THE PROBLEMATIC OF DISTRIBUTED
SYSTEMS SUPERVISION - AN EXAMPLE :
GENESYS

. .1 2 . .
Jean-Eric Bohdanowicz', Stefan Wesner?, Laszlo Kovacs®, Hendrik Heimer",

Andrey Sadovykh’

"EADS SPACE Transportation, *HLRS- Stuttgart University, "MTA SZTAKI, *NAVUS GmbH,
5

LIP6

Abstract: This chapter presents the problematic of the distributed systems supervision
through a comprehensive state-of-the-art. Issues are illustrated with a case
study about an innovative and generic supervision tool, GeneSyS.

Key words: Supervision, distributed management, state-of-the-art, GeneSyS, intelligent
agent, Web-Services.

1. INTRODUCTION

«Today, the performance of information systems directly governs
company competitiveness », such is the report that can be pulled from the
evolution of the information technologies.

The supervision of the computer infrastructure becomes therefore an
element of vital importance for the whole set of companies. In a context
where «business» is tangled closely with the information system to give birth
to «e-business», it has been necessary to erase the border between
technology and business in order to provide some indicators valuable for the
company managers.

As a result, near the end of 1990’s, the concept of «frameworks» has
been considered like the solution for the supervision of distributed systems
and applications.

116 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

These frameworks can be compared with ERP’s although their respective
domains of application are different : their ambition is to manage the whole
information system through an integrated unique offer.

Since several months, many study groups like Gartner Group or Meta
Groups grant to make a mitigated balance on the usage of these frameworks.
The complexity of implementation of these platforms seems to have made
indeed fail close to 3 projects on 4. Besides, the very elevated costs of
licenses and deployment have limited such a solution perimeter to big
companies.

Historically, the principles of network supervision are older than those
governing the frameworks and mainly based upon the SNMP protocol (and
its extensions). Numerous network monitoring offers are today available on
the market. That’s why the editors leaders of the sector, conscious of the
competitive hazard that the frameworks represent, made their offer to evolve
toward system and applications monitoring. However, network supervision
platforms do not constitute the ideal basis for systems and application
supervision.

Therefore, most users are today facing a spiny problem : there is no
available pragmatic approach for the global network, systems and
applications supervision and, with the international dimension of today’s
projects, this supervision of distributed systems is becoming necessary and
primordial and it requires a wide panel of services :

e Application management including deployment, set-up, start, stop,
hold/resume and configuration management (for instance, for
redundancy management purpose),
Time synchronisation,
Network management including parameterisation and performances
(e.g. dynamic control of bandwidth allocation) and monitoring,

® Security,

e Archiving.

These services requirements lead to have a set of independent software
components designed in a distributed way using the following technologies :
the applications, distributed on the remote sites,
the groupware, allowing the collaborative working,
the middleware, managing the distribution (like CORBA, HLA...),
the synchronisation, giving the same time reference to all the sites
such as NTP,

The Problematic of Distributed Systems Supervision - an Example: 117
GeneSyS

e the security, protecting the data transmission and access control to
the resources,

® the network management, using mainly SNMP,

® the network layer, interconnecting the remote sites and the various
equipment within a given site,

e the hardware platforms, implementing the distributed system
services.

What is needed is a convergence of the different supervision offers. This
has been observed toward a “single vision” consisting in an enterprise type
approach. This new tendency is related to the will of, on one hand, the
“systems supervision” solutions editors to open their products to the network
and, on the other hand, the “network supervision” developers to integrate in
their solutions a system monitoring.

But today, none of these available solutions was specifically designed to
fulfil its principal task: the global supervision with an “enterprise” point of
view. Historically, these solutions are mainly proprietary, most of the time
made of a pool of offers acquired by the mean of external growth and aimed
at covering a large functional scale.

Today, the supervision of distributed systems is mainly done on a case by
case basis and also mainly at independent technical services levels. The
distributed applications used on these systems are supervised in a very
limited way. Furthermore, the user-interface is often questionable as it
requires expert people and suffers from a lack of automation and user
friendliness.

The main purpose of this chapter is to present:

e in a first part, a state-of-the-art of the existing technologies, features,
standards, protocols, tools involved in the distributed systems
supervision world,

® in a second part, a new, innovative, open and generic approach which
is detailed through the description of the GeneSyS project.

2. STATE OF THE ART

The state of the art section intends to give an overview of some of the
main standards, protocols and tools used in the distributed systems
supervision field. This section is also providing a list of current supervision
frameworks and related research projects.

118 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

2.1 Standards in Distributed Management

This paragraph describes two of the most known standards: SNMP and

JMX. In addition, DMTF general use standards are listed at the end of this
section.

2.1.1 SMTP

The network management technologies have been developed during the
whole history of networks. The most known of them are High-level Entity
Management System (HEMS), Simple Gateway Monitoring Protocol
(SGMP) and Common Management Information Protocol (CMIP). These
technologies highly contributed to the Simple Network Management
Protocol (SNMP).

SNMP is the most widely used protocol for the management of IP based
networks. Its concept also allows management of end systems and
applications using specific Agents and Management Information Bases
(MIB). Although SNMP version 3, covering security issues, was already
released, the version 1, due to its robustness, is still widely used.

SNMP is an application level protocol on top of UDP. SNMP managed
network consists of three major components (Figure 1): managed devices,
agents and Network Management Systems (NMS). The managed devices
can be hosts, network interfaces, routers, bridges, hubs and etc. The agents
are the program components running in the managed devices. Agents collect
an information about managed devices and make it available for NMS by the
mean of SNMP. The NMS executes the management applications to monitor
and control the managed devices.

The Problematic of Distributed Systems Supervision - an Example: 119
GeneSyS

Management Entity

Figure 1. SNMP Managed Network

The management capability of the devices can be quite poor due to, for
example, slow CPU or memory limitations. That is why the agent should
minimise its impact on the managed device. Moreover, all calculation and
monitoring data processing is centralised in Network Management System
which, in addition, implements graphical user interface (GUI).

Communication between Agents and NMS is assured by the Network
Management Framework protocol. This protocol supports the
Query/Response mechanism when Agents send parameters values upon
request of the NMS, as well as the Subscribe mechanism, which deals with
asynchronous messages sent by Agent to NMS when a particular event
happens.

The Managed Devices are monitored and controlled using four basic
SNMP commands: read, write, trap, and traversal operations.

® The read command is used by an NMS to monitor managed devices.
The NMS examines different variables that are maintained by
managed devices.

e The write command is used by an NMS to control managed devices.
The NMS changes the values of variables stored within managed
devices.

¢ The trap command is used by managed devices to asynchronously
report events to the NMS. When certain types of events occur, a
managed device sends a trap to the NMS.

e Traversal operations are used by the NMS to determine which
variables a managed device supports and to sequentially gather
information in variable tables, such as a routing table.

120 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

SNMP lacks any authentication capabilities, which results in
vulnerability to a variety of security threats. These include masquerading
occurrences, modification of information, message sequence and timing
modifications, and disclosure. Masquerading consists of an unauthorised
entity attempting to perform management operations by assuming the
identity of an authorised management entity. Modification of information
involves an unauthorised entity attempting to alter a message generated by
an authorised entity so that the message results in unauthorised accounting
management or configuration management operations. Message sequence
and timing modifications occur when an unauthorised entity reorders, delays,
or copies and later replays a message generated by an authorised entity.
Disclosure results when an unauthorised entity extracts values stored in
managed objects, or learns of noticeable events by monitoring exchanges
between managers and agents. Because SNMP does not implement
authentication, many vendors do not implement Set operations, thereby
reducing SNMP to a monitoring facility.

212 JMX

The Java Management eXtensions (JMX) is a SUN specification
describing the design patterns of smart Java agents for application and
network management. The specification includes the architecture, the design
patterns, APIs and core services. The JMX provides Java developers with
means to instrument Java code and create smart Java agents and
management applications. The JMX components also provide means for
extension of existing Java based management middleware. It is already
planned to integrate JMX into such systems as:

* WBEM (JSR-000048 WBEM Services Specification for

CIM/WBEM manager and provider APIs)[1]
= SNMP Manager API (currently reviewed by the Java Community
Process)

The JMX propose a three layers architecture comprising:

e Instrumental level (interfaces to manageable resources),
e Agent level (Server),

¢ Distributed Services level (External Applications).

The following figure is clarifying the relations between these levels and
their components.

The Problematic of Distributed Systems Supervision - an Example: 121
GeneSyS

Distributed
Service Level

Agent Level

Instrumentation
Level _

Resource 1 Resource 2
(MBEAN) (MBEAN)

Figure 2. Relationship between components of the JMX architecture

Instrumentation Level: This level deals with components to be managed.
A JMX manageable component can be an application, a service, a device, a
user and etc. An instrumentation can be done through a Java interface or thin
Java wrapper by means of implementation of Manageable Beans (MBeans).
An MBean is a special Java Bean that should be implemented with stricter
design pattern than a common Java Bean. The main aim of the
instrumentation is to provide services to the agent level (to a Mbean Server).
This server manage all communications between the MBeans.

Moreover, the instrumentation level supports publish/subscribe
communication model (notification mechanism) which is a standard for Java
Beans, this mechanism is used to propagate the notifications events to the
upper levels.

JMX 1s a quite portable system, since it requires that resource is
compatible only with JDK 1.1x, EmbeddedJava, Personallava or Java2. It
means that wide rage of resources can be managed. Besides, JMX ensures
high level of automation of management for such instrumented resources.

Agent Level: This level deals with the management agents. The Agents
can directly access the instrumented resources to control them and to publish
them to Management applications on upper level.

122 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

The JMX agent consists of an MBean Server and a set of services for
handling MBeans. Due to this separation, the agent and instrumented
resources can be placed on different hosts. Similar to the approach at the
instrumentation level, the JMX agent is designed to be independent
regarding the Management application that is using the agent.

Distributed Services Level: The blue blocs on Figure 2 represent the
Distributed Services level which deals with Management applications.
However, this level is not yet well defined in the JMX specification. This
level defines the interfaces needed for the implementation of JMX managers
that are purposed to integrate managed resources seamless to their
environment. In addition, the components named Connector and Protocol
Adapter are used to provide information to different clients.

2.1.3 Distributed Management Task Forces Standards

The Distributed Management Task Forces (DMTF) released several
specifications widely used in modern supervision frameworks, like
OpenView and Unicenter. The most relevant are:

Common Information ~ Model <http://www.dmtf.org/standards/cim>
(CIM) - a common data model of an implementation-neutral schema for
describing overall management information in a network/enterprise
environment.

Web-Based Enterprise Management
<http://www.dmtf.org/standards/wbem> (WBEM) - a set of management
and Internet standard technologies developed to unify the management of
enterprise computing environments.

2.2 Supervision Frameworks

This section gives an outline of the current frameworks in the supervision
domain focusing on the 3 main frameworks : Tivoli, Unicenter and HP
Openview. A short overview of other existing frameworks is also provided.

2.2.1 Tivoli (IBM) (http://www.tivoli.com)

The Tivoli framework is built on a CORBA compliant middleware, it is
more dedicated to distributed system administration : software distribution,
remote configuration, remote control, remote monitoring. Its design is
proprietary, thus it does not support standard protocols (like SNMP) but it

The Problematic of Distributed Systems Supervision - an Example: 123
GeneSyS

can be interfaced with the IBM’s network analysis product Netview in order
to enhance the field of operations.

2.2.1.1 Overview

The Tivoli Management Environment (TME) is a product line whose
base component is the Tivoli Management Environment Framework. Using
the Tivoli Framework and a combination of TME applications, it is possible
to manage large distributed networks with multiple operating systems,
various network services, diverse system tasks and constantly changing
nodes and users.

The TME Framework provides a set of common services or features that
are used by the TME applications installed on the Framework. Examples of
services provided by the Framework are:

- The DHCP service.

- The Task library through which tasks can be created and executed

on multiple TME resources.

- A scheduler that makes it possible to schedule all TME operations
including the execution of tasks created in the TME Task library.

- The RDBMS interface module (RIM) that enables some TME
applications to write application specific information to relational
databases.

- The query facility that allows search and retrieval of information
from a relational database.

TME applications installed on the TME Framework are enabled to use

the services provided by the Framework.

TME provides centralised control of a distributed environment, which
can include mainframes, UNIX or NT workstations, and PCs. A single
system administrator can perform the following task for bunches of
networked systems:

- Manage user and group accounts

- Deploy new or upgrade existing software

~ Inventory existing system configuration

-~ Monitor the resources of systems either inside or outside the TME
environment

- Manage internet and intranet access and control

- Manage third-party applications.

124

2.2.1.2

Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

TME Management Services

The TME Framework enables installation and creation of several
management services such as:

TMR Server — It includes the libraries, binaries, data files, and
graphical user interface needed to install and manage a TME
environment. TMR servers maintain the TMR server database and
co-ordinate all communications with the TME managed nodes.
Managed Node — A TME Managed Node runs the same software
that runs on a TMR Server. Managed nodes maintain their own
databases, which can be accessed by the TMR server. When
managed nodes communicate directly with other managed nodes,
they perform the same communication or security operations
performed by the TMR Server. The primary difference between a
TMR server and a managed node is the size of the database.
Endpoint gateway — An endpoint gateway controls all
communications with and operations on TME endpoints. A single
gateway can support communications with thousands of endpoints.
A gateway can launch method on an endpoint or run methods on the
endpoint’s behalf. Created on an existing managed node, the
gateway is a proxy managed node that provides access to the
endpoint methods and provides the communications with the TMR
server that the endpoint occasionally require.

Endpoint — An endpoint is any system that runs an endpoint service
(daemon). Typically, an endpoint is installed on a machine that is
not used for daily management operations. Endpoints run a very
small amount of software and do not maintain a database. The
majority of systems in most TME installations are endpoints.

TMR Server

Endpoint Manager

Managed Node

Managed Node
(large)

Endpoints
Endpoints

Figure3. TME Framework Nodes

The Problematic of Distributed Systems Supervision - an Example: 125
GeneSyS

Every TME framework installation begins with a TMR Server, which is
just a special case of a managed node with some additional responsibilities,
such as locating objects within the TME distributed database and performing
authentication for method invocations. For every method invocation, the
TMR server must be contacted to locate the object and authenticate the
method invocation. In addition, the TMR server is the point at which much
of the inter-TMR communication takes place.

2.2.1.3 Communications and networks

TME provides a distributed environment on top of which system
management application run. This environment consists of one or more
machines that perform operations in a distributed and parallel fashion. Each
machine in a TMR has a long-running service, or daemon, called the oserv
that communicates with other TME services, or daemons, on other machines
in a peer-to-peer based manner. An operation initiated on one machine may
start multiple operations on machines across the network, all running in
parallel to complete their portion of the overall task.

The configuration of TMRs and the location of file servers have a
significant impact on the performance of the TME installation. For example,
if two sites are connected through a slow line over which TME requests and
operations are run, each site should then be a TMR and have a local file
server with the appropriate TME binaries. In this manner, the only traffic
that passes over the slow line between the sites are management requests, not
large amounts of data or requests for information from a remote TME server.

Due to the distributed architecture, it is important that the
communications and network function efficiently. The TME server speeds
up error and timeout scenarios as well as ensures reliable and accurate error
handling and recovery (e.g. it can track machines that are temporarily
unavailable due to network problems).

TME provides a service called Multiplexed Distribution (Mdist)
service, to enable synchronous distributions of large amounts of data to
multiple targets in an enterprise. The Mdist service is used by a number of
TME applications, such as TME Software Distribution, to maximise data
throughput across large, complex networks.

During a distribution of data to multiple targets, Mdist sets up a
distribution tree of communication channels from the source host to targets
through repeaters. Mdist limits its own use of the network, as configured
through repeater parameters, to help prevent intense network activity that
can stress network bandwidth for periods of time.

126 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

There are fundamentally two types of network communication services
available in TME — all other communications that use the TME Framework
are built on top of these two communications services:

¢ Inter-Object Messaging (IOM)

¢ Inter-dispatcher communication (objcall service)

IOM represents the direct communication between object
implementations. Once two object implementations are running, they can
establish an IOM channel between them for the purpose of bulk data
transfers. This channel is preferred from bulk data transfers, since sending
large amounts of data as arguments to methods (via dispatcher) is slow and
inefficient. An IOM channel usually only lasts as long as it takes to transfer
the data it was created to accommodate.

Examples of IOM usage are: software, profiles and tasks distribution, file
transfers between managed node files, TME database backups, TME desktop
(GUI) communications.

As the primary type of communication in TME, the objcall service is
used by all method invocations. When two dispatchers communicate, inter-
dispatcher connections are sustained: the connection isn’t broken unless the
network breaks it, or unless one of the dispatchers is restarted.

An example of inter-dispatcher communication is illustrated in the
following figure, which shows communications between two dispatchers and
two object implementations.

2.2.2 Unicenter (Computer Associates) (http://www.cai.com)

The Unicenter framework is based on a central object repository
containing all devices managed by the platform. Its implementation is more
open than Tivoli’s, it admits use of various protocols and let developers
adding some extension modules.

2.2.2.1 Unicenter architecture

Unicenter architecture consists of the following:
% Real Work Interface — graphical user interface driven by a
“Common Object Repository”.
Unicenter TNG’s Real World Interface allows management
applications to identify the business resources they manage, as
well as the relationships among those resources. It draws on the

The Problematic of Distributed Systems Supervision - an Example : 127
GeneSyS

Common Object Repository to generate management maps
dynamically.

% Common Object Repository (CORE) — central storage mechanism
for all components of Unicenter TNG, accessible by management
functions and third-party applications.

The CORE is the location where all Unicenter TNG management
functions store information about managed resources, their
properties and relationships. Third-party applications and all
Unicenter TNG components access CORE. The CORE is an
object-based repository, which is database independent and
designed for multi-user and multi-system operations.

% Managers and agents — core management facilities that provide
resource management throughout an enterprise and agents means to
monitor and control all aspects of the business enterprise.

To manage varieties of hardware and software, widely dispersed
across a network and distributed across multiple disparate
platforms, Unicenter TNG proposes an infrastructure comprised
of agents and managers. Agents reside on or near the managed
resources, gather data about the resources and filter the data to
identify and report the most important information to managers.
Managers may be located anywhere in the network. They analyse
the information sent to them by agents, correlate the various
pieces of information in the environment to discover trends and
patterns and determine how to best control the managed resources
in the context of management policies.

2.2.2.2 Unicenter TNG’s distributed management approach

In Unicenter TNG’s manager/agent architecture, the functions that use
management information, control management actions and delegate
management authority are architecturally separate from the functions that
produce management data and act on behalf of managers. Many managers
can monitor a single agent and vice versa. GUI can use the Common Object
Repository and multiple managers can update that repository.

Manager’s role - A manager is one of many software bosses in the
enterprise management system. Managers issue requests to agents for data
and then perform analyses and correlations on the data received about their
management environment.

Unicenter TNG has for example the following managers: a workload
manager, storage manager, asset manager, problem manager, software

128 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

distribution manager, configuration manager, file manager, calendar
manager, report manager, user/security manager...

There is also a special manager called Distributed State Machine (DSM),
which manage groups of agents that instrument resources. This manager is
essential to integration of third-party agents.

Agent’s role - Agents monitor information about one or more resources
and relay that information to a manager under specific circumstances or
criteria. Agents can periodically report to their managers or be asked (polled)
for information by managers.

Unicenter TNG offers several agents right out of the box: DB2 agent,
DCE agent, Informix agent, Ingres II agent, MVS agent, Netware agent,
OpenEdition agent, OpenVMS agent, Oracle agent, OS/2 agent, OS/390
System agent, SQL Server agent, Sybase agent, Tandem NSK agent, Unix
agent, Windows 3.1 agent, Windows 95 agent, Windows NT agent...

2.2.2.3 Unicenter TNG agent technology and integration

Unicenter TNG agent technology makes it possible to instrument
practically any resource in an IT infrastructure. It provides facilities for
creating custom agents. The open architecture supports agents created by
other software vendors who have followed the Unicenter TNG agent
specifications.

Unicenter TNG provides a SDK, which helps third parties to integrate
their solutions into Unicenter TNG. The SDK consists of APl organised as
the following:

- WorldView (GUI) API

- Enterprise Management API

- Agent Factory

The Worldview API is comprised of the Real World Interface and the
Common Object Repository. It provides utilities for customising the GUI
without impacting the behaviour of the management applications.

The Enterprise Management API controls all the management functions
and common services provided in Unicenter TNG and provides them for
cross-application integration. It provides multi-platform management
facilities for security, help desk, event management... Third-party
management applications can share policies, request services from, and
provide services to other management functions.

The Agent Factory API allows third parties to construct multi-platform,
scalable manager/agent applications. These agents may also be deployed
over the Internet and Intranets. It is a complete development environment for
building agents that communicate with management applications using

The Problematic of Distributed Systems Supervision - an Example : 129
GeneSyS

SNMP. Within Unicenter TNG architecture, those management applications
include WorldView and third-party applications at the Enterprise
Management level.

2.2.24 Unicenter TNG’s Agent Factory environment

The Agent Factory allows building a SNMP agent with minimum effort:
only the code that is specific to the resources needs to be written. The
functions that are common to any agent, such as encoding and decoding
SNMP protocol data units and routing requests, are provided by a set of
common services and a Distributed Services Bus. Agents in Unicenter TNG
run within the Agent Factory environment, supported by the common service
and the distributed Service Bus.

The Agent Factory provides the API libraries, executable code for the
common services and Distributed Services Bus, utilities to configure and test
agents. The common services consist of the executable code for three objects
that perform the functions common to all agents: SNMP Gateway, SNMP
Administrator, Object Store.

The Object Store consists of disk storage and the process that reads from
and writes to that storage area. Object Store is designed to handle all
incoming get and set requests by default. The API functions can be used to
code a task that periodically calculates attribute values and send them to
Object Store, where they are available whenever the SNMP Administrator
receives a get or get-next request. Besides acting as a repository for current
attribute values, Object Store also holds other critical agent data.

2.2.3 Openview (HP) (http://www.hp.com)

Since the begining dedicated to network supervision, the Openview
environement has been augmented with many functionalities linked to
systems and applications. Its implementation is based on SNMP and its
design is closer to a software suite than a framework like IBM’s or CA’s.

2.2.3.1 Overview

HP Openview IT/Operations (ITO) is a software application that provides
central operations and problem management for multi-vendor distributed
systems.

ITO consists of a central management server in the form of a manager,
which interacts with intelligent software-agents installed on the managed

130 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

systems (called nodes). Management status information, messages, and
monitoring values are collected from such sources as system or application
log files, SNMP traps, SNMP variables. Filters and thresholds are applied
and the information is then converted into a standard format for presentation
to the central management server. Once the information is retrieved, ITO can
immediately initiate corrective actions and provide individual guidance for
problem identification and further problem resolutions.

All management information and associated records needed for future
analysis and audit are stored in a central repository called the History
Database. It allows the automation of certain problem resolution processes.

2.2.3.2 ITO functioning

ITO monitors, controls and maintains systems in heterogeneous
environments, by managing events, messages and actions. ITO uses events,
messages, and actions to observe and control status, formulate and provide
information, react to and correct problems.

When an event occurs, a message is generated as a result of that event.
ITO performs event correlation on messages rather than on events: messages
are copied rather than diverted to the correlation engine so that critical
messages may avoid the possibility of being delayed or even lost in the
correlation process. Messages are structured pieces of information, created
by events. ITO intercepts and collects messages, and thereby is informed of
events.

ITO message management can combine messages into logically related
groups, bringing together messages from lots of related sources, providing
status information about a class of managed objects or services. Other
message management operations can classify and filter messages to ensure
that important information is clearly displayed.

When an event occurs on a managed object, a message is created as a
result. The ITO Agent on that managed node receives the message and filters
it. It can then forward it and/or log it locally. If the message satisfies the
filter, it is converted into ITO message format and forwarded to the
management server. If a local action on the message is configured, it will be
started. The management server can perform the following actions: assign
the message to another message group, start non-local automatic actions
configured for the message on the specified node, forward the message to
external notification interfaces and trouble ticket service, escalate the
message to another pre-configured management server. The active message
is stored in the database and displayed in a Message Browser window in one

The Problematic of Distributed Systems Supervision - an Example : 131
GeneSyS

or more ITO display stations. When the message is acknowledged, it is
removed from the active Browser and put in the history database.

2.2.3.3 ITO architecture

ITO architecture is comprised of the following:

e The management server.

¢ Managed nodes.

ITO software is divided into two basic components:

¢ Agents and sub-agents

¢ Managers.

The agent and sub-agent are located on the managed nodes and are
responsible for generating messages, collecting and forwarding information,
monitoring parameters.

The management software is located on the management server and
communicates with, controls and directs the agents. It stores the central
database and runs the graphical user interfaces.

The management server performs the central role of ITO. It collects data
from managed nodes, managed and re-groups messages, calls the appropriate
agent to start actions or initiate sessions on managed nodes, controls the
history database for messages and performed actions, forwards messages,
installs ITO agent software on managed nodes, intercepts SNMP traps.

2.2.3.4 Integration of applications into ITO

Existing applications can be integrated into ITO, at different levels,

through various interfaces, to provide diverse capabilities and advantages:

e Application Desktop integration — applications are registered within
ITO and represented by symbols in the application desktop window.
Operators use these symbols daily to start applications and resolve
problems.

e Event Integrations — applications can write messages to logfiles, use
ITO API or send SNMP traps in order to manage events through ITO

o Action Integration — application start-ups can be incorporated into an
automatic, or operator initiated action.

e Monitor Integration — monitoring applications such as scripts,
programs, MIB variable based programs can be started by ITO and
use API to return values. The monitored values can then be compared
to threshold limits.

132 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

2.2.4 Other frameworks

Openmaster (Evidian-Bull) (http://www.evidian.com)

Openmaster was designed like a universal platform supporting a large
field of protocols : SNMP, CMIS, CMIP ... Network oriented, Evidian’s
Openmaster strategy seems today to focus on security purposes.

Nagios (OpenSource)

Nagios is an OpenSource framework that provides a flexible approach for
centralised system monitoring. The core component is a Linux application
that runs periodically a set of shell scripts. These scripts monitors different
parameters (ping, system resource load, motherboard temperature, etc.) on
local and remote hosts. A user-friendly GUI is secured by a web front-end.

23 Related Projects

This paragraph intends to present a list of related research project and

organisations that are of interest when entering in the distributed systems
supervision world.

Projects

ANDROID - The Active Distributed Open Infrastructure Development
project provides a manageable programmable network infrastructure.
The communication mechanism uses XML-based protocol. A genetic
algorithm is used for intelligent policies based server management.

AgentScape - Scalable Resource Management for Multi-Agent Systems

MANTRIP - The Management Testing and Reconfiguration of IP based
networks project is an example of Mobile Agent Technology (MAT)
in the context of Network Management.

SHUFFLE - this project proposes an agent based approach to control
resources in UMTS networks.

OPENDREAMS - The Open Distributed Reliable Environment
architecture and Middleware for Supervision project was to satisfy the
needs of advanced Supervision and Control Systems (SCSs) for the
management of large equipment infrastructures such as
telecommunication networks, electricity and water distribution
networks, large buildings, etc. A Corba implementation was used as
backbone assuring the interoperability and openness of the platform
architecture.

WSDM - The OASIS Web Services Distributed Management Technical
Committee defines web services management. This includes using

The Problematic of Distributed Systems Supervision - an Example : 133
GeneSyS

web services architecture and technology to manage distributed
resources. The work is ongoing.

Agents management related projects:

AgentLight - Platform for Lightweight Agents project is dedicated to
development of agent-based middleware for mobile devices using
J2ME and FIPA compatible APL

AgentCities - This project is purposed to set up a world-wide network of
always running FIPA test-bed platforms.

LEAP - The Lightweight Extensible Agent Platform is another project
addressing the needs of mobile enterprises. The proposed architecture
is based on JADE (Java FIPA implementation)

SAFIRA - The support Affective Interactions for Real-time Applications
project provides a framework to enrich interactions and applications
using a real-time multi-agent middleware.

Intelligent agents related projects:

Agent Academy - this project is concentrated on a data-mining
framework for training intelligent agent. The project uses standards
from FIPA and OMG, like FIPA ACL and KQML for agents’
communication and OMG XMI and CWM MOF for data-mining.

PISA - The Privacy Incorporated Software Agent project deals with
development of security software agents for the Internet and E-
commerce.

RACING -The Rational Agent Coalitions for Intelligent Mediation of
Information Retrieval on the Net is another example of agent-based
data mining.

24 Intelligent Supervision

This section describes an innovative feature that needs to be implemented
in the new supervision solution : the intelligent supervision.

Systems that leverage from simple monitoring system towards
autonomous systems extend the basic components of data monitoring and
potentially higher level components that analyse and interpret this basic data
into higher layer information with elements that have the ability to react
without further human intervention on a detected critical or failure situation.
Such “intelligent” components need either pre-recorded knowledge or have
to analyse a system.

We have identified three major elements of such a system:

134 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

® (Case-Database solutions based on historical data and/or expert
knowledge

* Topology Analysis for identifying root causes of failures

= System Behaviour Prediction

The following sections describe these elements in more details and
provide an overview on the current state of the art in this area.

24.1 Case Database Approach

The Case Database approach for the management of distributed
applications (as described in [2], [3]) is based on a set of cases containing
specific symptom-cause pairs in a database. If a monitored situation fits or is
similar to a symptom stored in the case database, the prepared solutions for
such a case can be executed. The major problem to be solved in this kind of
systems is finding appropriate metrics for evaluating the level of similarity
between the monitored symptoms and the one stored in the database.
Another critical point is the size and quality of the case database. Very often,
historical data for example from a trouble ticket system are used to feed such
databases (see[4]). Another approach correlates basic events to higher-level
events that allow reacting either a system administrator or potentially an
intelligent component correctly. This is either realised using programming
language constructs (see [S]) or the system to be monitored is modelled with
its event behaviour (cf. [6]).

2.4.2 Topology Analysis

Distributed applications consist out of interdependent components on
different levels ranging from network, middleware, up to the application
layer. In order to define good policies on how to detect and to react on
problems in the operation of a distributed applications, knowledge on the
topology and the dependencies of the different components is necessary. In
[7], an event correlator based on dependency graphs is introduced. Using this
dependency graph, it is possible to identify which components of a
distributed system will be affected if an error occurs. The advantage of this
approach is that it is not limited to react on situations that have been
discovered in the past. As the errors are tracked down to single components,
the mechanisms to solve a discovered problem are likely less complex and
the complicated part of case database oriented systems matching the current
problem situation with a stored solution does not apply.

The Problematic of Distributed Systems Supervision - an Example : 135
GeneSyS

24.3 Prediction Systems

Another component needed for autonomous supervision is an intelligent
element using historical monitored data as the basis for predicting the
behaviour of the system in the near future in order to allow supervision
components to react in a proactive way. Significant work in this area exists
for prediction of network behaviour e.g. the Network Weather Service
(NWS) (see [8]) or the Remos System (see [9]). The common feature in
these toolkits is to collect data on the supervised network and use this
historical information in order to predict the load of the network in the near
future. However they are almost limited to the network layer with a small
part of monitoring of the system status.

3. INTRODUCTION TO GENESYS

The following sections are intended to present an innovative solution for
distributed systems supervision. Through this example, the reader will be
able to understand the real and practical issues of designing, specifying,
implementing a generic, open and comprehensive supervision solution.

3.1 What is GeneSyS ?

GeneSyS (Generic System Supervision) is a European Union project
(IST-2001-34162) co-funded by the Commission of the FEuropean
Communities (5th Framework). EADS SPACE Transportation (France) is
the project Co-ordinator, with University of Stuttgart (Germany), MTA
SZTAKI (Hungary), NAVUS GmbH and D-3-Group GmbH (both of
Germany) as participants. GeneSyS started in March 2002 with planned
completion in October 2004 [10]. The project is aimed at developing a new,
open, generic and modular middleware for distributed systems supervision.
Besides, the consortium intends to make GeneSyS an open standard in the
distributed system supervision domain.

3.2 Contexts

This section presents three contexts that were chosen as validation
scenarios for the project purposes. These quite different application coming
from different industrial domains helped to identify a list of requirements
that needed to be fulfiled by GeneSyS (see [11]).

136 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

3.2.1 Preliminary Design Review

This scenario was brought by EADS SPACE Transportation, the
European aerospace industry leader. It concerns the spacecraft production
process and, in particular, Automated Transfer Vehicle (ATV) design. The
Preliminary Design Review (PDR) is a design process stage, involving
hundreds of engineers from different European countries, that meet regularly
to discuss ATV technical documentation, to release comments and change
proposals.

T asaae
#

: %7_ """ﬁ?ﬁﬁ‘_ﬂ

Ry W Ltl]
i e |

AN AT R LNL Ul §

Figure 3. Preliminary Design Review, an ATV design phase.

To reduce the travel costs, a groupware application is used, which allows
collaborative work on the documentation and visio conference meetings to
discuss comments and change proposals.

The Problematic of Distributed Systems Supervision - an Example : 137
GeneSyS

Visio Conference
Server

Figure 4. PDR Application, Groupware Application for Collaborative Engineering

The groupware application comprises mainly a Document Repository and
a Visio Conference Server supporting multiple simultaneous client access.
The application is physically highly distributed, different operating systems
and access means are used. In addition, a database management system with
a web front-end and the visio conference server require specific supervision
on the application level.

Thus the system maintenance and the client technical support seems to be
extremely difficult without common generic supervision framework.

3.2.2 Distributed Training

The following scenario is also from the space domain and concerns
HILA-based simulations. HLA (see [12]) is a DoD standard for real-time
interactive simulations. This standard is widely used in military, aerospace
and automotive industries. The Distributed Training Scenario involves 4
real-time simulators playing different roles in joint training sessions of
astronauts and ground controllers in order to prepare them in advance for
contingency situation during the ATV to International Space Station (ISS)
approach manoeuvre.

138 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

MCC-M (Moscow)
aerg

(Cologne)

To Housten::

ATVCC
Toulouse

Figure 5. Distributed Training - HLA-based Interactive Simulation

The trainee teams are located in different places all over the world
(Toulouse, Houston, Moscow), which imposes performance constraints on a
supervision solution.

The supervision is needed at all levels starting from operating system, up
to HLA middleware and Training application.

3.23 Web-Servers Monitoring

Today’s web servers implement a distributed, multi layered architecture
hosting complex applications. The situation is even complex if such web
applications are connected to each other requiring continuous
synchronisation with each other. In the Web Servers monitoring scenario,
the supervision of such complex web based applications are contemplated.
One such application is the so-called “node server” of the StreamOnTheFly
(SOTF) application. SOTF provides a peer-to-peer network for community
radios to share their shows (see figure 6).

The Problematic of Distributed Systems Supervision - an Example : 139
GeneSyS

Radio Orargs 840 ™y
Visnea, Avmrin o

RalioZ ™
L Misnberg Cermany S

=

“Node rabrusl”;

drzmibuited dspral vy £
o

g : _______ W

Wode TE

—

Radiay paal
o

Figure 6. Web Servers Monitoring Scenario - Stream on the Fly Application

Nodes are the repositories of the shows, collecting the audio files and
their associated metadata. The metadata is periodically exchanged by the
highly distributed nodes of the SOTF network. Each node itselfis typically a
distributed system as the HTTP server and database servers are typically
located on different machines or in different domain, therefore not only the
collaboration of these nodes but the operation of a single node requires a
complex supervision solution.

3.3 Requirements

Analysing the need of supervision for the mentioned distributed
applications, the following common requirements were identified:

Comprehensiveness - the supervision should be provided for all levels of
a computer infrastructure.

Flexibility - all kinds of data types and complex data structures should be
supported.

Portability - the supervision system should by compatible with
distributed applications, that are often multi-platform, involving different
access means.

140 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

Integration capability - a global supervision system should be capable to
benefit from existing solutions for local supervision and from available
application extension mechanisms.

Security - authorisation, authentication, data integrity and privacy are
extremely important for the distributed systems with control functionality.

4. GENESYS FRAMEWORK

4.1 Constraints of Existing Solutions

The commercial supervision systems like Tivoli, OpenView, Unicenter
TNG, mentioned earlier, are aimed at different aspects of system monitoring
starting from operating systems to network and up to some commercial
standard applications.

However most of them have several common constraints, which should
be overcome:

» proprietary interfaces;
proprietary protocols;
operating system dependent implementation;
non-flexible architecture;
dedication to particular commercial application (Oracle, SAP, etc.).

Although these supervision systems use open standards (SNMP, JMX,
Corba), the mentioned constraints complicate integration with third-party
monitoring tools to achieve system control at all levels. At the same time,
proprietary solutions slow down pace of development of the whole domain.

With the advancement of Web technologies, more and more works
appeared to introduce these technologies in the world of supervision (DMTF
WBEM, OASIS WSDM, etc.). GeneSyS was one of the first to bring the
Web Services to this domain. Besides, the GeneSyS consortium intends to
make the GeneSyS achievements a new open standard.

4.2 Design Objectives

Thus, the main GeneSyS objective is to design a system supervision
middleware that can be used in a wide range of applications (examples are
listed in the applicability section). The planned outcome of the specification
phase was a communication and messaging APl for the middleware
components as well as the functional design of these components.

The Problematic of Distributed Systems Supervision - an Example : 141
GeneSyS

While designing the GeneSyS framework, the consortium continuously
aligned the design to meet the following aspects of a new solution in order to
fit the requirements:

= the framework must clearly separate supervision (collection and

processing of data) from visualisation (display and analysis of data)

® the framework must support both passive monitoring (collection of

runtime data) and active control (start, stop, reconfiguration) of
monitored entities

®* the framework must provide all functionality related to the

communication between middleware components

» the communication protocol must provide secure message exchange

between middleware components

® the framework must be based on open standards and protocols to

assure its openness and easy adaptation by anyone in need of a
supervision facility; dependency on third party or proprietary
software is not permissible

® the specified API must be language and implementation neutral

® authors of new monitoring components should only bother with the

details of how to get the monitoring data from a monitored entity and
how to control it - the rest (transferring the data to other components,
storing the data, querying historical data, visualising monitoring data,
etc.) should all be handled by GeneSyS.

4.3 Web Technologies as a Platform for a Supervision
Framework

As the result of our research matched with the requirements outlined for
GeneSyS, an agent based approach was implemented which separates the
monitoring/controlling and visualisation of monitoring data. Web Services
technologies were chosen as the base for GeneSyS messaging protocol.

Basing the supervision infrastructure on agents seems logical, because
the monitoring of IT entities requires properties that are available with
software agents. A software agent is a program that is authorised to act for
another program or human (see [13]). Agents possess the characteristics of
delegacy, competency and amenability that are the exact properties needed
for a monitoring software component.

Delegacy for software agents centres on persistence. Delegacy provides
the base for an agent to be an autonomous software component, which can
act without the intervention of other programs or human operators. “Fire-
and-forget” software agents stay resident, or persistent, as background
processes after being launched. By making decisions and acting on their

142 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

environment independently, software agents reduce human workload by
generally only interacting with their end-clients when it is time to deliver
results. In case of GeneSyS, the agents reside either on the computer hosting
the monitored entity or on a computer that is able to communicate with the
monitored entity.

Competency within a software environment requires knowledge of the
specific communication protocols of the domain (SQL, HTTP, API calls). A
monitoring agent competency is to have knowledge about the monitored
entity to be able to collect runtime information from it or to control it with
commands.

Amenability for non-intelligent software agents is generally limited to
providing control options and the generation of status reports that require
human review. Such agents often tend to be brittle in the face of a changing
environment, necessitating a modification of their programming to restore
performance.

Amenability in intelligent software agents can include self-monitoring of
achievement toward client goals combined with continuous, online learning
to improve performance. GeneSyS makes no restriction on its agents or on
their intelligence or autonomous operations, but provides the ability to
include it as found necessary by agent writers and also provides some
middleware components (like monitoring data repository) that can be used to
implement amenability.

Openness and standards based solution was one of the key requirements
of GeneSyS especially in the light of the Consortium’s intention to turn
GeneSyS itself into an industry standard. After a number of iterations, we
had two candidates for the realisation of the communication protocol:

®= InterAgent Communication Model (ICM - FIPA based) (cf. [14])

®» Web Services technologies (see [15])

The ICM framework has not been designed for monitoring or supervision
needs but is a general communication framework for inter-agent
communication. The Web Services framework standardised by the W3C is a
generic framework for the interaction of Services over the Internet and is
designed to exploit as much as possible existing protocol frameworks such
as SOAP and HTTP. The Web Services framework is in contrast to ICM
more a hierarchical or client-sever communication model.

ICM is a very efficient system for the transmission of messages between
agents. However for supervision in general and especially in the area of
standardisation and flexibility, major disadvantages have been identified.
The most important issue against ICM was that the GeneSyS Message
format would be tight to the ICM communication protocol and would bring
GeneSyS in a complete dependency to ICM. This is a serious risk as ICM is

The Problematic of Distributed Systems Supervision - an Example : 143
GeneSyS

not used at all by important software companies and no activity in the
development has been identified since autumn 2001.

Web Services has a major problem with respect to performance. The use
of an XML based protocol cannot be as efficient as a binary protocol due to
the consuming text processing. Additionally, the most common transport
protocol used for SOAP messages, the Hypertext Transfer Protocol (HTTP),
is not very efficient as it lacks stateful connections. However we are
convinced that these problems can be solved as Web Services potentially can
use different protocols. The feature of alternative protocol bindings is
already used for example in the NET framework using Remoting, which
uses different (proprietary) protocols. As this problem is not solely part of
GeneSyS but the whole community including the major software vendors
that are committed to Web Services will face this problem, the assumption
that this limitation will disappear seems reasonable.

After a detailed comparison of these two technologies, we selected Web
Services, including the SOAP XML based communication protocol as a base
for GeneSyS. Going on the Web Services path, we have a strong industry
backing with tools available for many languages. With this decision, we also
defined the first instance of a Web Services based supervision system that
has recently been followed by other companies and standards organisations
(OASIS WSDM, DataPower Technology [16])

On top of SOAP and Web Services, a new layer of the GeneSyS protocol
has been established called the GeneSyS Messaging Protocol (GMP).
GeneSyS Messaging Protocol is a lightweight messaging protocol for
exchanging structured supervision information in a decentralised, distributed
environment. It is an XML protocol based on XML 1.0, XML Schema and
XML Namespaces. GMP is intended to be used in the Web Services
Architecture, thus, SOAP is considered as a default underlying protocol.
However, other protocol bindings can be equally applied. Using XML to
represent monitoring data was a natural choice. XML is a widely accepted
industry standard that supports structured representation of complex data
types, structures (enumerations, arrays, lists, hash maps, choices, sequences)
and it can be easily processed by both humans and computers. With the wide
acceptance of XML, an integration with supervised application and 3d party
monitoring solutions can be smoothly achieved, since XML toolkits are
available for every platform.

144 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

4.4 Basic Components and Communication Model

This section provides implementation details, illustrating a common

supervision framework architecture.
Fig.7 depicts the basic GeneSyS functionality.

I
i Management
: Facilities

HMI

4. Query or

Management
Logic
Execute Command
5. Response
6.Subscribe

"~ 7 Delegate (agent)

I
I
I
I
I
I

Supervised Entity

Interface

Figure 7. GeneSyS Communication Model

As showed above, supervision process involves several generic
components. The Delegate implements an interface to the Supervised Entity
(Operating System, Network, Applications, etc.), retrieves and evaluates
monitoring information and generates monitoring events. The Supervisor is a
remote controller entity that communicates with one or more Delegates. It
may encapsulate management automation functionality (intelligence),
recognising state patterns and making recovery actions. The Console is
connected to one or many Supervisors to visualise the monitoring
information in a synthetic way, and to allow for efficient controlling of
Supervised Entity. The Core implements Directory Server, a location storage
being updated dynamically.

The agents register to the Core to make them discoverable by other
agents. Hereafter, the “agent” is a generic term comprising the Supervisor
and the Delegate.

Both “pull” and “push” interaction models are available. The pull model
is realised by the Query/Response mechanism, while the Event Subscribe
mechanism secures the push model. All interactions between agents are

The Problematic of Distributed Systems Supervision - an Example : 145
GeneSyS

provided for by the SOAP-RPC. The flexibility of XML standard is used to
encode communication messages (GeneSyS Messaging Protocol) supporting
complex data structures and custom data types.

4.5 Intelligence

An inherent property of software agents is autonomy, that is, the ability
to work without the intervention of other programs or humans. Autonomous
work requires some level of intelligence so that the agent can react on
changes in its environment or can make decision based on its internal logic
driven by rules or other means. Intelligence in agents is also required
because in a complex environment with some 10 or 100 monitored entities,
an administrator could be easily flooded with low level warnings like
“memory is running low” or “maximum number of users almost reached”.
Instead, the administrator first needs a general, summarised view about the
health of the systems and then can look at the details as necessary.

GeneSyS agents can work autonomously in a hosting environment
connected to a monitored entity from which it collects data or controls its
operation. The GeneSyS framework provides API hooks for adding
intelligence to agents as well as components for supporting the
implementation of intelligence. Intelligence can be accomplished in several
ways, that are only outlined here, as the actual implementation of this feature
is not a main goal of GeneSyS:

» Specific Implementation: the , intelligence* to react on the system

status can be done as part of the program code of the agent.

= Parameter based Generic Solution. The rules can be configured
through parameters. A basic example is a ,, Threshold Miss Agent*
where the parameters would be min and max values.

= Rule Based Systems. In complex settings, the usage of rule based
systems could be an option where the rules can be expressed in an
external file e.g. based on JESS.

* Workflow based systems. Another option could be to use workflow
languages such as BPELAWS to define workflows that act depending
on events receive.

GeneSyS provides a data Repository that is connected to the middleware
bus via the same API as any other agents, which means its functionality is
available to all other agents connected to a given CORE. The Repository
provides a generic XML data storage facility. Agents can store monitoring or
control messages in the Repository, which can later be queried. With the use
of the Repository, an agent can base its decisions on archived data, for
example, by analysing past messages for detecting trends in the operation of

146 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

the monitored entity. More over, the Repository is also capable for storing
control messages — or a list of control messages — which can be “replayed”
any number of times at any time it is necessary.

The Agent Dependency Framework (ADF) is another aid for adding
intelligence to monitoring. ADF allows defining dependencies of monitored
entities. To be more precise, not directly the dependencies of monitored
entities but the dependencies of the agents monitoring the entity can be
described. Each delegate agent can describe in its component description
(which is stored in the CORE) what agents it depends on. The dependency
forms a directed graph that should never cause a circular reference. Once the
dependency of each delegate is described, the dependency graph can be
queried from the CORE. Based on the dependency graph, a special
supervisor console view can be created that draws a tree view of the
dependent entities and gives a quick overview of the health of the system
with green, yellow and red light depicting a healthy, questionable or
erroneous state of the dependant systems. This way of visualising the
monitored system with all its dependent components provides a way for
tracking root cause of problems. For example, an administrator seeing a red
light in the top of the dependency hierarchy can expand the tree until he
finds the subsystem that generates the red light and which has been
“propagated” up in the dependency tree. In the same way, an autonomous
intelligent agent can walk this tree and find the root cause of the problem
and can work only with that subsystem that was the source of the problem.

S. APPLICABILITY RESULTS

This section presents the applicability results in accordance with the
industrial contexts in order to give real examples of the GeneSyS framework
in use.

5.1 Preliminary Design Review Scenario

This scenario was intended to prove a viability of the GeneSyS concept.
Common system and network agents were developed to reflect system
administrator needs. Custom application agents were used to monitor the
system functional status (application load, resources used by applications,
etc), user activities (documentation in use, on-line meetings, access
violation, etc). The figure 8 depicts the deployment of GeneSyS components
involved in the scenario.

The Problematic of Distributed Systems Supervision - an Example : 147
GeneSyS

Client

| 1/ 4
Visio Conference
Server

Figure 8. The PDR Application Supervision

The main goals for this scenario was to prove a capability of Web
Services based distributed system to work in an heterogeneous environment.
It includes support of different operating systems (Windows, Linux),
programming languages and toolkits(C/C++/gSOAP, Java/Axis, .Net).
Besides, developing custom application agents (Oracle, EDB, GTI6-DSE,
Mbone, Tomcat), the integration capability was ensured.

The validation showed that, besides some ergonomy and performance
issues, the solution is ready for the large community of the internet users.
That is why, generic components for system and network monitoring, as well
as, visualisation tools, service components and development toolkits were
released under open source policy and can be found at the GeneSyS
SourceForge repository (see [17]).

5.2 Distributed Training Scenario

The Distributed Training scenario was implemented in order to improve
the GeneSyS V1 functionality and usability as well as to introduce an
intelligence basis.

The flexible GeneSyS information allowed customising of System and
Network agents and development of scenario specific Middleware and
Application agents (RTI middleware, DIS-RVM application).

148 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

Figure 9 depicts the deployment schema and gives intelligence
implementation hints.

The “synthetic view” and ‘“‘agent dependencies framework™ approaches
were used to provide administrators with a run-time system operation status
summary and to allow a fast problem location.

E3]

g‘ ! Convolution o
i 5 System status O

27 o, R, @ [N
£ :, i Control Host @ Middleware status @—— '@I
a8 Moo Applishanssui@e |

pl ’M i "~ [015-RVM agents |
S E Console \ |

i i K Internet

=

EADS-ST Validation Platform

2 \mnn\ o Tolkign " !lt‘rbvrt ¢ King :
m e ATV Fadernte - ‘ i g |
3 ISS Federate 1 ATV-CC Federate i — !
T O |, MCCFaderaw i Federution Manager s - il
p Eg System @ L_E System Agent !, System : System

k=l il Agent Network Agent@ e, -"__K"m j - '\'l.'»"'" i
W = Network @ RTI Agent Network .:. Network “ i
E i Agent i DISRVM Agent @i Agent i
€ | i RTIAgent . Agent ;

o Ty L L S

Figure 9. Intelligence in Distributed Training Supervision

Thus an administrator could browse down the agents to find a problem
origin and then maintain the system.

53 Web Servers Scenario

The Web Servers Monitoring validation scenario aims at using GeneSyS
for monitoring and controlling web servers and web based on-line services.

A Web Server is typically more than just an HTTP daemon: it may
invoke external programs and those programs may use other programs for
their execution, and so on. A typical Web Server can include, for example,
an Apache server with a PHP interpreter and a MySQL database used by a
number of PHP application. The Web Server is considered “healthy” only if
all of these components are in good condition. Because these components
may be dependent of each other it is not enough to have separate agents for
all entities but these agents must be connected in a way to reflect the
dependencies of the monitored entities.

The Problematic of Distributed Systems Supervision - an Example : 149
GeneSyS

[COlserpls [PHP o]
HYTP server []
Operaling system | «

ieb server

Figure 10. Web Application - A Common Deployment

Going on with the previous example: a Web Server could be considered
healthy if the Apache daemon is up and running, the PHP applications it
hosts respond in an acceptable time interval and the MySQL server has
enough space for new records. If any of these conditions are not met the
system should notify the administrator. More over, the unresponsiveness of
Apache may be the result of a number of other dependent subsystems, like
the operating or network system. So the “monitoring entity” could be divided
into some more elements, namely the Apache server itself, the underlying
operating system and the network connecting the server machine to the outer
world. In this case even if Apache is found to be alive the operating system
agent may report that the CPU load is too high and this could cause in a
short time the Apache server being unable to respond to requests.

The Web Servers Monitoring scenario extensively uses the Agent
Dependency Framework of GeneSyS, which provides the ability to describe
the dependencies of system components and use this dependency graph to
detect and find root cause of an erroneous system state.

6. CONCLUSION

Today, the distributed systems supervision is a very complex and
important issue. The main purpose of this chapter was to give some useful
information :

To understand the problematic of this specific supervision,

To know the existing technologies, tools in this domain,

To see what are the main innovative features needed,

To illustrate, through a case study - the GeneSyS project, the real-life
needs, the architecture and design of a generic supervision solution.

150 Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik
Heimer, Andrey Sadovykh

In comparison with other solutions, among other advantages, the authors
would like to emphasise that the GeneSyS architecture is open to be
extended with custom agents for all kind of applications. Besides the
proposed framework is published on SourceForge repository under an open
source policy and already available for deploying (see [17]).

REFERENCIES

[1] JSR-000048 WBEM Services Specification, Sun Microsystems, Inc. October, 2002

[2] Hatonen, K. ; Klemettinen, M. ; H., Mannila: Knowledge discovery from
telecommunication network alarm databases. In: International Conference on Data
Engineering (ICDE’96), 1996, S. 115-122

[3] LEWIS, L.: A case-based reasoning approach to the resolution of faults in communication
networks. In: Integrated Network Management III, 1993, S. 671-682

[4] RODOSEK, G. D. A Framework for Supporting Fault Diagnosis in Integrated Network
and Systems Management: Methodologies for the Correlation of Trouble Tickets and
Access to Problem-Solving Expertise. 1995

[5] R. Gardner and D. Harle. Pattern discovery and specification translation for alarm
correlation. In Proceedings of Network Operations and Management Symposium
(NOMS’98), New Orleans, USA, February 1998, pages 713-722.

[6] D. Ohsie, A. Mayer, S. Kliger, et al. Event modeling with the model language. In A.
Lazar, R. Saracco, and R. Stadler, editors. Integrated Network Management V (IM’97),
San Diego, USA, May 1997. Chapman & Hall, pages 625-637.

[7] GRUSCHKE, Boris: Integrated Event Management: Event Correlation using Dependency
Graphs. In: Proceedings of DSOM’98, 1998

[8] Rich Wolski et.al., The Network Weather Service

[9] A. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, D. Sutherland,
“ReMoS: A Resource Monitoring System for Network-Aware Applications” Carnegie
Mellon School of Computer Science, CMU-CS-97-194.

[10] GeneSyS project official web-site : http://genesys.sztaki.hu

[11] GeneSyS V2 User Requirements Document - D1.2.1

[12] Institute of Electrical and Electronic Engineers - IEEE 1516.1, IEEE 1516.2, IEEE
15163

[13] Wallace Croft, David, “Intelligent Software Agents: Definitions and Applications”, 1997,
http://www.alumni.caltech.edu/~croft/research/agent/definition

[14] The Inter-Agent Communication Model (ICM), Fujitsu Laboratories of America, Inc.,
http://www.nar.fujitsulabs.com/icm/about.html

[15] Web Service Activity of W3C, http://www.w3.0rg/2002/ws/

[16] DataPower Offering Web Services-Based Network Device Management,
http://www.ebizg.net/news/2534.html

[17] GeneSyS project SourceForge file repository,
http://www.sourceforge.net/projects/genesys-mw

