experiment with the
real system. Examples of such computer experiments are simulation studies
of congestion control in a network and competition for resources in a
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computer operating system. A simulation is an experiment to determine
characteristics of a system empirically. It is a modeling method that mimics
or emulates the behavior of a system over time. It involves generation and
observation of artificial history of the system under study, which leads to
drawing inferences concerning the dynamic behavior of the real system.

A computer simulation is a discipline of designing a model of an actual
or theoretical system, executing the model (an experiment) on a digital
computer, and statistically analyzing the execution output (see Fig. 1). The
current state of the physical system is represented by state variables
(program variables). Simulation program modifies state variables to
reproduce the evolution of the physical system over time.

This tutorial provides an introductory treatment of various concepts
related to simulation. In Section 1 we discuss the basic notion of going from
the system description to its simulation model. In Section 2, we provide a
broad classification of simulation models followed by a classification of
simulation modeling tools/languages in Section 3. In Section 4 we discuss
the role of probability and statistics in simulation while in Section 5 we
develop several networking applications using the simulation tools OPNET
MODELER and ns-2. Finally, we conclude in Section 6.

1. FROM SYSTEM TO MODEL

System can be viewed as a set of objects with their attributes and
functions that are joined together in some regular interaction toward the
accomplishment of some goal. Model is an abstract representation of a
system under study. Some commonly used model types are:

Analytical Models. These employ mathematical formal descriptions like
algebraic equations, differential equations or stochastic processes and
associated solution procedures to solve the model. For example
continuous time Markov chains, discrete time Markov chains, semi-
Markov and Markov regenerative models have been used extensively for
studying reliability/availability/performance and performability of
computer and communication systems [1].

Closed form Solutions: Underlying equations describing the dynamic
behavior of such models can sometimes be solved in closed form if the
model is small in size (either by hand or by such packages as
Mathematica) or if the model is highly structured such as the Markov
chain underlying a product-form queuing network [1].
Numerical Methods: When the solution of an analytic model cannot be
obtained in a closed form, then computational procedures are used to
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numerically solve analytical models using packages such as SHARPE
[2] or SPNP [3]

Simulation models: Employ methods to “run” the model so as to mimic
the underlying system behavior; no attempt is made to solve the equations
describing system behavior as such equations may be either too complex
or not possible to formulate. An artificial history of the system under
study is generated based on model assumptions. Observations are
collected and analyzed to estimate the dynamic behavior of the system
being simulated. Note that simulation provides a model-based evaluation
method of system behavior but it shares its experimental nature with
measurement-based evaluation and as such needs the statistical analysis of

2.

its outputs.

Figure 1. Simulation based problem solving

Simulation or analytic models are useful in many scenarios. As the real
system becomes more complex and computing power becomes faster and
cheaper, modeling is being used increasingly for the following reasons [4]:

If the system is unavailable for measurement the only option available for
its evaluation is to use a model. This can be the case if system is being
designed or it is too expensive to experiment with the real system
Evaluation of system under wide variety of workloads and network types
(or protocols).

1.
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Suggesting improvement in the system under investigation based on
knowledge gained during modeling.
Gaining insight into which variables are most important and how
variables interact.
New polices, decision rules, information flows can be explored without
disrupting ongoing operations of the real system.
New hardware architectures, scheduling algorithms, routing protocols,
reconfiguration strategies can be tested without committing resources for
their acquisition/implementation.

While modeling has proved to be a viable and reliable alternative to
measurements on the real system, the choice between analytical and
simulation is still a matter of importance For large and complex systems,
analytic model formulation and/or solution may require making unrealistic
assumptions and approximations. For such systems simulation models can
be easily created and solved to study the whole system more accurately.
Nevertheless, many users often employ simulation where a faster analytic
model would have served the purpose.

Some of difficulties in application of simulation are:
Model building requires special training. Frequently, simulation

languages like Simula [5], Simscript [6], Automod [7], Csim [8], etc are
used. Users need some programming expertise before using these
languages.
Simulation results are difficult to interpret, since most simulation outputs

are samples of random variables. However most of the recent simulation
packages have inbuilt output analysis capabilities to statistically analyze
the outputs of simulation experiments.
Though the proper use of these tools requires a deep understanding

statistical methods and necessary assumptions to assert the credibility of
obtained results. Due to a lack of understanding of statistical techniques
frequently simulation results can be wrongly interpreted [9].
Simulation modeling and analysis are time consuming and expensive.

With availability of faster machines, development in parallel and
distributed simulation [10, 11] and in variance reduction techniques such
as importance sampling [12, 13, 14], importance splitting [15, 16, 17] and
regenerative simulation [18], this difficulty is being alleviated.

In spite of some of the difficulties, simulation is widely used in practice and
the use of simulation will surely increase manifold as experimenting with
real systems gets increasingly difficult due to cost and other reasons. Hence
it is important for every computer engineer (in fact, any engineer) to be
familiar with the basics of simulation.

3.
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2. CLASSIFICATION OF SIMULATION MODELS

Simulation models can be classified according to several criteria [19]:
Continuous vs. Discrete: Depending upon the way in which state
variables of the modeled system change over time. For example
concentration of a substance in a chemical reactor changes in a smooth,
continuous fashion like in a fluid flow whereas changes in the length of a
queue in a packet switching network can be tracked at discrete points in
time. In a discrete event simulation changes in the modeled state variable
are triggered by scheduled events [20].
Deterministic vs. stochastic
This classification refers to type of variables used in the model being
simulated. The choice of stochastic simulation makes it experimental in
nature and hence necessitates statistical analysis of results.
Terminating vs. Steady state: A terminating simulation is used to study
the behavior of a system over a well-defined period of time, for example
for the reliability analysis of a flight control system over a designated
mission time. This corresponds to transient analysis put in the context of
analytic models. Whereas steady state simulation corresponds to the
steady state analysis in the context of analytic models. As such, we have
to wait for the simulation system output variables to reach steady state
values. For example, the performance evaluation of a computer or
networking system is normally (but not always) is done using steady state
simulation. Likewise, the availability analysis is typically carried out for
steady state behavior.
Synthetic or distribution driven vs. Trace driven: A time-stamped
sequence of input events is required to drive a simulation model. Such an
event trace may already be available to drive the simulation hence
making it a trace driven simulation. Examples are cache simulations for
which many traces are available. Similarly, traces of packet arrival events
(packet size, etc.) are first captured by using a performance measurement
tool such as tcpdump. Then these traces are used as input traffic to the
simulation. Lots of traces are freely available on Web. One of Internet
traces archive is http://ita.ee.lbl.gov. Alternatively, event traces can be
synthetically generated. For the synthetic generation, distributions of all
inter-event times are assumed to be known or given and then random
deviates of the corresponding distributions are used as the time to next
event of that type. We will show how to generate random deviates of
important distributions such as the exponential, the Weibull and the
Pareto distribution. The distribution needed to drive such distribution
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5.

driven simulations may have been obtained by statistical inference based
on real measurement data.

Sequential vs. Distributed simulation: Sequential simulation processes
events in a non-decreasing time order. In distributed simulation a primary
model is distributed over heterogeneous computers, which independently
perform simulations locally. The challenge is to produce such a final
overall order of events, which is identical with the order that would be
generated when simulating the primary model on a single computer,
sequentially. There is extensive research in parallel and distributed
simulation [10,11].

The rest of this tutorial is concerned with sequential, distribution driven
discrete event simulation.

3. CLASSIFICATION OF SIMULATION TOOLS

3.

1.

2.

Simulation tools can be broadly divided into three basic categories:
General Purpose Programming Language (GPPL): - C, C++, Java are
some of the languages which have the advantage of being readily
available. These also provide a total control over software development
process. But the disadvantage is that model construction takes
considerable time. Also it doesn’t have support for any control of a
simulation process. Furthermore, generation of random deviates for
various needed distributions and the statistical analysis of output will
have to be learned and programmed.
Plain Simulation Language (PSL) - SIMULA, SIMSCRIPT II.5 [6],
SIMAN, GPSS, JSIM, SILK are some of the examples. Almost all of
them have basic support for discrete event simulation. One drawback is
that they are not readily available. There is also the need for
programming expertise in a new language.
Simulation Packages (SPs)- like OPNET MODELER [21], ns-2 [22],
CSIM [8], COMMNET III, Arena [23], Automod [7], SPNP [3] etc.
They have a big advantage of being user-friendly, with some of them
having graphical user interface. They provide basic support for discrete
event simulation (DES) and statistical analysis as well as several
application domains like TCP/IP networks. This ensures that model
construction time is shorter. Some simulation tools like OPNET
MODELER also provide user an option of doing analytical modeling of
the network. The negative side is that they are generally expensive,
although most of them have free academic version for research. Like
PSL, SPs require some expertise in new language/environment, and they
tend to be less flexible than the PSLs.
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Information about a variety of available simulation tools can be found at:
http://www.idsia.ch/~andrea/simtools.html

4. THE ROLE OF STATISTICS IN SIMULATION

There are two different uses of statistical methods and one use of
probabilistic methods in distribution driven simulations. First, the
distributions of input random variables such as inter-arrival times, times to
failure, service times, times to repair, etc. need to be estimated from real
measurement data. Statistical inference techniques for parameter estimation
and fitting distributions are covered in [1] and will be reviewed in the
tutorial. Using random number generators, probabilistic methods of
generating random deviates are then used to obtain inter-event times and
drive the simulation. Once again this topic is covered in [1] and will be
reviewed. Simulation runs are performed as computer experiments in order
to determine the characteristics of its output random variables. A single
simulation run produces sample of values of an output variable over time.
Statistical techniques are employed here to examine the data and to get
meaningful output from the experiment. Also they are used to define the
necessary length of simulation (the size of the sample), characteristics of
output variables like mean value and some assessments regarding an
accuracy of results. Two principal methods, independent replication and the
method of batch means, will be discussed.

In the following subsections we discuss random variate generation
methods and the statistical analysis of simulation output.

4.1 Random Variate generation

In this section we describe methods of generating random deviates of any
arbitrary distribution, assuming a routine to generate uniformly distributed
random numbers is available. The distribution can be either continuous or
discrete. Most of the simulation packages like OPNET MODELER, ns -2 and
CSIM have built-in routines for generating random variates. But still
knowledge of random variate generation is necessary to more accurately
model the real world problem especially when available built-in generators
in simulation packages do not support the needed distribution. Some of the
popular methods for generating variates are [1,4]:
1. Inverse Transform: In this method the following property is used: if X is

a continuous random variable with the CDF F, than the new random
variable Y=F(X) is uniformly distributed over the interval (0, 1). Thus to
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generate a random deviate x of X first a random number u from a uniform
distribution over (0, 1) is generated and then the F is inverted.
gives the required value of x. This can be used to sample from
exponential, uniform, Weibull, triangular, as well as empirical and
discrete distributions. It is most useful when the inverse of the CDF, F(.)
can be easily computed. Taking the example of exponential distribution
(see Eq.l) given u drawn from U(0,1), generate x drawn from exponential
distribution (see Eq. 2).

Some distribution which can be easily inverted are exponential, Weibull,
Pareto and log-logistic.

For Weibull distribution whose distribution is given by Eq. (3).

The random variate is generated using Eq. (4)

Similarly Pareto distribution is given by Eq. (5)

The random variate is generated using Eq. (6)

For Rayleigh distribution given by
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The random variate can be generated using:

Similarly for Log-Logistic Distribution given by

The random deviate is generated using

Random variate of (discrete) Bernoulli distribution with parameter (1-q)
can also be generated by the inverse transform technique. The CDF is given
by

The inverse function for Bernoulli distribution becomes

Now by generating u between (0, 1) we can obtain a random deviate of
the Bernoulli distribution by Eq. (12).

For Hyperexponential distribution given by
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Random variate for Hyperexponential can be generated in two steps.
Consider for example a three stage Hyperexponential distribution with
parameters and First a uniform random number u is
generated and like Eq. (12) the following inverse function is generated:

Now if and the variate is then generated from
exponential distribution which occur with probability

Similarly if Hyperexponential variate is given as

Similarly depending upon the output of Bernoulli variate,
Hyperexponential variate can be generated. Note that this example was for
k=3, but it can be easily extended to k=n stages.
2. Convolution Method: This is very helpful in such cases when the random

variable Y can be expressed as a sum of other random variables that are
independent and easier to generate than Y. Let

Taking an example of Hypoexponential case, random variable X with
parameters is sum of k independent exponential RV’s with
mean For example, a 2-stage hypoexponential distribution is given by

From the inverse transform technique, each is generated using Eq. (2)
and their sum is the required result. Note that Erlang is a special case of the
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Hypoexponential distribution when all the k sequential phases have identical
distribution. Random variate for hypoexponential distribution is given as Eq.
(19).

Binomial random variable is known to be the sum of n independent and
identically distributed Bernoulli random variables hence generating n
Bernoulli random variates and adding, this sum will result in a random
variate of the Binomial. If are the Bernoulli random variates
given by Eq.(12) and let y be Binomial random variate then,

3. Direct Transform of Normal Distribution: Since inverse of a normal
distribution cannot be expressed in closed form we cannot apply inverse
transform method. The CDF is given by:

Figure 2. Polar representation
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In order to derive a method of generating a random deviate of this
distribution, we use a property of the normal distribution that relates it to
the Rayleigh distribution. Assume that and are independent
standard normal random variables. Then the square root of their sum

is known to have the Rayleigh distribution [1] for which we
know how to generate its random deviate.

Now in polar coordinates, the original normal random variable can be
written as:

Using the inverse transform technique (see Eq. 8) we have:

Next we generate a random value of to finally get two random
deviates of the standard normal:

4.2 Output Analysis

Discrete-event simulation takes random numbers as inputs that result in each
set of study to produce different set of outputs. Output analysis is done to
examine data generated by a simulation. It can be used to predict the
performance/reliability/availability of a system or compare attributes of
different systems. While estimating some measure of the system,

simulation will generate an of  due to presence of random

variability. The precision of the estimator      will depend upon its variance.
Output analysis will help in estimating this variance and also in determining
number of observations needed to achieve a desired accuracy. Phenomenon

like sampling error and systematic error influence how well an estimate
will Sampling error is introduced due to random inputs and
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dependence or correlation among observations. Systematic errors occur due
to dependence of the observations on initially chosen state and initial
condition of the system.

4.2.1 Point and Interval Estimates

Estimation of parameter by a single number from the output of a
simulation is called point estimate. Let random variables are set
of observations obtained after simulation. Then a common point estimator
for parameter is given by Eq. (25).

The point estimator     is also a random variable and called unbiased if
its expected value is      i.e.

If  then b is called bias of the point estimator.

The confidence interval provides an interval or range of values around
the point estimate [1]. Confidence interval is defined as

For a single parameter, such as the mean, the standard deviation, or
probability level, the most common intervals are two sided (i.e., the statistic
is between the lower and upper limit) and one sided (i.e., the statistic is
smaller or larger than the end point). For the simultaneous estimation of two
or more parameters, a confidence region, the generalization of a confidence
interval, can take on arbitrary shapes [24, 25].
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4.2.2 Terminating vs. Steady State simulation

Output analysis is discussed here for two classes of simulations:
terminating simulation and steady state simulation.

Terminating simulation: This applies to the situation wherein we are
interested in the transient value of some measure, e.g., channel utilization
after 10 minutes of system operation or the transient availability of the
system after 10 hours of operation. In these cases each simulation run is
conducted until the required simulated time and from each run a single
sample value of the measure is collected. By making m independent
simulation runs, point and interval estimates of the required measure are
obtained using standard statistical techniques. In both the cited examples,
each simulation run will provide a binary value of the measure and hence we
use the inference procedure based on sampling from the Bernoulli random
variable [1]. Yet another situation for terminating simulation arises when the
system being modeled has some absorbing states. For instance we are
interested in estimating the mean time to failure of a system then form each
simulation run a single value is obtained and multiple independent runs are
used to get the required estimate. In this case, we could use inference
procedure assuming sampling from the exponential or the Weibull
distribution [1].

Steady-State Simulation: In this case, we can in principle make independent
runs but since the transient phase needs to be thrown away and since it can
be long, this approach is wasteful. Attempt is therefore made to get the
required statistics from a long single run. The first problem encountered then
is to estimate the length of the transient phase. The second problem is the
dependence in the resulting sequence. [1] talks about how to estimate the
correlation in the sequence first using independent runs. Instead of using
independent runs, we can divide a single sequence into first the transient
phase and then a batch of steady state runs. Then there are dependencies not
only within a batch but also across batches.

The estimator random variable of the mean measure,      to be estimated is
given by Eq. (28) where n is number of observations.

This value should be independent of the initial conditions. But in real
system, simulation is stopped after some number of observations n have
been collected. The simulation run length is decided on the basis of how
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large the bias in the point estimator is, the precision desired or resource
constraint for computing.

4.2.3 Initialization Bias

Initial conditions may be artificial or unrealistic. There are methods that
reduce the point-estimator bias in steady state simulation. One method is
called intelligent initialization that involves initialization of simulation in a
state that is more representative of long-run conditions. But if the system
doesn’t exist or it is very difficult to obtain data directly from the system,
any data on similar systems or simplified model is collected.

The second method involves dividing the simulation into two phases.
One of them is called the initialization phase from time 0 to and the other
is called the data-collection phase from to

Figure 3. Initialization and Data Collection phase

The choice of  is important as system state at time will
be more representative of steady state behavior than at the time of original

five times

4.2.4 Dealing with Dependency [1]

Successive values of variables monitored from a simulation run exhibit
dependencies, such as high correlation between the response times of
consecutive requests to a file server. Assume that the observed quantities are
dependent random variables, having index invariant mean
and variance The sample mean is given by

initial conditions (i.e., at time t=0). Generally is taken to be more than
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Sample mean is unbiased point estimator of population mean but
variance of sample mean is not equal to Taking sequence to be wide
sense stationary the variance is given by Eq.(30)

The statistic approaches standard normal distribution as m

approaches infinity. Therefore an approximate confidence
interval becomes

The need to estimate can be avoided using Replication method. It is used
to estimate point-estimator variability. In this method, simulation experiment
is replicated m times with n observations each. If initial state is chosen
randomly for all m observations, the result will be independent of each other.
But the n observations within each experiment will be dependent. Let the
sample mean and sample variance of the experiment be given by

and  respectively. From individual sample means, point

estimator of population mean is given by
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All are independent and identically distributed (i.i.d)

random variables. Assume that the common variance of is denoted by
The estimator of the variance is given by

batches), each having length n. The sample mean of segment is then
treated as an individual observation. This method called the method of batch
means, reduces the unproductive portion of simulation time to just one initial
stabilization period. But the disadvantage is the set of sample means are not
statistically independent and usually the estimator is biased. Estimation of
the confidence interval for a single run method can be done following the
same procedure as done for replication method. We just replace
replication in independent replication by the batch. Method of batch
means is also called single run method.

4.2.6 Variance Reduction Techniques

Variance reduction techniques help in obtaining greater precision of
simulation results (smaller confidence interval) for the same number of
simulation runs, or in reducing the number of runs required for the desired
precision. They are used to improve the efficiency and accuracy of the
simulation process.

And  confidence interval for is approximately given by

where ‘t’ represents t-student distribution with (m-1) degree of freedom.

4.2.5 Method of Batch Means

One major disadvantage of the replication method is that initialization phase
data from each replication is wasted. To address the issue, we use a design
based on a single, long simulation run divided into contiguous segments (or
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One of frequently used technique is importance sampling [12, 13, 14]. In
this approach the stochastic behavior of the system is modified in such a way
that some events occur more often. This helps in dealing with rare events
scenarios. But this modification causes model to be biased, which can be
removed using the likelihood ratio function. If carefully done, the variance
of the estimator of the simulated variable is smaller than the original
implying reduction in the size of the confidence interval. Other techniques
include importance splitting [15, 16, 17] and regenerative simulation [18].

Some of the other methods that are used to speed up of simulations are
parallel and distributed simulation [10, 11].

To summarize, before generating any sound conclusions on the basis of
the simulation-generated output data, a proper statistical analysis is required.
The simulation experiment helps in estimating different measures of the
system. The statistical analysis helps in acquiring some assurance that these
estimates are sufficiently precise for the proposed use of the model.
Depending on the initial conditions and choice of run length terminating
simulations or steady-state simulations can be performed. Standard error or a
confidence interval can be used to measure the precision of point estimators.

5. SOME APPLICATIONS

In this section we discuss some of the simulation packages like OPNET
MODELER [21] and ns-2 [22]. We also discuss Network Animator (NAM)
[30] which generates graphs and animation in ns-2. OPNET MODELER and
ns-2 are application oriented simulation packages. While OPNET
MODELER uses GUI extensively for configuring network, ns-2 is OTcl
Interpreter and uses code in OTCL and C++ to connect network.

5.1 OPNET MODELER

This simulation package uses an object oriented approach in formulating
the simulation model. One of the powers of OPNET MODELER comes
from its simplicity that is due to its menu-driven graphical user interface.
Some of the application areas where OPNET can be used are:
1.

2.
3.

For network (LAN/WAN) planning. It has built-in libraries for all the
standard TCP/IP protocol and applications including IP Quality of
Service (QoS), Resource Reservation Protocol (RSVP) etc.
It supports wireless and satellite communication schemes and protocols.
It can be used for microwave and fiber-optic based network management.
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4. Can be used for evaluating new routing algorithms for routers, switches
and other connecting devices, before plugging them physically in the
network.

Features of OPNET MODELER that make it a comprehensive tool for
simulation are:
1.

2.

3.

4.

5.

6.

It uses hierarchical model structure. The model can be nested within
layers.
Multiple scenarios can be simulated simultaneously and results can be
compared. This is very useful when deciding the amount of resource
needed for a network configuration. This also helps in pinpointing which
system parameter is affecting the system output most.
OPNET MODELER gives an option of importing traffic patterns from an
external source.
It has many of built-in graphing tools that make the output analysis
easier.
It has the capability of automatically generating models with live network
information (topobgy, device configurations, traffic flows, network
management data repositories, etc.).
OPNET MODELER has animation capabilities that can help in
understanding and debugging the network.

5.1.1 Construction of Model in OPNET MODELER [19]

OPNET MODELER allows to model network topologies using three
hierarchical levels:
1.

2.

Network Level: It is the highest level of modeling in OPNET
MODELER. Topologies are modeled using network level components
like routers, hosts and links. These network models can be dragged and
dropped from object palette, can be chosen from OPNET MODELER
menu which contain numerous topologies like star, bus, ring, mesh etc. or
can be imported from a real network by collecting network topology
information. (See Fig. 4)
Node level: It is used to model internal structure of a network level
component. It captures the architecture of a network device or system by
depicting the interactions between functional elements called modules.
Modules have the capability of generating, sending and receiving packets
from other modules to perform their functions within the node. They
typically represent applications, protocol layers and physical resources
ports, buses and buffers. Modules are connected by “streams” that can be
a packet stream, a statistic stream or an association stream. As the name
suggests packet stream represents packet flows between modules, a
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3.

statistic stream is used to convey statistics of the between modules. An
association stream is used for logically associating different modules and
it does not carry any information. (See Fig. 5)
Process Level: It uses a Finite State Machine (FSM) description to
support specification at any level of detail of protocols, resources,
applications, algorithms and queuing policies. States and transitions
graphically define the evolution of a process in response to events. Each
state of the process model contains C/C++ code, supported by an
extensive library for protocol programming. Actions taken in a state are
divided into enter executives and exit executives which are described by
Proto-C (See Fig. 6).

Figure 4. Screen Shot for Network level Modeling. Detail of an FIFO architecture.
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Figure 5. Screen Shot for Node level Modeling. Detail of server using Ethernet link.

Figure 6. Screen Shot for Process Level Modeling. Details of an IP Node
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5.1.2 Example- Comparison of RED vs. FIFO with Tail-drop

The normal behavior of router queues on the Internet is called tail-drop.
Tail-drop works by queuing the incoming messages up to a certain queue
length and then dropping all traffic that comes when the queue is full. This
could be unfair, and may lead to many retransmissions. The sudden burst of
drops from a router that has reached its buffer size will cause a delayed burst
of retransmits, which will over fill the congested router again.

RED (Random Early Detection) [31] is an active queue management
scheme proposed for IP routers. It is a router based congestion avoidance
mechanism. RED is effective in preventing congestion collapse when TCP
window size is configured to exceed network storage capacity. It reduces
congestion and end-to-end delay by controlling the average queue size. It
drops packets randomly with certain probability even before the queue gets
full (see Fig. 7).

Figure 7. Active Queue Management by RED

In this example we compare the performance of RED and FIFO with Tail
Drop. The network for the example consists of two routers and five clients
with their corresponding servers. The capacity of link between two routers is
taken to be 2.048Mbps. All other links have capacity of 100Mbps fast
Ethernet. Clearly the link between Router 1 and Router 2 is the bottleneck.
Our goal is the buffer occupancy at Router 1 for the two schemes.

Model is constructed using network level editor of OPNET MODELER.
Hosts and servers are joined together with the help of routers and switches
that are simply dragged and dropped from object palette. Attributes are
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assigned for various components. Configuration parameters are assigned
with the help of utility objects. Some of the utility objects like Application
configuration, Profile configuration and QoS configuration are shown in
following screen shots. The application chosen is video conferencing with
each of the clients having different parameters set- Heavy, Streaming
Multimedia, Best Effort, Standard and with Background Traffic. Incoming
and outgoing frame sizes are set to 1500 bytes.

All the screen shots from (Fig.8-11) were for the FIFO scheme. OPNET
MODELER has a facility for generating duplicate scenario using which we
generate the model for the RED scheme. The applications and profile
configuration for RED remains the same as in the FIFO case. Only the QoS
attributes configuration needs to be changed (See Fig. 12). RED parameters
are set as in Table 1. After this, discrete event simulation is run and different
statistics like buffer size for Router 1 are collected. All five clients are
sending video packets having length 1500 bytes with interarrival time and
service time derived from constant distribution.

Figure 8. Network level modeling for FIFO arrangement. 5 clients are connected to 2
switches and 2 routers. They are connected with 5 servers.
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Figure 9. Application Configuration- Different window showing assignment of parameter to
video conferencing (streaming Multimedia)

Figure 10. Profile Configuration -Different Screen shot for entering Video conferencing
(various modes) to each of the client.
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Figure 11 QoS Attribute Configuration- This shows that FIFO is selected with queue size of
100 and RED is disabled.

Figure 13 shows the result of simulation where the buffer sizes for the
two cases are plotted as a function of time. Notice that both buffers using
RED and FIFO taildrop behave similarly when link utilization is low. After
40 seconds, when utilization jumps to almost 100 %, congestion starts to
build at router buffer that uses FIFO taildrop. In case of active queue
management (RED case), the buffer occupancy remains low and it never
saturates. In fact buffer occupancy is much smaller than that of FIFO during
the congestion period.
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Figure 12. QoS Attribute configuration for RED case. Application and Profile configuration
remains same as FIFO

Figure 13. RED vs. FIFO for buffer occupancy
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5.2 ns-2 and NAM

Network Simulator (ns) started as a variant of REAL network simulator
[32] with the support of DARPA and several companies/universities. It has
evolved and is now known as ns-2. It is a public domain simulation package
in contrast to OPNET MODELER which is a commercial package. Like
OPNET MODELER, it also uses an object oriented approach towards
problem solving. It is written in C++ and object oriented TCL [33]. All
network components and characteristics are represented by classes. ns-2
provides a substantial support for simulation of TCP, routing and multicast
protocols over wired and wireless networks. Details about ns -2can be found
from http://www.isi.edu/nsnam/ns/.

5.2.1 Overview and Model construction in ns-2

ns-2 provides canned sub-models for several network protocols like TCP
and UDP, router queue management mechanism like Tail Drop, RED,
routing algorithms like Dijkstra [34] and traffic source behavior like telnet,
FTP, CBR etc. It contains simulation event scheduler and a large number of
network objects, such as routers, links etc. which are interconnected to form
a network. The user needs to write an OTc1 script that initiates an event
scheduler, sets up the network topology using network objects and tells
traffic sources when to start and stop transmitting packets through the event
scheduler.

5.2.2 Network Components (ns objects)

Objects are built from a hierarchical C++ class structure. As shown in
Fig. 14, all objects are derived from class NsObject. It consists of two
classes- connectors and classifiers. Connector is an NsObject from which
links like queue and delay are derived. Classifiers examine packets and
forward them to appropriate destinations. Some of the most frequently used
objects are:
1.

2.

Nodes: This represents clients, hosts, router and switches. For example, a
node n1 can be created by using command set n1 [$ns node].
Classifiers: It determines the outgoing interface object based on source
address and packet destination address. Some of the classifiers are
Address classifier, Multicast classifier, Multipath classifier and
Replicators.
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Figure 14. Class Hierarchy (Taken from “NS by example” [35])

3.

4.

5.

6.

Links: These are used for connection of nodes to form a network
topology. A link is defined by its head which becomes its entry point, a
reference to main queue element and a queue to process packets dropped
at the link. Its format is $ns <type>-link <nodel> <node2>
<bandwidth> <delay> <queue-type>.
Agents: these are the transport end-points where packets originate or are
destined. Two types of agents are TCP and UDP. ns-2 supports wide
variants of TCP and it gives an option for setting ECN bit specification,
congestion control mechanism and window settings. For more details
about Agent specification see [14]
Application: The major types of applications that ns-2 supports are traffic
generators and simulated applications. Attach-agent is used to attach
application to transport end-points. Some of the TCP based applications
supported by ns-2 are Telnet and FTP.
Traffic generators: In cases of a distribution driven simulation automated
traffic generation with desired shape and pattern is required. Some of
traffic generators which ns-2 provide are Poisson, On-OFF, Constant bit
rate and Pareto On-OFF.

5.2.3 Event Schedulers

Event scheduler is used by network components that simulate packet-
handling delay or components that need timers. The network object that
issues an event will handle that event later at a scheduled time. Event
scheduler is also used to schedule simulated events, such as when to start a
Telnet application, when to finish a simulation, etc. ns -2 has real-time and
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non-real-time event schedulers. Non-real-time scheduler can be implemented
either by a list, heap or a calendar.

5.2.4 Data collection and Execution

ns-2 uses tracing and monitoring for data collection. Events such as a
packet arrival, packet departure or a packet drop from a link/queue are
recorded by tracing. Since tracing module does not collect data for any
specific performance metrics, it is only useful for debugging and verification
purposes. The command in ns-2 for activating tracing is $ns trace-all
<tracefile>.

Monitoring is a better alternative to tracing where we need to monitor a
specific link or node. Several trace objects are created which are then
inserted into a network topology at desired places. These trace objects
collect different performance metrics. Monitoring objects can also be written
in C++ (Tracing can written in OTcl only) and inserted into source or sink
functions.

After constructing network model and setting different parameters, ns-2
model is executed by using run command. ($ns run).

5.2.5 Network Animator

NAM is an animation tool that is used extensively along with ns -2. It was
developed in LBL. It is used for viewing network simulation packet traces
and real world packet traces. It supports packet level animation that shows
packets flowing through the link, packets being accumulated in the buffer
and packets dropping when the buffer is full. It also supports topology layout
that can be rearranged to suit user’s needs. It has various data inspection
tools that help in better understanding of the output. More information about
NAM can be found at http://www.isi.edu/nsnam/ns/tutorial/index.html.

5.2.6 Example- RED Analysis

Objective: Studying the dynamics of current and average queue size in a
RED queue.

In this example we have taken six nodes. All links are duplex in nature
with their speed and delay shown in the Fig.16. In this example FTP
application is chosen for both source nodes n1 and n3. Node n2 is the sink
node. The window size for TCP application is taken to be 15. RED buffer
can hold a maximum of 30 packets in this example. First FTP application
starts from 0 till 12 seconds and second FTP application starts from 4 to 12
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seconds. For output data collection, monitoring feature is used. NAM is used
to display graph of buffer size vs. time

Figure 15. NAM Window (picture taken from “Marc Greis Tutorial” [36])

In this File Transfer Protocol has been simulated over TCP network. By
default FTP is modeled by simulating the transfer of a large file between two
endpoints. By large file we mean that FTP keeps on packetizing the file and
sending it continuously between the specified start and stop times. The
number of packets to be sent between start and stop time can also be
specified using produce command. Traffic is controlled by TCP which
performs the appropriate congestion control and transmits the data reliably.
The buffer size is taken to be 14000 packets and router parameters are given
in table 2. The output shows the buffer occupancy at router r1, for
instantaneous and average value case. From the graph it becomes clear that
during higher utilization also, RED helps in reducing congestion.
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Figure 16. Network connection for an RED configuration

6. SUMMARY

This tutorial discussed simulation modeling basics and some of its
applications. Role of statistics in different aspects of simulation was
discussed. This includes random variate generation and the statistical
analysis of simulation output.

Different classes of simulation were discussed. Simulation packages like
OPNET MODELER and ns-2 along with some applications were discussed
in the last section. These packages are extensively used in research and
industry for real-life applications.
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Figure 17. Plot of RED Queue Trace path
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