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Abstract Formal reasoning in the sense of “letting the symbols do the work” was
Leibniz’s dream, but making it possible and convenient for everyday
practice irrespective of the availability of automated tools is due to the
calculational approach that emerged from Computing Science.

This tutorial provides an initiation in a formal calculational approach
that covers not only the discrete world of software and digital hardware,
but also the “continuous” world of analog systems and circuits. The
formalism (Funmath) is free of the defects of traditional notation that
hamper formal calculation, yet, by the unified way it captures the con-
ventions from applied mathematics, it is readily adoptable by engineers.

The fundamental part formalizes the equational calculation style
found so convenient ever since the first exposure to high school algebra,
followed by concepts supporting expression with variables (pointwise)
and without (point-free). Calculation rules are derived for (i) propo-
sition calculus, including a few techniques for fast “head” calculation;
(ii) sets; (iii) functions, with a basic library of generic functionals that
are useful throughout continuous and discrete mathematics; (iv) pred-
icate calculus, making formal calculation with quantifiers as “routine”
as with derivatives and integrals in engineering mathematics. Pointwise
and point-free forms are covered. Uniform principles for designing con-
venient operators in diverse areas of discourse are presented. Mathemat-
ical induction is formalized in a way that avoids typical errors associated
with informal use. Illustrative examples are provided throughout.

The applications part shows how to use the formalism in computing
science, including data type definition, systems specification, imperative
and functional programming, formal semantics, deriving theories of pro-
gramming, and also in continuous mathematics relevant to engineering.

Analysis, calculational reasoning, data types, functional predicate cal-
culus, Funmath, generic functionals, programming theories, quantifiers
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Introduction: motivation and overview

Motivation. Parnas [26] notes that professional engineers can be dis-
tinguished from other designers by their ability to use mathematics. In
classical (electrical, mechanical) engineering this ability is de facto well-
integrated. In computing it is still a remote ideal or very fragmented at
best; hence the many urgings to integrate formal methods throughout all
topics [15, 32]. According to Gopalakrishnan [15], the separate appella-
tion “formal methods” would be redundant if mathematics was practiced
in computing as matter-of-factly as in other branches of engineering.

Still, computing needs a more formal mathematical style than classi-
cal engineering, as stressed by Lamport [23]. Following Dijkstra [14] and
Gries [16], “formal” is taken in the usual mathematical sense of manip-
ulating expressions on the basis of their form (syntax) rather than some
interpretation (semantics). The crucial benefit is the guidance provided
by calculation rules, as nicely captured by the maxim “Ut faciant opus
signa” of the Mathematics of Program Construction conferences [5].

In applied mathematics and engineering, calculation with derivatives
and integrals is essentially formal. Readers who enjoyed physics will
recall the excitement when calculation pointed the way in case seman-
tic intuition was clueless, showing the value of parallel syntactic intu-
ition. Algebra and analysis tools (Maple, Mathematica etc.) are readily
adopted because they stem from formalisms meant for human use (hand
calculation), have a unified basis and cover a wide application spectrum.

Comparatively, typical logical arguments in theory development are
informal, even in computing. Symbolism is often just syncopation [29],
i.e., using logic symbols as mere shorthands for natural language, such
as and abbreviating “for all” and “there exists”. This leaves formal
logic unexploited as a reasoning aid for everyday mathematical practice.

Logic suffers from the historical accident of having had no chance to
evolve into a proper calculus for humans [14, 18] before attention shifted
to mechanization (even before the computer era). Current logic tools
are not readily adopted and need expert users. Arguably this is because
they are not based on formalisms suited for human use (which includes
“back-of-an-envelope” symbolic calculation). Leading researchers [27]
warn that using symbolic tools before mental insight and proficiency in
logic is acquired obscures elements that are crucial to understanding.

This tutorial bridges the essential gaps. In particular, it provides a
formalism (Funmath) by which engineers can calculate with predicates
and quantifiers as smoothly as with derivatives and integrals. In addition
to direct applicability in everyday mathematical practice whatever the
application, it yields superior insight for comparing and using tools.
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Overview. Sections 1–3 cover preliminaries and the basis of the for-
malism: functional predicate calculus and generic functionals. Sections
4–6 show applications in diverse areas of computing and “continuous”
mathematics. Due to page limitations, this is more like an extended syl-
labus, but a full 250-page course text [10] is available from the author.

1. Calculating with expressions and propositions

A formalism is a language (notation) plus formal calculation rules.
Our formalism needs only four language constructs. Two of these (sim-
ilar to [17]) are covered here, the other two appear in later sections.

1.1 Expressions, substitution and equality

Syntax conventions. The syntax of simple expressions is defined by
the following BNF grammar. Underscores designate terminal symbols.

Here variable, are domain-dependent. Example:
with and and operators
defined by and we obtain
expressions like

When clarity requires, we use quotes ‘ ’ for strings of terminals, and
if metavariables may be present. Lowercase words (e.g., expression)

designate a nonterminal, the first letter in uppercase (e.g., E) the cor-
responding syntactic category, i.e., set of symbol strings, and the first
letter itself (e.g., is a metavariable for a string in that set. Example:
let metavariables correspond to V, and to E;
then represent all forms of simple expressions.

Parentheses can be made optional by the usual conventions. We define
formulas by formula ::= expression expression, as in

Substitution. Replacing every occurrence of variable  in expression
by expression is written and formalized recursively by

All equalities here are purely syntactic (not part of formulas). Expres-
sions like (as in Sv) are understood as “if then else
Example: for the rules yield

Multiple (parallel) substitution is a straightforward generalization.
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Deduction and equational reasoning Later on we shall see formu-
las other than equality. Generally, an inference rule is a little “table”

where Prems is a set of formulas called premisses and a formula called
the conclusion. Inference rules are used as follows.

A consequence of a set Hyps of formulas (called hypotheses) is ei-
ther one of the hypotheses or the conclusion of an inference rule whose
premisses are consequences of Hyps. A deduction is a record of these
correspondences. We write if is a consequence of Hyps.

Axioms are selected hypotheses (application-dependent). Theorems
are consequences of axioms, and proofs are deductions of theorems.

The main inference rules are instantiation and the rules for equality.

A strict inference rule requires that its premisses are theorems.
In the equational style, deductions are recorded in the format

The inference rules are fitted into this format as follows.
a. Instantiation In equational reasoning, premiss is a theorem of

the form hence the conclusion is which
has the form Example:

b. Leibniz Premiss is of the form and the conclusion is
which has the form Example: with

premiss we may write
c. Symmetry Premiss  is of the form and the conclusion is

However, this simple step is usually taken tacitly.
d. Transitivity has two equalities for premisses. It is used implicitly

to justify chaining and as in (1) to conclude

1.2 Pointwise and point-free styles of expression

One can specify functions pointwise by referring to points in the
domain, as in square or point-free using functionals, as in

(comment needed nor given at this stage).
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The respective archetypes of these styles are lambda terms and com-
binator terms, briefly discussed next to capture the essence of symbolic
manipulation in both styles in an application-independent form.

Syntax of lambda terms. Bound and free occurrences. The
syntax for lambda terms [2] is defined by the following BNF grammar.

Examples:
Naming convention is the syntactic category and L..R metavari-

ables for terms; metavariables for variables; are typical
variables, and symbols like C, D, I, K, S abbreviate often-used terms.

Terminology A term like (MN) is an application, is an ab-
straction: is the abstractor and M (the scope of the abstrahend.

Parentheses convention Outer parentheses are optional in (MN)
and in if these terms stand alone or as an abstrahend. Hence
the scope extends as far as parentheses permit. Application associates
to the left, (LMN) standing for ((LM)N). Nested abstractions like

are written Example: stands
for saving 18 parentheses.

Bound and free occurrences Every occurrence of in is bound.
Occurrences that are not bound are free. Example: numbering variable
occurrences in from 0 tot 11, the only free ones
are those of and at places 1, 5, 10 and 11. We write for the set
of variables with free occurrences in M, for instance

Substitution and calculation rules (lambda-conversion). Sub-
stituting L for in M, written or is defined recursively:

The fresh variable in Sabs prevents free variables in L becoming bound
by as in the erroneous elaboration which should
have been

The calculation rules firstly are those for equality: symmetry, transi-
tivity and Leibniz’s principle, i.e., Proper axioms are:

For instance, and
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Additional axioms yield variants. Examples are: rule
rule (or (provided and rule

(extensionality): provided As an additional
axiom (assuming and rule is equivalent to and combined.

Henceforth we assume and extensionality, i.e., “everything”. Ex-
amples of are and

Redexes, normal forms and closed terms. A term like
is a and (with is a A form
(or just “normal form”) is a term not containing a or A term
“has a normal form” if it can be reduced to a normal form. According to
the Church-Rosser theorem, a term has at most one normal form. The
term even has none.

Closed terms or (lambda-)combinators are terms without free vari-
ables. Beta-conversion can be encapsulated by properties expressed us-
ing metavariables. For instance S, standing for has prop-
erty SPQR = PR(QR) by

Expressions without variables: combinator terms. Syntax:

where K and S are constants (using different font to avoid confusion
with lambda-combinators). As before, LMN stands for ( (LM )N ) .

The calculation rules firstly are those for equality. By lack of variables,
Leibniz’s principle is and The proper axioms are

and extensionality: if M en N satisfy ML = NL for any L, then M = N.
E.g.,

Hence, defining I as SKK yields an identity operator: IN = N.
Converting combinator terms into (extensionally) equal lambda com-

binators is trivial. For the reverse, define for every an operator

The crucial property of this operator is
There are two important shortcuts: provided we can use

and the latter being a
more efficient replacement for both and Example:
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1.3 Calculational proposition logic

The syntax is that of simple expressions, now with prepositional oper-
ators. The generic inference rule is instantiation. Equality is postponed.
We introduce the prepositional operators one by one, each with its cor-
responding axioms and (for only) its inference rule.

0. Implication Inference rule: Modus Ponens:

Convention: stands for not for
Each stage yields a collection of properties (theorems), e.g., at stage 0:

Naming properties is very convenient for invoking them as calculation
rules. The properties allow chaining calculation steps by as in (1).

Very convenient is the deduction theorem: if then
It allows proving by assuming as hypothesis (even if is not a
theorem, but then it may not be instantiated) and deducing

Henceforth Leibniz’s principle will be written

1. Negation Axiom: Contrapositivity:
We write for negation: and

This stage yields the following main properties.

Note: and form a complete logic; all further stages are just luxury.

2. Truth constant with axiom: 1; falsehood constant
with axiom: Typical properties:

Left identity and right zero of and
Corresponding laws for constant 0: and
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The rules thus far are sufficient for proving the following

The proof uses induction on the structure of (a variable, a constant,
an implication or a negation An immediate consequence is

This is the “battering ram” for quickly verifying any conjecture or prov-
ing any further theorem in propositional calculus, often by inspection.

3. Logical equivalence (equality) The axioms are:

One can prove that is reflexive, symmetric, and transitive. Moreover,

Hence, formally is the equality operator for propositional expressions.
To minimize parentheses, we give lower precedence than any other
operator, just as = has lower precedence than arithmetic operators.

Theorems for that have a converse can be reformulated as equal-
ities. A few samples are: shunting
contrapositive double negation

Semidistributivity of  over namely, and
associativity of  (not shared with =) are other properties.

4. Logical inequality or, equivalently, exclusive-OR
Axiom: i.e., the dual of or

This operator is also associative, symmetric, and mutually associa-
tive and interchangeable with as long as the parity of the number of
appearances is preserved, e.g.,

The final stage introduces the usual logical OR and logical AND.

5.

Main properties are the rules of De Morgan:
and and many rules relating the other opera-
tors, including not only the familiar rules of binary algebra or switching
algebra, but also often-used rules in calculational logic [13, 17], such as
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1.4 Binary algebra and conditional expressions

The preliminaries conclude with a “concrete” (non-axiomatic) propo-
sition calculus, and calculation rules for conditional expressions.

Binary algebra. Binary algebra views propositional operators
etc.) as functions on the set of booleans. As explained in [6, 8],

we define                 rather than using separate “truth values” like T, F.
The main advantage is that this makes binary algebra a subalgebra of
minimax algebra, namely, the algebra of the least upper bound and
greatest lower bound operators over defining

A collection of algebraic laws is easily derived by high school algebra. In
binary algebra, are restrictions to of [8]. Laws
of minimax algebra particularize to laws over e.g., from (4):

A variant sharing most (not all) properties is proposed by Hehner [20].

Conditional expressions. This very convenient formulation of con-
ditional expressions is based on the combining the following 3 elements:

(i) Tuples as functions, defining and etc.
(ii) Binary algebra embedding propositional calculus in
(iii) Generic functionals, in particular function composition defined

here by and transposition with The
main properties for the current purpose are the distributivity laws

For binary and any and we now define the conditional by

Simple calculation yields two distributivity laws for conditionals:

In the particular case where and (and, of course, are all binary,

Finally, since predicates are functions and is a predicate,

These laws are all one ever needs for working with conditionals!
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2. Introduction to Generic Functionals

2.1 Sets, functions and predicates

Sets and set equality. We treat sets formally, with basic operator
and calculation rules directly defined or derived via proposition calculus,
such as and
The Cartesian product has axiom

Leibniz’s principle yields for set elements
In our (higher-order) formalism, we require it for sets as well:

Equivalently, for proposition
The converse is expressed as follows: for fresh variable (tuple)

Here allows embedding extensionality in a calculation chain as

cautioning that this should not be read as
The empty set has axiom A singleton set is written with

axiom We reserve { } for better purposes discussed
later, one consequence being the rule

Functions and predicates. A function is not a set of pairs (which
is the graph of the function), but a mathematical concept in its own right,
fully specified by its domain and its mapping. This is axiomatized by
a domain axiom and a mapping axiom, which are of (or can be rewritten
in) the form and respectively. Here typically
is a proposition with and as illustrated in

In declarative formalisms, types are sets. Notions from programming
are too restrictive for mathematics [9, 25]. For instance, if we assume a
function fac to be specified such that then instantiating

with would be a type error in programming due to the application
fac (–1), although mathematically this is perfectly sensible.

Since mapping specifications have the form the form
the consequent is irrelevant in case Expressions of this form
(or etc.) are called guarded [9] and, if properly written, are
seen to be “robust” with respect to out-of-domain applications.

A predicate P is a function:
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Bindings and abstraction. A binding has the general form
(the is optional). It denotes no object by itself, but introduces or
declares a (tuple of) identifiers(s) at the same time specifying that

For instance, is interchangeable with
As explained elsewhere [10], the common practice of overloading the

relational operator with the role of binding, as in can
lead to ambiguities, which we avoid by always using : for binding.

Identifiers are variables if declared in an abstraction (of the form
binding. expression), constants if declared in a definition def binding.

Our abstraction generalizes lambda abstraction by specifying domains:

We assume Abstraction is also the key to synthesizing familiar
expressions such as and

Function equality. Leibniz’s principle in guarded form for domain
elements is For functions:

or Since
this captures all that can be deduced from the converse is:

We use (13) in chaining calculation steps as shown for sets.
As an example, let and (using in

both preserves generality by Now (11) and (12) yield

Constant functions. Constant functions are trivial but useful. We
specify them using the constant function definer defined by

Equivalently, and
Two often-used special forms deserve their own symbol. The empty

function is defined by (regardless of since The
one-point function definer is defined by for any

and which is similar to maplets in Z [28].
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2.2 Concrete generic functionals, first batch

Design principle. Generic functionals [11] support the point-free
style but, unlike the untyped combinator terms from section 1.2, take
into account function domains. One of them (filtering) is a generalization
of to introduce or eliminate variables; the
others can reshape expressions, e.g., to make filtering applicable.

The design principle can be explained by analogy with familiar func-
tionals. For instance, function composition with
traditionally requires in which case In-
stead of restricting the argument functions, we define the domain of the
result functions to contain exactly those points that do not cause out-of-
domain applications in the image definition. This makes the functionals
applicable to all functions in continuous and discrete mathematics.

This first batch contains only functionals whose definition does not
require quantification. For conciseness, we use abstraction in the defini-
tions; separation into domain and mapping axioms is a useful exercise.

Function and set filtering  For any function predicate P,

This captures the usual function restriction for function set X,

Similarly, for any set X we define
We write for With partial application, this yields a formal

basis and calculation rules for convenient shorthands like and

Function composition For any functions and

Dispatching (&) [24] and parallel For any functions and

(Duplex) direct extension For any functions (infix),

Sometimes we need half direct extension: for any function any

Simplex direct extension is defined by
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Function override. For any functions and

Function merge For any functions and

Relational functionals: compatibility subfunction

Remark on algebraic properties. The operators presented entail
a rich collection of algebraic laws that can be expressed in point-free
form, yet preserve the intricate domain refinements (as can be verified
calculationally). Examples are: for composition,
and for extension, Elaboration is beyond
the scope of this tutorial, giving priority to later application examples.

Elastic extensions for generic functionals. Elastic operators
are functionals that, combined with function abstraction, unobtrusively
replace the many ad hoc abstractors from common mathematics, such
as and and If an elastic operator F and (infix)
operator satisfy then F is an elastic extension of
Such extensions are not unique, leaving room for judicious design, as
illustrated here for some two-argument generic functionals.

Transposition. Noting that for in suggests
taking transposition for the elastic extension of &, in view of the
argument swap in Making this generic requires deciding
on the definition of for any function family For & we want

or, in point-free style, For
the most “liberal” design, union is the choice. Elaborating both yields

Parallel For any function family F and function

This is a typed variant of the S-combinator from section 1.2.
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3. Functional Predicate Calculus

3.1 Axioms and basic calculation rules

Axioms. A predicate is a function. We define the quanti-
fiers and as predicates over predicates. For any predicate P:

The point-free style is chosen for clarity. The familiar forms is
obtained by taking for P a predicate where is a proposition.

Most derived laws are equational. The proofs for the first few laws
require separating into and but the need to do so will diminish
as laws accumulate, and vanishes by the time we reach applications.

Calculation example. Function equality (12, 13) as one equation.

Proof: We show the converse is similar.

Duality and other simple consequences of the axioms. By
“head calculation”, and Proof: (14), (28).
In particular: and (proof: using

Illustrative of the algebraic style is the following theorem.

Proof:

The lemmata are stated below, leaving the proofs as exercises.
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Given the preceding two representative proofs, further calculation rules
will be stated without proof. Here are some initial distributivity rules.

Rules for equal predicates and isotony rules are the following.

The latter two help chaining proof steps: justifies
or if the stated set inclusion for the domains holds.

The following theorem generalizes and

THEOREM, Constant Predicates:

More distributivity laws. The main laws are the following.

We present the same laws in pointwise form, assuming not free in

Here are the corresponding laws for (in point-free form only).
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Instantiation and generalization. The following theorem replaces
axioms of traditional formal logic. It is proven from (28) using (12, 13).

being a fresh variable. Two typical proof techniques are captured by

Significance: for (35) reflects typical implicit use of generalization:
to prove prove or assume and prove

Also, (36) formalizes a well-known informal proof scheme: to prove
                “take” a in satisfying (the “witness”) and prove

As expected, we allow weaving (34) into a calculation chain in the
following way, called generalization of the consequent: for fresh

This convention (37) is used in the derivation of a few more basic calcu-
lation rules; it is rarely (if ever) appropriate beyond.

Trading. An example of using (37) is in the proof of the following.

Proof: We prove only the converse being similar.

From (38) and using duality (30), one can prove the

3.2 Expanding the toolkit of calculation rules

Building a full toolkit is beyond the scope of this tutorial and fits bet-
ter in a textbook. Therefore, we just complement the preceding section
with some guidelines and observations the reader will find sufficient for
expanding the toolkit as needed.
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Quantifiers applied to abstraction and tuples. With abstrac-
tions we synthesize or recover commonly used notations. For instance,
letting and in the trading theorem (38) yields

For a tuple of booleans,

A few more selected rules for We express them in both styles,
(i) Algebraic style. Legend: let P and Q be predicates, R a family of

predicates (i.e., is a predicate for any in and S a relation.
The currying operator maps a function with domain X × Y into
a higher-order function defined by The
range operator is defined by

Merge rule
Transposition
Nesting
Composition rule
One-point rule

provided (proof later)

(ii) Using dummies. Legend: let and be expressions,
and assume the usual restrictions on types and free occurrences.

Domain split
Dummy swap
Nesting
Dummy change
One-point rule

The one-point rule is found very important in applications. Being an
equivalence, it is stronger than instantiation

A variant: the half-pint rule:

Swapping quantifiers and function comprehension. Dummy
swap and its dual for take
care of “homogeneous” swapping. For mixed swapping in one direction,

THEOREM, Swap out:

The converse does not hold, but the following is a “pseudo-converse”.
Axiom, Function comprehension: for any relation —R—: Y × X

This axiom (whose converse is easy to prove) is crucial for implicit func-
tion definitions.
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4. Generic Applications

Most of applied mathematics and computing can be presented as ap-
plications of generic functionals and functional predicate calculus. This
first batch of applications is generic and useful in any domain.

4.1 Applications to functions and functionals

Function range and applications. We define the range operator

In point-free style: Now we can prove the

We prove the common part; items (i) and (ii) follow in 1 more step each.

The dual is and
An important application is expressing set comprehension. Introduc-

ing {—} as an operator fully interchangeable with expressions like
{2,3,5} and have a familiar form and meaning.

Indeed, since tuples are functions, denotes a set by listing
its elements. Also, by (43). To
cover common forms (without their flaws), abstraction has two variants:

which synthesizes expressions like and
Now binding is always trouble-free, even in

and
All desired calculation rules follow from predicate calculus by the

axiom for A repetitive pattern is captured by the following property.
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A generic function inverse For any function

with, for Bdom (bijectivity domain) and Bran (bijectivity range),

Elastic extensions of generic functionals. Elastic merge is
defined in 2 parts to avoid clutter. For any function family

need not be discrete. Any function satisfies
and especially the latter is remarkable.

Elastic compatibility (©) For any function family

In general, is not associative, but ©

A generic functional refining function types. The most com-
mon function typing operator is the function arrow  defined by

making always of type Y.
Similarly,   defines the partial arrow .

More refined is the tolerance concept [11]: given a family T of sets,
called the tolerance function, then a function meets tolerance T iff

and We define an operator

Equivalently, The tolerance can be
“exact”: (exercise).

Since (exercise), we call the generalized func-
tional Cartesian product. Another property is

Clearly,
This point-wise form is a dependent type [19] or product of sets [30]. We
write as a shorthand for especially in chained
dependencies: This is
(intentionally) similar to, but not the same as, the function arrow.

Remarkable is the following simple explicit formula for the inverse:
for any S in (exercise).
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4.2 Calculating with relations

Concepts. Given set X, we let and
We list some potential characteristics of relations R in formalizing
each property by a predicate and an expression for P R.
Point-free forms as in [1] are left as an exercise.

In the last line, We often
write for R. Here ismin had type but predicate
transformers of type are more elegant. Hence we
use the latter in the following characterizations of extremal elements.

Calculational reasoning about extremal elements. In this ex-
ample, we derive some properties used later. A predicate is
isotonic for a relation  iff

0.
1.
2.
3.
4.

If is reflexive, then
If is transitive, then is isotonic w.r.t.
If P is isotonic for then
If Refl and then
If is antisymmetric, then

Replacing Ib by ub and so on yields complementary theorems.
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Proofs. For part 0, instantiate with For part 1, we assume
transitive and prove in shunted form.

For part 2, we assume P isotonic and calculate

Part 3 combines 0, 1, 2. Part 4 (uniqueness) is a simple exercise and
justifies defining the usual glb (and lub) functionals (and ).

4.3 Induction principles

A relation is said to support induction iff where

One can show a calculational proof is given in [10].
Examples are the familiar strong and weak induction over One

of the axioms for natural numbers is: every nonempty subset of has
a least element under or, equivalently, a minimal element under <.
Strong induction over is obtained by taking < for yielding

Weak induction over can be obtained from (54) or as follows. Define
and prove that Hence, from (53),

Another example is structural induction over data structures (see later).
An important preparatory step to avoid errors in proofs by induction is

always making the induction predicate P and all quantification explicit,
and avoiding vague designations such as “induction over This is
especially important in case other variables are involved.

105
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5. Applications in Computing

5.1 Calculating with data structures

Unifying principle: data types as function spaces. Tuples,
sequences and so on are ubiquitous in computing as well as mathematics,
and derive most benefit from being defined as functions. This allows
sharing the collection of generic functionals and their calculation rules.

Sequences. This term encompasses tuples, arrays, lists and so on.
A sequence is function with domain for some We define
(i) the block operator with as
in (ii) the power of a set by
also written (iii) the length operator
This also covers arrays in programming.

The set of lists over A, written A*, is defined by
Infinite lists are covered by Tuples are similarly defined
as functions. Tuple types are then types of the form where S is any
sequence of nonempty sets. Clearly

As in [7], we define the list operators prefixing and con-
catenation for any and any sequences and by

The formulas and can be seen
as either theorems derived from (57) or a recursive definition replacing
(57). The (weak) structural induction principle for finite lists over A is

The notation is complemented by covering length 1.

Records and other structures. Records as in PASCAL [21] are
expressed via the funcart product as functions whose domain is a set
of field labels constituting an enumeration type. For instance, letting
name and age be elements of an enumeration type,

defines a function type such that an identifier person: Person satisfies
person and person Obviuosly, by defining 

one can also write
Trees are functions whose domains are branching structures, i.e., sets

of sequences describing the path from the root to a leaf in the obvious
way (for any branch labeling). Other structures are covered similarly
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Example: relational databases. The record type declaration
def CID:= record
specifies the type of tables of the form

All typical query-operators are subsumed by generic functionals:
The selection-operator is subsumed by
The projection-operator is subsumed by
The join-operator is subsumed by

Here is the generic function type merge operator, defined as in [11] by
Its elastic extension (exercise) is

the generic variant of Van den Beuken’s function type merge [31]. Note
that function type merge is associative, although function merge is not.

5.2 Systems specification and implementation

Abstract specification. An abstract specification should be free of
implementation decisions. We consider sorting as an example.

Let A be a set with total order Sorting means that the re-
sult is ordered and has the same contents. We formalize this by two
functions: (“nondescending”) and (“in-
ventory”) such that is the number of times is present in

Our general definition of has 3 parts: and and
for any any numeric and any number-valued

functions and with finite nonintersecting domains. We specify

spec : with

The general form spec introduces with axiom

Implementation. A typical (functional) program implementation is

107
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Verification. We must prove and
Here we give an outline only; more details are found in [8]. Based

on problem analysis, we introduce functions and both of type
with and

Properties most relevant here are expressed by two lemmata: for any
and in A* and in A, and letting we can show:

Split lemma Concatenation lemma

Note that together with and
A makes into a list homomorphism as defined in [3].

The properties and and the
mixed property are the ingredients
for making the proof of and simple exercise.

A hardware-flavored example. Here we consider a data flow ex-
ample whose implementation style is typical for hardware but also for
dataflow languages such as Lab VIEW [4]. Let the specification be

for a given set A, element in A and function By calculation,

yielding the fixpoint equation by extensionality. The
function D : is defined by

Let the variable be associated with discrete time, then D is the unit
delay element. The block diagram in Fig. 1 realizes

Figure 1. Signal flow realization of specification (59)
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5.3 Formal semantics and programming theories

Abstract syntax. This example shows how generic functional sub-
sume existing ad hoc conventions as in [24]. For aggregate constructs
and list productions, we use the as embodied in the record
and list types. For choice productions where a disjoint union is needed,
we define a generic operator such that, for any family F of types,

simply by analogy with
Typical examples are (with field labels from an enumeration type):

For disjoint union one can write Skip Assignment Compound etc.
Instances of programs, declarations, etc. can be defined as

Static semantics. Subsuming [24], the validity of declaration lists
(no double declarations) and the variable inventory are expressed by

The function merge obviates case expressions. For instance, assume

Then, letting and
(integer, boolean, undefined), the type of expressions is defined by

jointly with an “expression validity” function, left as an exercise [11].

The type map (from variables to types) [24] of a valid declaration list is
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Deriving programming theories. Functional predicate calculus
subsumes special program logics by deriving their axioms as theorems.

Let the state be the tuple made of the program variables (and
perhaps auxiliary ones), and S its type. Variable reuse is made unam-
biguous by priming: denotes the state before and the state after the
execution of a command. We use as shorthand for S

If C is the set of commands, and are de-
fined such that the effect of a command can be described by two equa-
tions: for state change and for termination. For technical
reasons, we sometimes we write and by

Here is an example for Dijkstra’s guarded command language [13].

Let the state before and after executing satisfy (antecondition)
and (postcondition) respectively, then Hoare-semantics is captured by

“partial correctness”
“termination”
“total correctness”

Now everything is reduced to functional predicate calculus. Calculating

and theorem (53) justifies capturing Dijkstra-style semantics [13] by

“weakest liberal antecondition”
“weakest antecondition”

From this, we obtain by calculation in functional predicate calculus [12]
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6. Applications in ncontinuous mathematics

6.1 An example in mathematical analysis

The topic is adjacency [22], here expressed by a predicate transformer
since predicates were found to yield more elegant formulations than sets.

The concepts “open” and “closed” are similarly defined by predicates.

An exercise in [22] is proving the closure property closed
The calculation, assuming the (easily proven) lemma is

6.2 An example about transform methods

This example formalizes Laplace transforms via Fourier transforms.
In doing so, we pay attention to using functionals in a formally correct
way. In particular, we avoid common abuses of notation like
and write instead. As a consequence, in the definitions

the bindings are clear and unambiguous without contextual information.
This is important in formal calculation. For what follows, we assume
some familiarity with transforms via the usual informal treatments.

Given with (conditioning
functions), we define the Laplace-transform of a given function by:

for real and with suitable conditions on to make Fourier
transformable. With we obtain
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The converse is specified by for all weakened
where is discontinuous: in these points information is lost by
and reproduces a given function exactly in the continuous parts
only. For these (nonnegative)

For of course The calculation shows how to derive
the inverse transform using functionals in a formally correct way.

7. Some final notes on the Funmath formalism

The formalism used in this tutorial is called Funmath, a contraction of
Functional mathematics. It is not “yet another computer language”, but
an approach for designing formalisms by characterizing mathematical
objects as functions whenever this is possible and useful. The latter is
the case quite more often than common conventions suggest.

As we have seen, the language needs four constructs only:

0

1

2

3

Identifier: a constant or a variable, declared by a binding.

Application: a function with argument(s), as in and

Tupling, of the form was briefly introduced in section 1.4.

Abstraction, of the form was introduced in section 2.1.

The calculation rules and their application were the main topic of this
tutorial. Only function application requires a few additional notes.

Identifiers denoting functions are called operators The standard affix
convention is prefix, as in Other affix conventions can be specified
by dashes in the binding introducing the operator, e.g., —*— for infix.
Parentheses restore the standard prefix convention, e.g., (*)

Partial application is the following convention for omitting arguments.
Let For any and we have
with and with
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Argument/operator alternations of the form              are called variadic
application and (in Funmath) are always defined via an elastic extension:

An example is This is not
restricted to associative or commutative operators. For instance, letting
con and inj be the constant and injective predicates over functions, we
define and The
latter gives the most useful meaning distinct).

From the material in this tutorial, it is clear the language and the
calculation rules jointly constitute a very broad-spectrum formalism.
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