
SOFTWARE REJUVENATION - MODELING AND
ANALYSIS

Kishor S. Trivedi
Dept. of Electrical & Computer Engineering
Duke University, Durham, NC 27708, USA

kst@ee.duke.edu

Kalyanaraman Vaidyanathan
Sun Microsystems, Inc.
San Diego, CA 92121, USA

kalyan.vaidyanathan@sun.com

Several studies have now shown that outages in computer systems are more
due to software faults than due to hardware faults [24, 42]. Recent studies have
also reported the phenomenon of “software aging” [20, 29] in which the state
of the software degrades with time. The primary causes of this degradation are

Abstract Several recent studies have established that most system outages are due to soft-
ware faults. Given the ever increasing complexity of software and the well-
developed techniques and analysis for hardware reliability, this trend is not likely
to change in the near future. In this paper, we first classify software faults and
discuss various techniques to deal with them in the testing/debugging phase and
the operational phase of the software. We discuss the phenomenon of software
aging and a preventive maintenance technique to deal with this problem called
software rejuvenation. Stochastic models to evaluate the effectiveness of preven-
tive maintenance in operational software systems and to determine optimal times
to perform rejuvenation for different scenarios are described. We also present
measurement-based methodologies to detect software aging and estimate its ef-
fect on various system resources. These models are intended to help develop
software rejuvenation policies. An automated online measurement-based ap-
proach has been used in the software rejuvenation agent implemented in a major
commercial server.

Keywords: Availability, Measurement-based dependability evaluation, Software reliability,
Software aging, Software rejuvenation

1. Introduction

the exhaustion of operating system resources, data corruption and numerical er-
ror accumulation. Eventually, this may lead to performance degradation of the
software or crash/hang failure or both. Some common examples of “software
aging” are memory bloating and leaking, unreleased file-locks, data corrup-
tion, storage space fragmentation and accumulation of round-off errors [20].
Aging has not only been observed in software used on a mass scale but also in
specialized software used in high-availability and safety-critical applications
[29]. Since aging leads to transient failures in software systems, environment
diversity, a software fault tolerance technique, can be employed proactively to
prevent degradation or crashes. This involves occasionally stopping the run-
ning software, “cleaning” its internal state or its environment and restarting it.
Such a technique known as “software rejuvenation” was proposed by Huang
et al. [29].1 This counteracts the aging phenomenon in a proactive manner
by removing the accumulated error conditions and freeing up operating sys-
tem resources. Garbage collection, flushing operating system kernel tables and
reinitializing internal data structures are some examples by which the internal
state or the environment of the software can be cleaned.

Software rejuvenation has been implemented in the AT&T billing applica-
tions [29]. An extreme example of a system level rejuvenation, proactive hard-
ware reboot, has been implemented in the real-time system collecting billing
data for most telephone exchanges in the United States [7]. Occasional reboot
is also performed in the AT&T telecommunications switching software [3]. On
reboot, called software capacity restoration, the service rate is restored to its
peak value. On-board preventive maintenance in spacecraft has been proposed
and analyzed by Tai et al. [43]. This maximizes the probability of successful
mission completion by the spacecraft. These operations, called operational
redundancy, are invoked whether or not faults exist. Proactive fault manage-
ment was also recommended for the Patriot missiles’ software system [36].
A warning was issued saying that a very long running time could affect the
targeting accuracy. This decrease in accuracy was evidently due to error ac-
cumulation caused by software aging. The warning however failed to inform
the troops how many hours “very long” was and that it would help if the com-
puter system was switched off and on every eight hours. This exemplifies the
necessity and the use of proactive fault management even in safety critical sys-
tems. More recently, rejuvenation has been implemented in cluster systems to
improve performance and availability [11, 30, 47]. Two kinds of policies have
been implemented taking advantage of the cluster failover feature. In the peri-
odic policy, rejuvenation of the cluster nodes is done in a rolling fashion after
every deterministic interval. In the prediction-based policy, the time to rejuve-
nate is estimated based on the collection and statistical analysis of system data.
The implementation and analysis are described in detail in [11, 47]. A soft-
ware rejuvenation feature known as process recycling has been implemented

152 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

in the Microsoft IIS 5.0 web server software [48]. The popular web server
software Apache implements a form of rejuvenation by killing and recreating
processes after a certain numbers of requests have been served [34, 49]. Soft-
ware rejuvenation is also implemented in specialized transaction processing
servers [10]. Rejuvenation has also been proposed for cable and DSL modem
gateways [15], in Motorola’s Cable Modem Termination System [35] and in
middleware applications [9] for failure detection and prevention. Automated
rejuvenation strategies have been proposed in the context of self-healing and
autonomic computing systems [27]. Software rejuvenation (preventive mainte-
nance) incurs an overhead (in terms of performance, cost and downtime) which
should be balanced against the loss incurred due to unexpected outage caused
by a failure. Thus, an important research issue is to determine the optimal
times to perform rejuvenation.

In this paper, we present two approaches for analyzing software aging and
studying aging-related failures. The rest of this paper is organized as follows.
In Section 2, we show how to include faults attributed to software aging into
the framework of traditional classification of software faults - deterministic and
transient. We also study the treatment and recovery strategies for each of the
fault classes, discussing the relative advantages and disadvantages. This will
help us choose the best possible recovery strategy when a fault is triggered
and the system experiences a crash or a performance degradation. Section 3
describes various analytical models for software aging and to determine opti-
mal times to perform rejuvenation. Measurement-based models are dealt with
in Section 4. The implementation of a software rejuvenation agent in a major
commercial server is discussed in Section 5. Section 6 describes various ap-
proaches and methods of rejuvenation and Section 7 concludes the paper with
pointers to future work.

Software Rejuvenation - Modeling and Analysis 153

2. Classification and Treatment of Software Faults

In this section, we describe how we can include software faults attributed to
software aging into Jim Gray’s fault classification [22] and discuss the various
fault tolerance techniques to deal with these faults in the operational phase of
the software. Particular attention is given to environment diversity, explaining
its need, various approaches and methods in practice.

Classification of software faults

Faults, in both hardware and software, can be classified according to their
phase of creation or occurrence, system boundaries (internal or external), do-
main (hardware or software), phenomenological cause, intent and persistence
[5]. In this section, we restrict ourselves to the classification software faults
based on their phase of creation.

Some studies have suggested that since software is not a physical entity
and hence not subject to transient physical phenomena (as opposed to hard-
ware), software faults are permanent in nature [28]. Some other studies classify
software faults as both permanent and transient. Gray [22] classifies software
faults into Bohrbugs and Heisenbugs. Bohrbugs are essentially permanent de-
sign faults and hence almost deterministic in nature. They can be identified
easily and weeded out during the testing and debugging phase (or early de-
ployment phase) of the software life cycle. A software system with Bohrbugs
is analogous to a faulty deterministic finite state machine. Heisenbugs, on the
other hand, are design faults that behave in a way similar to hardware tran-
sient or intermittent faults. Their conditions of activation occur rarely or are
not easily reproducible. These faults are extremely dependent on the operat-
ing environment (other programs, OS and hardware resources). Hence these
faults result in transient failures, i.e., failures which may not recur if the soft-
ware is restarted. Some typical situations in which Heisenbugs might surface
are boundaries between various software components, improper or insufficient
exception handling and interdependent timing of various events. It is for this
reason that Heisenbugs are extremely difficult to identify through testing. In
fact, any attempt to detect such a bug may alter the operating environment
enough to change the symptoms. A software system with Heisenbugs is anal-
ogous to a faulty non-deterministic finite state machine. A mature piece of
software in the operational phase, released after its development and testing
stage, is more likely to experience failures caused by Heisenbugs than due to
Bohrbugs. Most recent studies on failure data have reported that a large propor-
tion of software failures are transient in nature [22, 23], caused by phenomena
such as overloads or timing and exception errors [12, 42]. The study of failure
data from Tandem’s fault tolerant computer system indicated that 70% of the
failures were transient failures, caused by race conditions and timing problems
[33].

We now describe how to explicitly account for the phenomenon of software
aging in Gray’s classification of software faults. We designate faults attributed
to software aging as aging-related faults. Aging-related faults can fall under
Bohrbugs or Heisenbugs depending on whether the failure is deterministic (re-
peatable) or transient.

Figure 1 illustrates this classification of software faults. Following are ex-
amples of software faults in each of these categories. A software fault which is
environment independent and hence deterministic, falls under the category of
non-aging related Bohrbug (for example, a set of inputs resulting in the same
failure every time). If the software bug, for example, is related to the arrival or-
der of messages to a process, it is classified as a non-aging related Heisenbug.
Reorder of messages and replay might result in the system working correctly.
A bug causing a gradual resource exhaustion deterministically every time is

154 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

classified as an aging-related Bohrbug. A bug causing an unknown resource
leak during rare instances which are difficult to reproduce could be classified
as an aging-related Heisenbug.

Design diversity [4] has been advocated as a technique for software fault
tolerance. The design diversity approach was developed mainly to deal with
Bohrbugs. It relies on the assumption of independence between multiple vari-
ants of software. However, as some studies have shown, this assumption may
not always be valid [32]. Design diversity can also be used to treat Heisenbugs.
Since there are multiple versions of software operating, it not likely that all of
them will experience the same transient failure. One of the disadvantages of
design diversity is the high cost involved in developing multiple variants of
software.

Data diversity [2] can work well with Bohrbugs and is less expensive to
implement than design diversity. To some extent, data diversity can also deal
with Heisenbugs since different input data is presented and by definition, these
bugs are non-deterministic and non-repeatable.

Environment diversity is the simplest technique for software fault tolerance
and it effectively deals with Heisenbugs and aging-related bugs. Although this
technique has been used for long in an ad hoc manner, only recently has it
gained recognition and importance. Having its basis on the observation that
most software failures are transient in nature, environment diversity utilizes
reexecuting the software in a different environment [31].

Adams [1] has proposed restarting the system as the best approach to mask-
ing software faults. Environment diversity, a generalization of restart, has
been proposed in [28, 31] as a cheap but effective technique for fault toler-
ance in software. Transient faults typically occur in computer systems due
to design faults in software which result in unacceptable and erroneous states
in the OS environment. Therefore, environment diversity attempts to provide
a new or modified operating environment for the running software. Usually,
this is done at the instance of a failure in the software. When the software
fails, it is restarted in a different, error-free OS environment state which is
achieved by some clean up operations. Examples of environment diversity

Software Rejuvenation - Modeling and Anal 155

Figure 1. Venn diagram of software fault types

Software fault tolerance techniques

techniques include retry operation, restart application and rebooting the node.
The retry and restart operations can be done on the same node or on another
spare (cold/warm/hot) node.

Tandem’s fault tolerant computer system [33] is based on the process pair
approach. It was noted that many application failures did not recur once the
application was restarted on the second processor. This was due to the fact that
the second processor provided a different environment which did not trigger
the same error conditions which led to the failure of the application on the first
processor. Hence, in this case (as well as in Avaya’s SwiFT [21]), hardware
redundancy coupled with software replication2 was used to tolerate most of the
software faults.

The basic observation in all these transient failures is that the same error
condition is unlikely to occur if the software is reexecuted in a different en-
vironment. For aging-related bugs, environment diversity can be particularly
effective if utilized proactively in the form of software rejuvenation.

3. Analytic Models for Software Rejuvenation

The aim of the analytic modeling is to determine optimal times to perform
rejuvenation which maximize availability and minimize the probability of loss
or the response time of a transaction (in the case of a transaction process-
ing system). This is particularly important for business-critical applications
for which adequate response time can be as important as system uptime. The
analysis is done for different kinds of software systems exhibiting varied fail-
ure/aging characteristics.

The accuracy of a modeling based approach is determined by the assump-
tions made in capturing aging. In [16–18, 29, 43] only the failures causing
unavailability of the software are considered, while in [38] only a gradually de-
creasing service rate of a software which serves transactions is assumed. Garg
et al. [19], however, consider both these effects of aging together in a single
model. Models proposed in [16, 17, 29] are restricted to hypo-exponentially
distributed time to failure. Those proposed in [18, 38, 43] can accommodate
general distributions but only for the specific aging effect they capture. Gen-
erally distributed time to failure, as well as the service rate being an arbitrary
function of time are allowed in [19]. It has been noted [42] that transient fail-
ures are partly caused by overload conditions. Only the model presented by
Garg et al. [19] captures the effect of load on aging. Existing models also dif-
fer in the measures being evaluated. In [18, 43] software with a finite mission
time is considered. In the [16, 17, 19, 29] measures of interest in a transaction
based software intended to run forever are evaluated.

Bobbio et al.[8] present fine grained software degradation models, where
one can identify the current degradation level based on the observation of a

156 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Software Rejuvenation - Modeling and Analysis 157

system parameter, are considered. Optimal rejuvenation policies based on a
risk criterion and an alert threshold are then presented. Dohi et al. [13, 14]
present software rejuvenation models based on semi-Markov processes. The
models are analyzed for optimal rejuvenation strategies based on cost as well as
steady-state availability. Given a sample data of failure times, statistical non-
parametric algorithms based on the total time on test transform are presented
to obtain the optimal rejuvenation interval.

Huang et al. [29] assume that the stochastic behavior of the system can be
described by a simple continuous-time Markov chain (CTMC) [45]. Let Z be
the random time interval when the highly robust state changes to the failure
probable state, having the exponential distribution

Just after the state becomes the failure probable
state, a system failure may occur with a positive probability. Without loss of
generality, we assume that the random variable Z is observable during the sys-
tem operation. Define the failure time X (from state 1) and the repair time Y,
having the exponential distributions
and If the
system failure occurs before triggering a software rejuvenation, then the repair
is started immediately at that time and is completed after the random time Y
elapses. Otherwise, the software rejuvenation is started. Note that the soft-
ware rejuvenation cycle is measured from the time instant just after the sys-

Basic model for rejuvenation

Figure 2 shows the basic software rejuvenation model proposed by Huang
et al. [29]. The software system is initially in a “robust” working state, 0.
As time progresses, it eventually transits to a “failure-probable” state 1. The
system is still operational in this state but can fail (move to state 2) with a non-
zero probability. The system can be repaired and brought back to the initial
state 0. The software system is also rejuvenated at regular intervals from the
failure probable state 1 and brought back to the robust state 0.

Figure 2. State transition diagram for rejuvenation

tem enters state 1. Define the distribution functions of the time to invoke the
software rejuvenation and of the time to complete software rejuvenation by

and
respectively. The CTMC is then analyzed and the expected system down time
and the expected cost per unit time in the steady state is computed. An optimal
rejuvenation interval which minimizes expected downtime (or expected cost)
is obtained.

It is not difficult to introduce the periodic rejuvenation schedule and to ex-
tend the CTMC model to the general one. Dohi et al. [13, 14] developed
semi-Markov models with the periodic rejuvenation and general transition dis-
tribution functions. More specifically, let Z be the random variable having the
common distribution function with finite mean
Also, let X and Y be the random variables having the common distribution
functions and with finite means

and respectively. Denote the distribution function of the
time to invoke the software rejuvenation and the distribution of the time to
complete software rejuvenation by and (with mean re-
spectively. After completing the repair or the rejuvenation, the software system
becomes as good as new, and the software age is initiated at the beginning of
the next highly robust state. Consequently, we define the time interval from
the beginning of the system operation to the next one as one cycle, and the
same cycle is repeated again and again. The time to software rejuvenation (the
rejuvenation interval) is a constant, i.e., where U(·) is
the unit step function.

The underlying stochastic process is a semi-Markov process with four re-
generation states. If the sojourn times in all states are exponentially distributed,
this model is the CTMC in Huang et al. [29]. Using the renewal theory [39],
the steady-state system availability is computed as

where in general The problem is to derive the optimal software
rejuvenation interval which maximizes the system availability in the steady
state We make the following assumption that the mean time to repair is
strictly larger than the mean time to complete the software rejuvenation (i.e.,

This assumption is quite reasonable and intuitive. The following
result gives the optimal software rejuvenation schedule for the semi-Markov
model.

158 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Assume that the failure time distribution is strictly IFR (increasing failure
rate) [45]. Define the following non-linear function:

where is the failure rate.

(i) If and then there exists a finite and unique optimal
software rejuvenation schedule satisfying
and the maximum system availability is

(ii) If then the optimal software rejuvenation schedule is i.e.
it is optimal to start the rejuvenation just after entering the failure proba-
ble state, and the maximum system availability is

(iii) If then the optimal rejuvenation schedule is i.e. it
is optimal not to carry out the rejuvenation, and the maximum system
availability is

If the failure time distribution is DFR (decreasing failure rate), then the sys-
tem availability is a convex function of and the optimal rejuvenation
schedule is or [13, 14].

Garg et al. [16] have developed a Markov Regenerative Stochastic Petri Net
(MRSPN) model where rejuvenation is performed at deterministic intervals
assuming that the failure probable state 1 is not observable.

Software Rejuvenation - Modeling and Analysis 159

Preventive maintenance in transactions based software
systems

In [19], Garg et al. consider a transaction-based software system whose
macro-states representation is presented in Figure 3. The state in which the
software is available for service (albeit with decreasing service rate) is denoted
as state A. After failure a recovery procedure is started. In state B the software
is recovering from failure and is unavailable for service. Lastly, the software
occasionally undergoes preventive maintenance (PM), denoted by state C. PM
is allowed only from state A. Once recovery from failure or PM is complete,
the software is reset to state A and is as good as new. From this moment, which
constitutes a renewal, the whole process stochastically repeats itself.

The system consists of a server type software to which transactions arrive
at a constant rate Each transaction receives service for a random period.
The service rate of the software is an arbitrary function measured from the

last renewal of the software (because of aging) denoted by Therefore, a
transaction which starts service at time occupies the server for a time whose

distribution is given by If the software is busy processing a
transaction, arriving customers are queued. Total number of transactions that
the software can accommodate is K (including the one being processed) and
any more arriving when the queue is full are lost. The service discipline is
FCFS. The software fails with a rate that is, the CDF of the time to failure

X is given by Times to recover from failure and
to perform PM are random variables with associated general CDFs and

respectively. The model does not require any assumptions on the nature of
and Only the respective expectations and are

assumed to be finite. Any transactions in the queue at the time of failure or at
the time of initiation of PM are assumed to be lost. Moreover, any transactions
which arrive while the software is recovering or undergoing PM are also lost.

The effect of aging in the model may be captured by using decreasing ser-
vice rate and increasing failure rate, where the decrease or the increase respec-
tively can be a function of time, instantaneous load, mean accumulated load or
a combination of the above.

Two policies which can be used to determine the time to perform PM are
considered. Under policy I which is purely time-based, PM is initiated after
a constant time has elapsed since it was started (or restarted). Under policy
II, which is based on instantaneous load and time, a constant waiting period

must elapse before PM is attempted. After this time PM is initiated if and
only if there are no transactions in the system. Otherwise, the software waits
until the queue is empty upon which PM is initiated. The actual PM interval
under Policy II is determined by the sum of PM wait and the time it takes for
the queue to get empty from that point onwards B. Since the latter quantity
is dependent on system parameters and can not be controlled, the actual PM
interval has a range

Given the above behavioral model the following measures are derived for
each policy: steady state availability of the software long run probability
of loss of a transaction and expected response time of a transaction given

160 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Figure 3. Macro-states representation of the software behavior

that it is successfully served The goal is to determine optimal values
of (PM interval under policy I and PM wait under policy II) based on the
constraints on one or more of these measures.

According to the model described above at any time the software can be
in any one of three states: up and available for service (state A), recovering
from a failure (state B) or undergoing PM (state C). Let be a
stochastic process which represents the state of the software at time Further,
let the sequence of random variables represent the times at which
transitions among different states take place. Since the entrance times con-
stitute renewal points is an embedded discrete time Markov
chain (DTMC) with a transition probability matrix P given by:

The steady state probability of the DTMC being in state is:

The software behavior is modeled via the stochastic process
If then as the queue can accommodate up

to K transactions. If then since by assumption all
transactions arriving while the software is either recovering or undergoing PM
are lost. Further, the transactions already in the queue at the transition instant
are also discarded. It can be shown that the process is a
Markov regenerative process (MRGP). Transition to state A from either B or
C constitutes a regeneration instant.

Let U be a random variable denoting the sojourn time in state A, and denote
its expectation by E[U]. Expected sojourn times of the MRGP in states B and
C are already defined to be and The steady state availability is obtained
using the standard formulae from MRGP theory:

The probability that a transaction is lost is defined as the ratio of expected
number of transactions which are lost in an interval to the expected total num-
ber of transactions which arrive during that interval. Since the evolution of

Software Rejuvenation - Modeling and Analysis 161

in the intervals comprising of successive visits to state
A is stochastically identical it suffices to consider just one such interval. The
number of transactions lost is given by the summation of three quantities: (1)
transactions in the queue when the system is exiting state A because of the
failure or initiation of PM (2) transactions that arrive while failure recovery or
PM is in progress and (3) transactions that are disregarded due to the buffer
being full. The last quantity is of special significance since the probability of
buffer being full will increase due to the degrading service rate. It follows that
the probability of loss is given by

where is the expected number of transactions in the buffer when the
system is exiting state A. Equation 7 is valid only for policy II. Under policy
I sojourn time in state A is limited by so the upper limit in the integral

is instead of
Next an upper bound on the mean response time of a transaction given that

it is successfully served, is derived. The mean number of transactions,
denoted by E, which are accepted for service while the software is in state A
is given by the mean number of transactions which are not accepted due to the
buffer being full, subtracted from the mean total number of transactions which

arrive while the software is in state A, that is,

Out of these transactions, on the average, are discarded later because of
failure or initiation of PM. Therefore, the mean number of transactions which
actually receive service given that they were accepted is given by
The mean total amount of time the transactions spent in the system while

the software is in state A is This time is com-

posed of the mean time spent by the transactions which were served as well
as those which were discarded, denoted as and respectively. There-
fore, The response time we are interested in is given by

which is upper bounded by

is the probability that there are transactions queued for service, which
is also the probability of being in state of the subordinated process at time

is the probability that the system failed when there were transac-
tions queued for service. These transient probabilities for both policies can be
obtained by solving the systems of forward differential-difference equations
given in [19]. In general they do not have a closed-form analytical solution
and must be evaluated numerically. Once these probabilities are obtained, the
rest of the quantities E[U] and can be easily computed [19]

162 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Software Rejuvenation - Modeling and Analysis 163

and then used to obtain the steady state availability the probability of
transaction lost and the upper bound on the response time of a transac-
tion

Examples are presented to illustrate the usefulness of the presented model
in determining the optimum value of (PM interval in the case of policy I and
PM wait in the case of policy II). First, the service rate and failure rate are
assumed to be functions of real time, where is defined to be the hazard
function of Weibull distribution, while is defined to be a monotone non-
increasing function that approximates the service degradation. Figure 4 shows

and for both policies plotted against for different values of the
mean time to perform PM Under both policies, it can be seen that for any

particular value of higher the value of lower is the availability and higher
is the corresponding loss probability. It can also be observed that the value
of which minimizes probability of loss is much lower than the one which
maximizes availability. In fact, the probability of loss becomes very high at
values of which maximize availability. For any specific value of policy
II results in a lower minima in loss probability than that achieved under policy
I. Therefore, if the objective is to minimize long run probability of loss, such
as in the case of telecommunication switching software, policy II always fares
better than policy I.

Figure 5 shows and upper bound on plotted against under
policy I. Each of the figures contains three curves. and in the solid

Figure 4. Results for experiment 1

Figure 5. Results of experiment 2

164 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Software rejuvenation has been applied to cluster systems [11, 47]. This is a
novel application, which significantly improves cluster system availability and
productivity. The Stochastic Reward Net (SRN) model of a cluster system em-
ploying simple time-based rejuvenation is shown in Figure 6. The cluster con-
sists of nodes which are initially in a “robust” working state, The aging
process is modeled as a 2-stage hypo-exponential distribution (increasing fail-
ure rate) [45] with transitions and Place represents
a “failure-probable” state in which the nodes are still operational. The nodes
then can eventually transit to the fail state, A node can be repaired
through the transition with a coverage c. In addition to individual
node failures, there is also a common-mode failure (transition The
system is also considered down when there are individual node
failures. The system is repaired through the transition

Figure 6. SRN model of a cluster system employing simple time-based rejuvenation

curve are functions of real time and whereas in the dotted curve they
are functions (with the same parameters) of the mean total processing time

and The dashed curve represents a third system in which
no crash/hang failures occur but service degradation is present with

This experiment illustrates the importance of making the right
assumptions in capturing aging because as seen from the figure, depending on
the forms chosen for and the measures vary in a wide range.

Software rejuvenation in a cluster system

Software Rejuvenation - Modeling and Analysis 165

classified as an aging-related Bohrbug. A bug causing an unknown resource
leak during rare instances which are difficult to reproduce could be classified
as an aging-related Heisenbug.

Figure 1. Venn diagram of software fault types

Design diversity [4] has been advocated as a technique for software fault
tolerance. The design diversity approach was developed mainly to deal with
Bohrbugs. It relies on the assumption of independence between multiple vari-
ants of software. However, as some studies have shown, this assumption may
not always be valid [32]. Design diversity can also be used to treat Heisenbugs.
Since there are multiple versions of software operating, it not likely that all of
them will experience the same transient failure. One of the disadvantages of
design diversity is the high cost involved in developing multiple variants of
software.

Data diversity [2] can work well with Bohrbugs and is less expensive to
implement than design diversity. To some extent, data diversity can also deal
with Heisenbugs since different input data is presented and by definition, these
bugs are non-deterministic and non-repeatable.

Environment diversity is the simplest technique for software fault tolerance
and it effectively deals with Heisenbugs and aging-related bugs. Although this
technique has been used for long in an ad hoc manner, only recently has it
gained recognition and importance. Having its basis on the observation that
most software failures are transient in nature, environment diversity utilizes
reexecuting the software in a different environment [31].

Adams [1] has proposed restarting the system as the best approach to mask-
ing software faults. Environment diversity, a generalization of restart, has
been proposed in [28, 31] as a cheap but effective technique for fault toler-
ance in software. Transient faults typically occur in computer systems due
to design faults in software which result in unacceptable and erroneous states
in the OS environment. Therefore, environment diversity attempts to provide
a new or modified operating environment for the running software. Usually,
this is done at the instance of a failure in the software. When the software
fails, it is restarted in a different, error-free OS environment state which is
achieved by some clean up operations. Examples of environment diversity

Software fault tolerance techniques

For the analyses, the following values are assumed. The mean times spent in
places and are 240 hrs and 720 hrs respectively. The mean times to
repair a node, to rejuvenate a node and to repair the system are 30 min, 10 min
and 4 hrs respectively. In this analysis, the common-mode failure is disabled
and node failure coverage is assumed to be perfect. All the models were solved
using the SPNP (Stochastic Petri Net Package) tool [26]. The measures com-
puted were expected unavailability and the expected cost incurred over a fixed
time interval. It is assumed that the cost incurred due to node rejuvenation is
much less than the cost of a node or system failure since rejuvenation can be
done at predetermined or scheduled times. In our analysis, we fix the value for

at $5,000/hr, the at $250/hr. The value of is
computed as the number of nodes, times

Figure 8 shows the plots for an 8/1 configuration (8 nodes including 1 spare)
system employing simple time-based rejuvenation. The upper plot and lower
plots show the expected cost incurred and the expected downtime (in hours) re-
spectively in a given time interval, versus rejuvenation interval (time between
successive rejuvenation) in hours. If the rejuvenation interval is close to zero,
the system is always rejuvenating and thus incurs high cost and downtime. As
the rejuvenation interval increases, both expected unavailability and cost in-
curred decrease and reach an optimum value. If the rejuvenation interval goes
beyond the optimal value, the system failure has more influence on these mea-
sures than rejuvenation. The analysis was repeated for 2/1, 8/2, 16/1 and 16/2
configurations. For time-based rejuvenation, the optimal rejuvenation interval
was 100 hours for the 1-spare clusters, and approximately 1 hour for the 2-
spare clusters. In our analysis of condition-based rejuvenation, we assumed
90% prediction coverage. For systems that have one spare, time-based reju-
venation can reduce downtime by 26% relative to no rejuvenation. Condition-
based rejuvenation does somewhat better, reducing downtime by 62% relative
to no rejuvenation. However, when the system can tolerate more than one fail-
ure at a time, downtime is reduced by 98% to 95% via time-based rejuvenation,
compared to a mere 85% for condition-based rejuvenation.

166 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

4. Measurement Based Models for Software Rejuvenation

While all the analytical models are based on the assumption that the rate of
software aging is known, in the measurement based approach, the basic idea
is to monitor and collect data on the attributes responsible for determining the
health of the executing software. The data is then analyzed to obtain predic-
tions about possible impending failures due to resource exhaustion.

In this section we describe the measurement-based approach for detection
and validation of the existence of software aging. The basic idea is to periodi-
cally monitor and collect data on the attributes responsible for determining the

Software Rejuvenation - Modeling and Analysis 167

Figure 8. Results for an 8/1 cluster system employing time-based rejuvenation

health of the executing software, in this case the UNIX operating system. Garg
et al. [20] propose a methodology for detection and estimation of aging in the
UNIX operating system. An SNMP-based distributed resource monitoring tool
was used to collect operating system resource usage and system activity data
from nine heterogeneous UNIX workstations connected by an Ethernet LAN at
the Department of Electrical and Computer Engineering at Duke University. A
central monitoring station runs the manager program which sends get requests
periodically to each of the agent programs running on the monitored work-
stations. The agent programs in turn obtain data for the manager from their
respective machines by executing various standard UNIX utility programs like
pstat, iostat and vmstat. For quantifying the effect of aging in operating sys-
tem resources, the metric Estimated time to exhaustion is proposed. The earlier
work [20] uses a purely time-based approach to estimate resource exhaustion
times, whereas the the work presented in [46] takes into account the current
system workload as well.

A methodology based on time-series analysis to detect and estimate resource
exhaustion times due to software aging in a web server while subjecting it to
an artificial workload, is proposed in [34]. Avritzer and Weyuker [3] monitor
production traffic data of a large telecommunication system and describe a
rejuvenation strategy which increases system availability and minimizes packet
loss. Cassidy et al. [10] have developed an approach to rejuvenation for large
online transaction processing servers. They monitor various system parameters
over a period of time. Using pattern recognition methods, they come to the
conclusion that 13 of those parameters deviate from normal behavior just prior
to a crash, providing sufficient warning to initiate rejuvenation.

168 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

In the time-based estimation method presented by Garg et al. [20], data
was collected from the UNIX machines at intervals of 15 minutes for about 53
days. Time-ordered values for each monitored object are obtained, constituting
a time series for that object. The objective is to detect aging or a long term trend
(increasing or decreasing) in the values. Only results for the data collected
from the machine Rossby are discussed here.

First, the trends in operating system resource usage and system activity are
detected using smoothing of observed data by robust locally weighted regres-
sion, proposed by Cleveland [20]. This technique is used to get the global
trend between outages by removing the local variations. Then, the slope of
the trend is estimated in order to do prediction. Figure 9 shows the smoothed
data superimposed on the original data points from the time series of objects
for Rossby. Amount of real memory free (plot 1) shows an overall decrease,
whereas file table size (plot 2) shows an increase. Plots of some other resources
not discussed here also showed an increase or decrease. This corroborates the
hypothesis of aging with respect to various objects.

The seasonal Kendall test [20] was applied to each of these time series to
detect the presence of any global trends at a significance level, of 0.05.
With all values are such that the null hypothesis that no trend

Time-based estimation

Figure 9. Non-parametric regression smoothing for Rossby objects

Software Rejuvenation - Modeling and Analysis 169

exists is rejected for the variables considered. Given that a global trend is
present and that its slope is calculated for a particular resource, the time at
which the resource will be exhausted because of aging only, is estimated. Table
1 refers to several objects on Rossby and lists an estimate of the slope (change
per day) of the trend obtained by applying Sen’s slope estimate for data with
seasons [20]. The values for real memory and swap space are in Kilobytes.
A negative slope, as in the case of real memory, indicates a decreasing trend,
whereas a positive slope, as in the case of file table size, is indicative of an
increasing trend. Given the slope estimate, the table lists the estimated time to
failure of the machine due to aging only with respect to this particular resource.
The calculation of the time to exhaustion is done by using the standard linear
approximation

A comparative effect of aging on different system resources can be obtained
from the above estimates. Overall, it was found that file table size and process
table size are not as important as used swap space and real memory free since
they have a very small slope and high estimated times to failure due to ex-
haustion. Based on such comparisons, we can identify important resources to
monitor and manage in order to deal with aging related software failures. For
example, the resource used swap space has the highest slope and real memory
free has the second highest slope. However, real memory free has a lower time
to exhaustion than used swap space.

Time and workload-based estimation

The method discussed in the previous subsection assumes that accumulated
use of a resource over a time period depends only on the elapsed time. How-

170 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

ever, it is intuitive that the rate at which a resource is consumed is dependent
on the current workload. In this subsection, we discuss a measurement-based
model to estimate the rate of exhaustion of operating system resources as a
function of both time and the system workload [46]. The SNMP-based dis-
tributed resource monitoring tool described previously was used for collecting
operating system resource usage and system activity parameters (at 10 min in-
tervals) for over 3 months. Only results for the data collected from the machine
Rossby are discussed here. The longest stretch of sample points in which no
reboots or failures occurred were used for building the model. A semi-Markov
reward model [44] is constructed using the data. First different workload states
are identified using statistical cluster analysis and a state-space model is con-
structed. Corresponding to each resource, a reward function based on the rate
of resource exhaustion in the different states is then defined. Finally the model
is solved to obtain trends and the estimated exhaustion rates and time to ex-
haustion for the resources.

The following variables were chosen to characterize the system workload
- cpuContextSwitch, sysCall, pageIn, and pageOut. Hartigan’s k-means clus-
tering algorithm [25] was used for partitioning the data points into clusters
based on workload. The statistics for the eleven workload clusters obtained are
shown in Table 2. Clusters whose centroids were relatively close to each other
and those with a small percentage of data points in them, were merged to sim-
plify computations. The resulting clusters are

and

Transition probabilities from one state to another were computed from data,
resulting in transition probability matrix P of the embedded discrete time

Software Rejuvenation - Modeling and Analysis 171

Markov chain The sojourn time distribution for each of the workload states
was fitted to either 2-stage hyper-exponential or 2-stage hypo-exponential dis-
tribution functions. The fitted distributions were tested using the Kolmogorov-
Smirnov test at a significance level of 0.01.

Two resources, usedSwapSpace and realMemoryFree, are considered for
the analysis, since the previous time-based analysis suggested that they are
critical resources. For each resource, the reward function is defined as the
rate of corresponding resource exhaustion in different states. The true slope
(rate of increase/decrease) of a resource at every workload state is estimated
by using Sen’s non-parametric method [46]. Table 3 shows the slopes with
95% confidence intervals.

It was observed that slopes in a given workload state for a particular re-
source during different visits to that state are almost the same. Further, the
slopes across different workload states are different and generally higher the
system activity, higher is the resource utilization. This validates the assump-
tion that resource usage does depend on the system workload and the rates of
exhaustion vary with workload changes. It can also be observed from Table 3
that the slopes for usedSwapSpace in all the workload states are non-negative,
and the slopes for realMemoryFree are non-positive in all the workload states
except in one. It follows that usedSwapSpace increases whereas realMemo-
ryFree decreases over time which validates the software aging phenomenon.

The semi-Markov reward model was solved using the SHARPE tool [40]
developed by researchers at Duke University. The slope for the workload-
based estimation is computed as the expected reward rate in steady state from
the model. The times to resource exhaustion is computed as the job comple-
tion time (mean time to accumulate x amount of reward) of the Markov reward
model. Table 4 gives the estimates for the slope and time to exhaustion for

172 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

In this section, a measurement-based approach based on time-series analy-
sis to detect software aging and to estimate resource exhaustion times due to
aging in a web server is described [34]. The experiments are conducted on an
Apache web server running on the Linux platform. Before carrying out other
experiments, the capacity of the web server is determined so that the appro-
priate workload to use in the experiments can be decided. The capacity of the
web server was found to be around 390 requests/sec. In the next part of the
experiment, the web server was run without rejuvenation for a long time until
the performance degraded or until the server crashed. The requests were gen-
erated by httperf [37] to get one of five specified files from the server of sizes
500 bytes, 5KB, 50KB, 500KB and 5MB. The corresponding probabilities that
a given file is requested are: 0.35, 0.5, 0.14, 0.009 and 0.001, respectively.
During the period of running, the performance measured by the workload gen-
erator and system parameters collected by the Linux system monitoring tool,
procmon, were recorded.

The first data set was collected in a 7-day period with a connection rate of
350 requests/sec. The second set was collected in a 25-day period with con-
nection rate of 400 request/sec. During the experiment, we recorded more than
100 parameters, but for our modeling purposes, six representative parameters
pertaining to system resources were selected (Table 5). In addition to the six
system status parameters, the response time of the web server, recorded by

usedSwapSpace and realMemoryFree. It can be seen that workload based es-
timations gave a lower time to resource exhaustion than those computed using
time based estimations. Since the machine failures due to resource exhaus-
tion were observed much before the times to resource exhaustion estimated by
the time based method, it follows that the workload based approach results in
better estimations.

Time Series and ARMA Models

Software Rejuvenation - Modeling and Analysis 173

httperf on the client machine, is also included in the model as a measure of
performance of the web server.

After collecting the data, it needs to be analyzed to determine if software ag-
ing exists, which is indicated by degradation in performance of the web server
and/or exhaustion of system resources. The performance of the web server is
measured by response time which is the interval from the time a client sends
out the first byte of request until it receives the first byte of reply. Figure 10(a)
shows the plot of the response time in data set I. To identify the trend, the range
of y-axis is magnified (Figure 10(b)). The response time becomes longer with
the running time of the experiment. To determine whether the trend is just a
fluctuation due to noise or an essential characteristic of the data, a linear re-
gression model is used to fit the time series of the response time. The least
squares solution is where is response time in millisec-
onds, is the time from the beginning of the experiment. The 95% confidence
interval for the slope is (0.019, 0.036) ms/hour. Since the slope is positive, it
can be concluded that the performance of the web server is degrading.

Performing the same analysis to the parameters related to system resources,
it was found that the available resources are decreasing. Estimated slopes of
some of the parameters using linear regression model are listed in Table 6.

174 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

The parameters in data set II are used as the modeling objects since the du-
ration of data set II is longer than that of data set I. In this case, there are seven
parameters to be analyzed. The analysis can be done using two different ap-
proaches: (1) building a univariate model for each of the outputs or, 2) building
only one multivariate model with seven outputs. In this case, seven univariate
models are built and then combined into a single multivariate model. First,
the parameters are determined to determine their characteristics and build an
appropriate model with one output and four inputs for each parameter - connec-
tion rate, linear trend, periodic series with a period of one week, and periodic
series with a period of one day. The autocorrelation function (ACF) and the
partial autocorrelation function (PACF) for the output are computed. The ACF
and the PACF help us decide the appropriate model for the data [41]. For exam-
ple, from the ACF and PACF of used swap space it can be determined that an
autoregressive model of order 1 [AR(1)] is suitable for this data series. Adding
the inputs to the AR(1) model, we get the ARX(1) model for used swap space:

where is the used swap space, is the connection rate, is the time step
which represents the linear trend, is the weekly periodic series and is the
daily periodic series. After observing the ACF and PACF of all the parameters,
we find that all of the PACFs cut off at certain lags. So all the multiple input
single output (MISO) models are of the ARX type, only with different orders.
This gives great convenience in combining them into a multiple input multiple
output (MIMO) ARX model which is described later.

In order to combine the MISO ARX models into a MIMO ARX model, we
need to choose the order between different outputs. This is done by inspecting
the CCF (cross-correlation function) between each pair of the outputs to find
out the leading relationship between them. If the CCF between parameter A
and B gets its peak value at a positive lag we say that A leads B by steps
and it might be possible to use A to predict B. In our analysis, there are 21

Figure 10. Response time of the web server

Software Rejuvenation - Modeling and Analysis 175

CCFs that need to be computed. And in order to reduce the complexity, we
only use the CCFs that exhibit obvious leading relationship with lags less than
10 steps. The next step after determination of the orders is to estimate the
coefficients of the model by the least squares method. The first half of the data
is used to estimate the parameters and the rest of the data is then used to verify
the model. Figure 11 shows the two-hour-ahead (24-step) predicted used swap

In [6] a model is developed to account for the gradual loss of system re-
sources, especially, the memory resource. In a client-server system, for ex-
ample, every client process issues memory requests at varying points in time.
An amount of memory is granted to each new request (when there is enough
memory available), held by the requesting process for a period of time, and
presumably released back to the system resource reservoir when it is no longer
in use. A memory leak occurs when the amount of allocated memory is not
fully released. The available memory space is gradually reduced as such re-
source leaks accumulate over time. As a consequence, a resource request that
would have been granted in the leak-less situation may not be granted when the
system suffers from memory resource leaks. This model accommodates both
the leak-free case and the leak-present case. The model relates system degra-
dation to resource requests, releases or resource holding intervals and memory
leaks. These quantities can be monitored and modeled directly from obtainable
data measurements [34].

Figure 11. Measured and two-hour ahead predicted used swap space

space which is computed using the established model and the data measured
up to two hours before the predicted time point. From the plots, we can see
that the predicted values are very close to the measured values.

Explicit link between resource leaks and software aging

176 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

An operating software system is modeled as a continuous time Markov
chain (CTMC). The ideal, leak-free case is shown in Figure 12.

Figure 12. Leak-free model of a system

Denote by M the initial total amount of available memory. The memory
unit is application-specific. The system is in workload state when
there are independent processes holding a portion of the resource. The total
number of states is practically finite. It is assumed that the memory requests
are independent of each other and arrive from a Poisson process with rate
A request is granted when sufficient memory is available, else the system is
considered to have failed. In other words, each incoming request may cause
the system to transit to the sink state when it asks for more memory than the
available amount. Denote by the conditional probability that the system
fails in state upon the arrival of a new request. The amount of each memory
request is modeled as a continuous random variable with the density function

The allocated resource is held for a random period of time, which is
dependent upon the processing or service rate and determines the resource re-
lease rate. When the holding time per request is exponentially distributed with
rate the release rate at state is equal to Here, the time unit is also
application-specific.

Provided with the specification of the leak-free model, one can derive sys-
tem failure rate and the system reliability
Conversely, given a specified requirement on system reliability, the model can
be used to derive a lower bound on the total amount M of system resource to
meet this requirement.

In a system with a leak present, the conditional probability that the system
transits to the sink state from state upon a new request becomes leak depen-
dent and hence time dependent. The memory leak function is related to
the system failure via the variable of available resource amount. The variable
is bounded from above by the total amount M of the system resource. The
failure rate of a leak-present system with the initial amount M of available
memory, is denoted by

The first commercial version of a software rejuvenation agent (SRA) for the
IBM xSeries line of cluster servers has been implemented with our collabora-
tion [11, 30, 47]. The SRA was designed to monitor consumable resources, es-
timate the time to exhaustion of those resources, and generate alerts to the man-
agement infrastructure when the time to exhaustion is less than a user-defined
notification horizon. For Windows operating systems, the SRA acquires data
on exhaustible resources by reading the registry performance counters and col-
lecting parameters such as available bytes, committed bytes, non-paged pool,
paged pool, handles, threads, semaphores, mutexes, and logical disk utiliza-
tion. For Linux, the agent accesses the /proc directory structure and collects
equivalent parameters such as memory utilization, swap space, file descriptors
and inodes. All collected parameters are logged on to disk. They are also
stored in memory preparatory to time-to-exhaustion analysis.

In the current version of the SRA, rejuvenation can be based on elapsed time
since the last rejuvenation, or on prediction of impending exhaustion. When
using Timed Rejuvenation, a user interface is used to schedule and perform
rejuvenation at a period specified by the user. It allows the user to select when
to rejuvenate different nodes of the cluster, and to select “blackout” times dur-
ing which no rejuvenation is to be allowed. Predictive Rejuvenation relies on
curve-fitting analysis and projection of the utilization of key resources, using
recently observed data. The projected data is compared to prespecified upper
and lower exhaustion thresholds, within a notification time horizon. The user
specifies the notification horizon and the parameters to be monitored (some
parameters believed to be highly indicative are always monitored by default),
and the agent periodically samples the data and performs the analysis. The pre-
diction algorithm fits several types of curves to the data in the fitting window.
These different curve types have been selected for their ability to capture differ-
ent types of temporal trends. A model-selection criterion is applied to choose
the “best” prediction curve, which is then extrapolated to the user-specified
horizon. The several parameters that are indicative of resource exhaustion are
monitored and extrapolated independently. If any monitored parameter ex-
ceeds the specified minimum or maximum value within the horizon, a request
to rejuvenate is sent to the management infrastructure. In most cases, it is also
possible to identify which process is consuming the preponderance of the re-
source being exhausted, in order to support selective rejuvenation of just the
offending process or a group of processes.

Software Rejuvenation - Modeling and Analysis 177

5. Implementation of a Software Rejuvenation Agent

6. Approaches and Methods of Software Rejuvenation

Software rejuvenation can be divided broadly into two approaches as fol-
lows:

Open-loop approach: In this approach, rejuvenation is performed with-
out any feedback from the system. Rejuvenation in this case, can be
based just on elapsed time (periodic rejuvenation) [29, 16] and/or in-
stantaneous/cumulative number of jobs on the system [19].

Closed-loop approach: In the closed-loop approach, rejuvenation is
performed based on information on the system “health”. The system
is monitored continuously (in practice, at small deterministic intervals)
and data is collected on the operating system resource usage and system
activity. This data is then analyzed to estimate time to exhaustion of a
resource which may lead to a component or an entire system degrada-
tion/crash. This estimation can be based purely on time, and workload-
independent [20, 11] or can be based on both time and system workload
[46].

The closed-loop approach can be further classified based on whether the
data analysis is done off-line or on-line. Off-line data analysis is done
based on system data collected over a period of time (usually weeks or
months). The analysis is done to estimate time to rejuvenation. This off-
line analysis approach is best suited for systems whose behavior is fairly
deterministic. The on-line closed-loop approach, on the other hand, per-
forms on-line analysis of system data collected at deterministic intervals.
Another approach to estimate the optimal time to rejuvenation could be
based on system failure data [14]. This approach is more suited for off-
line data analysis.

Figure 13. Approaches to software rejuvenation

This classification of approaches to rejuvenation is shown in Figure 13.

178 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

Rejuvenation is a very general proactive fault management approach and
can be performed at different levels - the system level or the application level.
An example of a system level rejuvenation is a hardware-reboot. At the appli-
cation level, rejuvenation is performed by stopping and restarting a particular
offending application, process or a group of processes. This is also known as a
partial rejuvenation. The above rejuvenation approaches when performed on
a single node can lead to undesired and often costly downtime. Rejuvenation
has been recently extended for cluster systems, in which two or more nodes
work together as a single system [11, 47]. In this case, rejuvenation can be
performed by causing no or minimal downtime by failing over applications to
another spare node.

Software Rejuvenation - Modeling and Analysis 179

7. Conclusions

In this paper, we classified software faults based on an extension of Gray’s
classification and discussed the various techniques to deal with them. Atten-
tion was devoted to software rejuvenation, a proactive technique to counteract
the phenomenon of software aging. Various analytical models for software ag-
ing and to determine optimal times to perform rejuvenation were described.
Measurement-based models based on data collected from operating systems
were also discussed. The implementation of a software rejuvenation agent in
a major commercial server was then briefly described. Finally, various ap-
proaches to rejuvenation and rejuvenation granularity were discussed.

In the measurement-based models presented in this paper, only aging due
to each individual resource has been captured. In the future, one could im-
prove the algorithm used for aging detection to involve multiple parameters
simultaneously, for better prediction capability and reduced false alarms. De-
pendences between the various system parameters could be studied. The best
statistical data analysis method for a given system is also yet to be determined.

Notes

1. Although we use the by-now-established phrase “software aging”, it should be clear that no deteri-
oration of the software system per se is implied but rather, the software appears to age due to the gradual
depletion of resources [6]. Likewise, “software rejuvenation” actually refers to rejuvenation of the environ-
ment in which the software is executing.

2. identical copies

References

[1]

[2]

E. Adams. Optimizing Preventive Service of the Software Products. IBM Journal of R&D,
28(1):2-14, January 1984.

P. E. Amman and J. C. Knight. Data Diversity: An Approach to Software Fault Tolerance.
In Proc. of 17th Int’l. Symposium on Fault Tolerant Computing, pages 122-126, June 1987.

A. Avritzer and E. J. Weyuker. Monitoring Smoothly Degrading Systems for Increased
Dependability. Empirical Software Eng. Journal, Vol.2, No.1, pages 59-77, 1997.

A. Avizienis and L. Chen. On the Implementation of N-version Programming for Soft-
ware Fault Tolerance During Execution. In Proc. IEEE COMPSAC 77, pages 149-155,
November 1977.

A. Avizienis, J-C. Laprie and B. Randell. Fundamental Concepts of Dependability LAAS
Technical Report No. 01-145, LAAS, France, April 2001.

Y. Bao, X. Sun and K. Trivedi. Adaptive Software Rejuvenation: Degradation Models
and Rejuvenation Schemes. In Proc. of The Int’l. Conference on Dependable Systems and
Networks, DSN-2003 June 2003.

L. Bernstein. Text of Seminar Delivered by Mr. Bernstein. University Learning Center,
George Mason University, January 29, 1996.

A. Bobbio, A. Sereno and C. Anglano. Fine grained software degradation models for
optimal rejuvenation policies. Performance Evaluation, Vol. 46, pp 45-62, 2001.

T. Boyd and P. Dasgupta Premptive Module Replacement Using the Virtualizing Operating
System In Proc. of the Workshop on self-healing, adaptive and self-managed systems,
SHAMAN 2002, New York, NY, June 2002.

K. Cassidy, K. Gross and A. Malekpour. Advanced Pattern Recognition for Detection of
Complex Software Aging in Online Transaction Processing Servers. In Proc. of DSN 2002,
Washington D.C., June 2002.

V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan
and W. Zeggert. Proactive Management of Software Aging. IBM Journal of Research &
Development, Vol. 45, No.2, March 2001.

R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of Failure Rate in Widely Dis-
tributed Software. In Proc. of 25th IEEE Int’l. Symposium on Fault Tolerant Computing,
pages 424–433, Pasadena, CA, July 1995.

T. Dohi, K. Goseva–Popstojanova and K. S. Trivedi. Analysis of Software Cost Models
with Rejuvenation. In Proc. of the 5th IEEE International Symposium on High Assurance
Systems Engineering, HASE 2000, Albuquerque, NM, Nov. 2000.

T. Dohi, K. Goseva–Popstojanova and K. S. Trivedi. Statistical Non-Parametric Algo-
rithms to Estimate the Optimal Software Rejuvenation Schedule. Proc. of the 2000 Pacific
Rim International Symposium on Dependable Computing, PRDC 2000, Los Angeles, CA,
Dec. 2000.

C. Fetzer and K. Hostedt Rejuvenation and Failure Detection in Partitionable Systems In
Proc. of the Pacific Rim Int’l. Symposium on Dependable Computing, PRDC 2001, Seoul,
South Korea, December 2001.

S. Garg, A. Puliafito and K. S. Trivedi. Analysis of Software Rejuvenation Using Markov
Regenerative Stochastic Petri Net. In Proc. of the Sixth Int’l. Symposium on Software
Reliability Engineering, pages 180-187, Toulouse, France, October 1995.

S. Garg, Y. Huang, C. Kintala and K. S. Trivedi. Time and Load Based Software Rejuve-
nation: Policy, Evaluation and Optimality. In Proc. of the First Fault-Tolerant Symposium,
Madras, India, December 1995.

S. Garg, Y. Huang and C. Kintala, K.S. Trivedi, Minimizing Completion Time of a Pro-
gram by Checkpointing and Rejuvenation. Proc. 1996 ACM SIGMETRICS Conference,
Philadelphia, PA, pp. 252-261, May 1996.

180 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Analysis of Preventive Maintenance in
Transactions Based Software Systems. IEEE Trans. on Computers, pages 96-107, Vol. 47,
No. 1, January 1998.

S. Garg, A. van Moorsel, K. Vaidyanathan, K. Trivedi. A Methodology for Detection and
Estimation of Software Aging. In Proc. of 9th Int’l. Symposium on Software Reliability
Engineering, pages 282-292, Paderborn, Germany, November 1998.

S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi and S. Yagnik. Performance and Re-
liability Evaluation of Passive Replication Scheme s in Application Level Fault Tolerance.
In Proc. of the Fault Tolerant Computing Symp., FTCS 1999, Madison, WI, pp. 322-329,
June 1999.

J. Gray. Why do Computers Stop and What Can be Done About it? In Proc. of 5th Sym-
posium on Reliability in Distributed Software and Database Systems, pages 3-12, January
1986.

J. Gray. A Census of Tandem System Availability Between 1985 and 1990. IEEE Trans.
on Reliability, 39:409-418, October 1990.

J. Gray and D. P. Siewiorek. High-availability Computer Systems. IEEE Computer, pages
39–48, September 1991.

J. A. Hartigan. Clustering Algorithms. New York:Wiley, 1975.

C. Hirel, B. Tuffin and K. S. Trivedi. SPNP: Stochastic Petri Net Package. Version 6.0.
B. R. Haverkort et al. (eds.): TOOLS 2000, Lecture Notes in Computer Science 1786, pp
354-357, Springer-Verlag Heidelberg, 2000.

Y. Hong, D. Chen, L. Li and K.S. Trivedi. Closed Loop Design for Software Rejuvenation
In Proc. of the Workshop on self-healing, adaptive and self-managed systems, SHAMAN
2002, New York, NY, June 2002.

Y. Huang, P. Jalote, and C. Kintala. Lecture Notes in Computer Science, Vol. 774, Two
techniques for transient software error recovery, pages 159–170. Springer Verlag, Berlin,
1994.

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software Rejuvenation: Analysis,
Module and Applications. In Proc. of 25th Symposium on Fault Tolerant Computing,
FTCS-25, pages 381–390, Pasadena, California, June 1995.

IBM Netfinity Director Software Rejuvenation - White Paper. IBM Corp., Research Tri-
angle Park, NC, Jan 2001.

P. Jalote, Y. Huang, and C. Kintala. A Framework for Understanding and Handling Tran-
sient Software Failures. In Proc. 2nd ISSAT Int’l. Conf. on Reliability and Quality in
Design, Orlando, FL, 1995.

J. C. Knight and N. G. Leveson. An Experimental Evaluation of the Assumption of In-
dependence in Multiversion Programming Software Engineering Journal, pages 96-109,
Vol. 12, No. 1, 1986.

I. Lee and R. K. Iyer. Software Dependability in the Tandem GUARDIAN System. IEEE
Trans. on Software Engineering, pages 455-467, Vol. 21, No. 5, May 1995.

L. Li, K. Vaidyanathan and K. S. Trivedi. An Approach to Estimation of Software Aging
in a Web Server. In Proc. of the Int’l. Symp. on Empirical Software Engineering, ISESE
2002, Nara, Japan, October 2002.

Y. Liu, Y. Ma, J.J. Han, H. Levendel and K.S. Trivedi. Modeling and Analysis of Soft-
ware Rejuvenation in Cable Modem Termination System. In Proc. of the Int’l. Symp. on
Software Reliability Engineering, ISSRE 2002, Annapolis, MD, November 2002.

Software Rejuvenation - Modeling and Analysis 181

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

E. Marshall. Fatal Error: How Patriot Overlooked a Scud. Science, page 1347, March 13,
1992.

D. Mosberger and T. Jin. Httperf - A Tool for Measuring Web Server Performance In First
Workshop on Internet Server Performance, WISP, Madison, WI, pp.59-67, June 1998.

A. Pfening, S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. Optimal Rejuvenation for
Tolerating Soft Failures. Performance Evaluation, 27 & 28, pages 491-506, October 1996.

S. M. Ross. Stochastic Processes. John Wiley & Sons, New York, 1983.

R. A. Sahner, K. S. Trivedi, A. Puliafito. Performance and Reliability Analysis of Com-
puter Systems - An Example-Based Approach Using the SHARPE Software Package.
Kluwer Academic Publishers, Norwell, MA, 1996.

R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications, Springer-
Verlag, New York, 2000.

M. Sullivan and R. Chillarege. Software Defects and Their Impact on System Availability
- A Study of Field Failures in Operating Systems. In Proc. 21st IEEE Int’l. Symposium on
Fault-Tolerant Computing, pages 2–9, 1991.

A. T. Tai, S. N. Chau, L. Alkalaj and H. Hecht. On-Board Preventive Maintenance: Anal-
ysis of Effectiveness and Optimal Duty Period. In 3rd Int’l. Workshop on Object Oriented
Real-time Dependable Systems, Newport Beach, CA, February 1997.

K. S. Trivedi, J. Muppala, S. Woolet and B. R. Haverkort. Composite Performance and
Dependability Analysis. Performance Evaluation, Vol. 14, nos. 3-4, pp. 197-216, February
1992.

K. S. Trivedi. Probability and Statistics, with Reliability, Queuing and Computer Science
Applications, 2nd edition. John Wiley, 2001.

K. Vaidyanathan and K. S. Trivedi. A Measurement-Based Model for Estimation of Re-
source Exhaustion in Operational Software Systems. In Proc. of the Tenth IEEE Int’l. Sym-
posium on Software Reliability Engineering, pages 84-93, Boca Raton, Florida, November
1999.

K. Vaidyanathan, R. E. Harper, S. W. Hunter, K. S. Trivedi. Analysis and Implementation
of Software Rejuvenation in Cluster Systems. In Proc. of the Joint Int’l. Conference on
Measurement and Modeling of Computer Systems, ACM SIGMETRICS 2001/Performance
2001, Cambridge, MA, June 2001.

http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/
default.mspx

http://www.apache.org

182 Kishor S. Trivedi, Kalyanaraman Vaidy Anathan

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

