
The Designers’ Workbench: Using
Ontologies and Constraints for

Configuration

David W. Fowler

University of Aberdeen

Aberdeen, UK

Derek Sleeman

University of Aberdeen

Aberdeen, UK

Gary Wills

University of Southampton

Southampton, UK

Terry Lyon

Rolls-Royce plc

Derby, UK

David Knott

Rolls-Royce plc

Derby, UK

Abstract

Typically, complex engineering artifacts are designed by teams who may
not all be located in the same building or even city. Additionally, besides
having to design a part of an artifact to be consistent with the specifica-
tion, it must also be consistent with the company’s design standards.

The Designers’ Workbench supports designers by checking that their
configurations satisfy both physical and organisational constraints. The
system uses an ontology to describe the available elements in a config-
uration task. Configurations are composed of features, which can be
geometric or nongeometric, physical or abstract. Designers can select
a class of feature (e.g. Bolt) from the ontology, and add an instance of
that class (e.g. a particular bolt) to their configuration. Properties of the
instance can express the parameters of the feature (e.g. the size of the
bolt), and also describe connections to other features (e.g. what parts the
bolt is used to hold together).

1 Background

Engineering designers typically have to find configurations of parts that im-
plement a particular function. The engineering design process is constraint
orientated, and requires the recognition, formulation and satisfaction of con-
straints [LC02]. To assist designers, most organisations have built up a large
number of design rules and standards, usually held as large volumes of text.
Designers must try to ensure that their configurations satisfy these constraints,
but it is often easy to overlook some. Novice designers often have a hard task
in learning the constraints. On occasion, constraints may be modified or be-
come obsolete. Also, new constraints may be added. In practice, it is often
hard to find which constraints apply in a given situation. Additionally, in a
collaborative environment, where many designers are working on subsections
of a common component, it is common for changes made by one designer to
affect the options available to another, but for this to go unnoticed until much
later, causing expensive and time consuming redesigns.

1



It would clearly be useful to have some way of automating the design check-
ing process, so that all applicable constraints are checked, without the designer
having to manually initiate a search for the constraints. In our approach, we
use an ontology to describe the available features and check the constraints au-
tomatically. A constraint is specified by the conditions of applicability (which
types of features it applies to), and the logical or mathematical expression that
allows a constraint check to be performed.

2 Aims of Designers’ Workbench

The Designers’ Workbench deals mainly with problems that lie in the domain
of configuration. Mittal and Frayman [MF89] define a configuration problem
as selecting parts from an existing set of types, and connecting them using
specified ports in such a way that certain constraints are satisfied and that
particular functions can be performed by the resulting configuration. Brown
[Bro98] discusses the adequacy of this definition. For our purposes, we will
assume that ports can be described by properties of a feature, so that “normal”
properties may have values that are simple data values to further describe the
feature, whereas “port” properties have values that are other features. For an
example, consider a class corresponding to bolts. An instance of this class will
have properties that describe the size and shape of the bolt (real numbers or
integers). There will also be properties that have values that are instances of
other classes — for example, the has_material property might have a value
steel, an instance of the Material class.

The current version of Designers’ Workbench allows designers to build a
configuration and to check that all the appropriate constraints hold. We have
used the term features, rather than parts or components, as we wish to em-
phasise the fact that features can be abstract entities (such as temperatures,
holes in other features, etc). Brown [Bro02] discusses a large number of differ-
ent uses of the word “feature”, including functional features that we are also
interested in. The designer can select a feature class from an ontology, and add
an instance of it to the configuration. Each instance can have properties that
are defined for the class that it belongs to. The properties that are defined for
a particular type of feature can be of two kinds: datatype (integers, strings,
reals etc), which are parameters of the feature; and objecttype (other feature
instances), which correspond to ports (connections to other features).

In a real engineering situation there may be many thousands of constraints,
which means that it is easy to overlook some of them. We define constraints as
generic, in that they apply to particular types of subconfigurations of features,
rather than to specific features. It is not necessary to have any actual features
defined before defining a constraint. For example, there may be a constraint
that applies to neighbouring features such that if feature X is made of metal A,
and feature Y is made of metal B, then the features are incompatible. This con-
straint could be added without any knowledge that such a pair of features exists
in a design. Constraint checking becomes a process of finding such subconfigu-



rations and checking that they satisfy the constraints. We have concentrated on
checking that constraints are satisfied by a configuration produced by a human
designer, rather than finding a solution. This has implications for tractability,
in that solving a CSP is an NP-complete problem, whereas checking a solution
can be done in polynomial time. The system has been implemented so that
the human designer is free to use his or her engineering expertise to override
constraints that are not deemed applicable to the current situation.

3 Related work

In this section we examine some approaches to the configuration problem, di-
viding them according to whether they use constraints, or ontologies, or both.
A general introduction to constraints can be found in [Kum92], and [CJB99] is
an introduction to ontologies.

3.1 Constraint-based approaches

Bowen et al. [BOS90] describe a constraint based language, LEO, which enables
parts of a design to be represented as a collection of variables, with domains that
are not necessarily finite (for example, rational numbers or reals). The system
allows constraints to be specified over these variables. Constraint checking,
rather than solving, is preferred, because:

A constraint monitoring system . . . allows the designer to exercise
his creativity, while relieving him of the drudgery of making many
routine inferences and checks, thereby ensuring that the design
choices he makes are consistent with good performance in all sig-
nificant aspects of the product’s life cycle. Furthermore, constraint
monitoring is less expensive, computationally, than constraint sat-
isfaction. [BOS90]

A disadvantage of this approach, from the perspective of configuration,
is that all variables must be declared at the outset. Also, the variables are
not structured using classes. Variables corresponding to properties of features
must be declared individually, whereas a structured system would associate
properties with each feature class, and declare them automatically.

Mittal and Falkenhainer [MF90] introduce Dynamic Constraint Satisfac-
tion Problems (DCSPs), for representing and solving configuration problems.
A DCSP is similar to a CSP in that it consists of variables with prespecified
finite domains, together with constraints that specify which values particular
subsets of variables may take simultaneously. In addition, a DCSP variable
may be active or inactive, and may switch during search. As well as standard
constraints on variables, activity constraints may require that variables become
active or inactive, dependent on the values (or activity) of other variables. For
example, in a car configuration problem, variables Package and Sunroof might
have domains {luxury, deluxe, standard} and {sr1,sr2} respectively. An



activity constraint might require that if Package=luxury then Sunroof must
be active (and can take a value from its domain). In this way, non-luxury
cars will not have sunroofs, whereas luxury cars will have a choice of two sun-
roof types. “Normal” constraints (corresponding to CSP constraints) are only
enforced on currently active variables. Algorithms are given to solve DCSPs.
One disadvantage is that all variables must be specified in advance, making it
awkward to represent problems whose solution may require several of the same
type of component. For example, a configuration might require many bolts, but
the exact number is not known before searching for a solution. Using a DCSP
would require the declaration of a variable for every bolt that might possibly
be needed.

Sabin and Freuder [SF96] define composite CSPs which allow configuration
problems to be represented in a hierarchical fashion. In a composite CSP, some
variables can be assigned a subproblem, rather than a simple value. In this way,
components can be selected at a higher level, before being specified in terms of
subassemblies. The example used in [SF96] is also car configuration. The car
is divided hierarchically: for example, the power plant system is divided into
an engine, exhaust system, electrical system, and so on. Each of these can be
represented by a variable that has a domain that is a subproblem. For instance,
the engine variable could have a domain that has two values, gasoline engine
and diesel engine. During search, if one of these values is selected, a subproblem
will need to be solved, containing variables such as pistons, rods, valves, etc.
An advantage of the approach is that existing CSP search algorithms can be
easily adapted to solve composite CSPs, by dynamically adding and retracting
variables and constraints as required.

3.2 Ontology-based approaches

Lin et al. [LFB96] give an ontology for describing products. The main decompo-
sition is into parts, features, and parameters. Parts are defined as “a component
of the artifact being designed”. Features are associated with parts, and can be
either geometrical or functional (among others). Examples of geometrical fea-
tures include holes, slots, channels, grooves, bosses, pads, etc. A functional
feature describes the purpose of another feature or part. Parameters are prop-
erties of features or parts, for example: weight, colour, material. Classes of
parts and features are organised into an inheritance hierarchy. Instances of
parts and features are connected with properties component of, feature of, and
subfeature of.

McGuinness and Wright [MW98] describe the application of a description
logic to configuration. Concepts can be defined, corresponding to the classes of
an ontology, and individuals correspond to instances. The use of a description
logic enables consistency checks to be made quickly. Forward chaining rules
can be defined, which are “associated with concepts, but are applied only to
individuals”. These rules are used to enforce constraints that are generic, i.e.
defined over classes of objects, rather than over specific objects.



3.3 Combining constraints and ontologies

Stumptner et al. [SFH98] introduce an extension of CSP, Generative CSP,
which uses complex variables, each of which has an associated type. The type
of a variable determines its attributes (datatype properties), and its ports (ob-
jecttype properties). The types are formed into a simple hierarchy. The con-
straints here include activation constraints and compatibility constraints, in-
troduced by Mittal and Falkenhainer [MF90]. In addition, resource constraints
are used, being global constraints over all variables of a particular type.

Junker and Mailharro [JM03] describe a system, ILOG Configurator, that
combines the power of description logic (to describe the parts used in a con-
figuration), with constraint programming (to solve the configuration problem).
The description logic uses classes that are either abstract or concrete. Con-
crete classes are the leaf classes of the ontology, corresponding to actual parts.
Abstract classes are the nonleaf classes. Properties are used to describe the
instances of a class. Alternative methods can be used to specify the instances
that can be part of a solution, ranging from an explicit list of instances, to
an implicit list, where instances can be freely chosen from an infinite universe
of instances. Generic constraints can be defined in a constraint language that
allows numeric and symbolic constraints. To solve a configuration problem, a
description logic representation of the class hierarchy and the constraints are
converted into a constraint satisfaction problem.

Laburthe [Lab03] extends CSPs to cases where variables have domains that
are taken from a hierarchy. This differs from the approach of the Designers’
Workbench (as well as that of [MW98] and [JM03] described above) in that we
are concerned with constraints over values of properties of instances (ultimately
datatype values). Laburthe’s approach aims to find the entities in a hierarchy
that will satisfy the constraints. It is possible that this approach could be used
to find suitable types for elements of a configuration.

4 An illustrative example

To illustrate the use of an ontology to describe a configuration, we will use the
simple ontology whose class hierarchy is shown in Figure 1. We have used the
concept of feature as the root of the ontology. Features have then been divided
into concrete features (those that have a material), and abstract features (holes,
temperatures, etc).

Using this ontology, we can describe the simple arrangement of a bolted
joint shown in Figure 2, subject to a particular environmental temperature.
This is shown in Figure 3. Example constraints might include:

• Any concrete feature must have a material with a higher operating tem-
perature than the prevailing environmental temperature;

• The length of the bolt in a bolted joint must exceed the sum of the
thicknesses of the clamped parts, plus the height of the nut. Note that
for simplicity, we have ignored issues such as tolerances of dimensions,



Feature

Concrete feature Abstract Feature

Bolt Nut Clamped part Material

Self-locking nut

Environmental
temperature

Figure 1: The class hierarchy of a simple configuration ontology

Figure 2: A bolted joint [image from French, Vierck and Foster, “Engineering
Drawing and Graphics Technology”, McGraw-Hill Inc.]

Figure 3: A configuration using the ontology



although this can be dealt with, for example by defining a Measurement

class of feature, with a real valued properties dimension and tolerance.

The first constraint will apply to all features that have a has_material

property and an environmental_temperature property defined. The second
constraint is more complicated, and applies to all bolts, nuts, and clamped
parts that are part of a bolted joint.

5 Functionality

An ontology written in DAML+OIL [DAM] describes available feature types.
In the Designers’ Workbench, the designer can select a feature class from the
ontology and create an instance of that class. The property values of the
instance can then be filled in: datatype values by literals of the appropriate
type, and object type values by selecting an instance from a list of all instances
of the appropriate type.

Constraints are handled in a two stage process:

• Identify feature values that should be constrained;

• Formulate a tuple(s) of values for each set of feature values, and check
that the constraint is satisfied by these values.

The constraint processing uses RDQL (RDF Query Language) [JEN] to find
the constrained features. A disadvantage of using RDQL is that it cannot return
arbitrary numbers of values from a query, making constraints on arbitrary
numbers of features impossible to express. For example, the constraint on the
sum of thicknesses of clamped parts cannot be expressed. To get around this,
it is possible to have separate constraints for 1, 2, 3, ..., n parts, where n is some
arbitrary number, but this is clearly not ideal. Part of the future work will be
to investigate other query languages or mechanisms to overcome this difficulty.

After using RDQL to extract the values that are constrained, SICStus Pro-
log [Swe03] is used for the process of checking that the constraints hold.

The RDQL query that locates features affected by the material temperature
constraint is:

SELECT ?arg1,?arg2 WHERE

(?feature,<dwOnto:has_material>,?mat),

(?mat,<dwOnto:max_operating_temp>,?arg1),

(?feature,<dwOnto:operating_temp>,?optemp),

(?optemp,<dwOnto:temperature>,?arg2)

USING dwOnto FOR <namespace>

The values of the returned variables ?arg1 and ?arg2 are the maximum
operating temperature of the material of the feature, and the current operating
temperature, respectively. The check that the values must satisfy is represented
by the SICStus predicate



Figure 4: The Designers’ Workbench

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-

EnvironTemp =< MaterialMaxTemp.

Using the values of ?arg1 and ?arg2, the query

op_temp_limit(MaterialMaxTemp, EnvironTemp).

is formed, and checked. This process is repeated for each set of values
returned by the RDQL query, and for each constraint that has been specified.

6 Additional features of the Designers’
Workbench

A screenshot of the Designers’ Workbench is shown in Figure 4, with closeups of
the main panels in Figure 5. In this section, we describe the system’s additional
features.

6.1 Graph-based display of configuration

In the current implementation of Designers’ Workbench, the designer can im-
port a drawing and annotate it with features. The drawing is really a visual aid



Figure 5: Closeups of the Designers’ Workbench panels: the feature ontology
(left), and properties of selected feature (right)

— the designer can “mark up” an existing drawing or construct a configuration
without a drawing. Features can be selected from an ontology. Features that
are added by the designer are shown as labels overlaying the background draw-
ing. Properties that connect features are represented by arcs. Features can be
selected, and their properties viewed and modified using the table displayed be-
neath the ontology. Datatype properties are set by typing values into the field,
whereas object properties are set using a drop down list of values representing
the valid possibilities for the property. For example, if the property has_bolt

is specified to have range of class Bolt, the list will consist only of instances
of Bolt.

6.2 Checking incomplete configurations

Before checking constraints, it is not necessary to specify values for every de-
fined property of every feature. Instead, the designer can fill in values for
whichever properties he or she desires, and request a constraint check. The
RDQL query will only return results for the features that have sufficient values
specified, so that only certain constraints will be checked. This allows designers
to operate in an exploratory way, defining small parts of a configuration, check-
ing them, and then gradually extending the configuration until it is complete.

6.3 Constraint rationales

Each constraint has an associated rationale (currently a short text string, but
which in future may have more structure), and an (optional) URI for a source
document explaining the rationale in more depth. When a constraint violation
is reported, the designer is presented with a list of the features involved in
the violation, the rationale, and link that can be clicked on to read the source
document. In this way, the designer can learn more about the constraint, and
decide if it is in fact appropriate. As the constraint checking proceeds, an
experienced designer may decide to override the constraint.



7 Preliminary evaluation

In order to get feedback on the Designers’ Workbench an informal interview
was carried out with an engineer with six years experience at Rolls-Royce.
The format of the interview was: an overview of the system was given by the
developer, followed by the engineer attempting a series of tasks, and finally a
discussion of the pros and cons of the system took place. The main findings
were:

1. the interface was intuitive to use, although some details needed to be
refined (for example, the exercise revealed some mismatches between the
original ontology and the domain);

2. it was reasonably straightforward to add features to a design, although
the engineer would have preferred textual items rather than icons. This
could be implemented as an option that the user can set as required;

3. the engineer prefers that constraint checks are performed automatically,
and an error message pops up, rather than the current arrangement of the
user requesting that constraint checks be performed. Again, this could
be an option that the user could enable or disable as required;

4. the engineer requested an additional feature, namely that links to previous
designs or documents referring to similar features or issues be provided,
enabling the user to find relevant past material quickly. Currently, pre-
vious designs or documents can be searched, but only by a text-based
search;

5. the engineer did not currently use software that provides the same func-
tionality as the Designers’ Workbench.

Clearly, point 4 provides the most challenge. To find previous documents
relating to particular features will require that the documents are annotated
with reference to the same ontology as used by the Designers’ Workbench. This
means that authors of these documents must be provided with editors that will
enable them to make these annotations as painlessly and as automatically as
possible.

8 Future work

The Designers’ Workbench is still at an early stage of development. In this
section we describe some possible future avenues of research.

8.1 Propagation of values

A useful feature would be to reflect the designers’ choices by maintaining do-
mains for property values, and reducing them by removing values that are
incompatible with the constraints. A problem arises here: a designer may have



only tentatively selected a value for a particular property, and may deliberately
wish to select an incompatible value for another property. A possible solution
would be to display all the values in the domains for the designer to choose
from, but highlight in some way the values that are incompatible with the cur-
rently selected values for other properties. The implementation of this feature
will require the use of the constraint solving libraries of SICStus to maintain
variable domains and perform propagation, rather than the simple predicate
checking that is used currently.

8.2 Functional descriptions

The current version of Designers’ Workbench does not deal explicitly with
the functions of features. (Functions have been described using ontologies by
Iwasaki et al. [IFVC93] and Kitamura et al. [KSNM02].) Nor does it deal with
the various possible different states of features; for example, a shaft will have to
operate successfully at different temperatures, pressures and rotational speeds.
Adding functions to the Designers’ Workbench will allow users to specify the
intended functions of each feature, or group of features. Using an ontology of
functions should allow for a fairly straightforward integration with the current
system.

8.3 Design rationale storage (argumentation)

It would be very useful to capture and store the reasoning that the designer
performs during the configuration process (design rationale capture). More
details on processing design rationales can be found in [BS96] and [BW03].
Designers can examine current and past solutions to find out the reasons for
particular decisions, why alternatives were discarded, and avoid repeating past
mistakes.

8.4 Constraint input

To add a new constraint currently requires coding a query in RDQL, and a
predicate in SICStus Prolog. This is quite a laborious task, and can only
be done by a programmer. It would be useful if a new constraint could be
formulated in an intuitive way, by selecting classes and properties from the
ontology, and somehow combining them using a predefined set of operators.
This would enable designers to have control over the definition and refinement
of constraints, and presumably to be able to have greater trust in the results
of constraint checks. We also intend to investigate alternative approaches to
the underlying representation and querying of constraints. It is likely that the
mixed RDQL/Prolog method may be replaced by a single framework, possibly
Colan/CIF [GHP01].



8.5 Ontology change

Occasionally the available features described in the ontology may have to be
increased (new parts or techniques become available), or decreased (obsolete
parts removed). It is also possible that extensive changes may be made to
naming conventions, or the arrangement of the feature class hierarchy. It is
important to ensure that:

• previous designs can still be accessed using Designers’ Workbench (pos-
sibly by recording the original ontology as part of each design);

• that existing constraints can be kept up to date.

A constraint that is defined on a class of features will automatically apply
to a new subclass of that class. The problem of removals can be overcome
by retaining the class, but flagging it in some way as obsolete. The most
difficult situation will be the restructuring of a class hierarchy, which may
require complex processing to ensure that existing constraints will still apply
where necessary.

9 Summary

The Designers’ Workbench allows designers to specify a configuration by se-
lecting features from an ontology. Parameters of a feature can be specified
by setting datatype property values, and the connections to other features are
specified with objecttype properties. Constraints are defined on classes of fea-
tures, but are applied to instances of features. A configuration can be checked
for constraint violations at any time, even if some features are only partially
specified. We have concentrated on assisting a human designer by checking
constraints, rather than attempting to find solutions automatically. Constraint
checking is performed by searching the configuration for applicable features,
and passing the values of appropriate properties to a SICStus Prolog checker.
A graphical display enables the designer to easily add new features, set property
values, and perform constraint checks.

Acknowledgements

The authors would like to acknowledge the assistance of engineers and design-
ers in the Transmissions and Structures division of Rolls-Royce plc, Derby, UK.
The work was carried out as part of the EPSRC Sponsored Advanced Knowl-
edge Technologies project, GR/NI5764, which is an Interdisciplinary Research
Collaboration involving the University of Aberdeen, the University of Edin-
burgh, the Open University, the University of Sheffield and the University of
Southampton.



References

[BOS90] J. Bowen, P. O’Grady, and L. Smith. A constraint programming
language for life-cycle engineering. Artificial Intelligence in Engi-
neering, 5(4):206–220, 1990.

[Bro98] D. C. Brown. Defining configuring. AI EDAM, 12:301–305, Septem-
ber 1998.

[Bro02] D. C. Brown. Functional, behavioral and structural features. In
J. C. Borg and P. Farrugia, editors, Proc. KIC5: 5th IFIP WG5.2
Workshop on Knowledge Intensive CAD, Malta, July 2002.

[BS96] S. Buckingham Shum. Design argumentation as design rationale. In
A. Kent and J. G. Williams, editors, The Encylopedia of Computer
Science and Technology, pages 95–128. Marcel Dekker, Inc., 1996.

[BW03] R. Bracewell and K. Wallace. A tool for capturing design rationale.
In ICED03, 14th International Conference on Engineering Design,
pages 185–186, Stockholm, Sweden, 2003.

[CJB99] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins. What
are ontologies and why do we need them? IEEE Intelligent Systems,
14(1):20–26, Jan/Feb 1999.

[DAM] The darpa agent markup language homepage.
http://www.daml.org/.

[GHP01] P. Gray, K. Hui, and A. Preece. An expressive constraint lan-
guage for semantic web applications. In IJCAI-01 Workshop on
E-Business and the Intelligent Web, pages 46–53, Seattle, USA,
August 2001.

[IFVC93] Y. Iwasaki, R. Fikes, M. Vescovi, and B. Chandrasekaran. How
things are intended to work: Capturing functional knowledge in
device design. In IJCAI-93, pages 1516–1522, 1993.

[JEN] Jena - a semantic web framework for java.
http://jena.sourceforge.net/index.html.

[JM03] U. Junker and D. Mailharro. The logic of ilog (j)configurator: Com-
bining constraint programming with a description logic. In Proceed-
ings of IJCAI’03 Workshop on Configuration, 2003.

[KSNM02] Y. Kitamura, T. Sano, K. Namba, and R. Mizoguchi. A func-
tional concept ontology and its application to automatic identifi-
cation of functional structures. Advanced Engineering Informatics,
16(2):145–163, April 2002.

[Kum92] V. Kumar. Algorithms for constraint-satisfaction problems: A sur-
vey. AI Magazine, pages 32–40, Spring 1992.



[Lab03] F. Laburthe. Constraints over ontologies. In Proceedings of CP2003,
2003.

[LC02] L. Lin and L.-C. Chen. Constraints modelling in product design.
Journal of Engineering Design, 13(3):205–214, September 2002.

[LFB96] Jinxin Lin, M. Fox, and T. Bilgic. A requirement ontology for
engineering design. Concurrent Engineering: Research and Appli-
cations, 4(4):279–291, September 1996.

[MF89] S. Mittal and F. Frayman. Towards a generic model of configuration
tasks. In Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence (IJCAI-89), pages 1395–1401, San
Francisco, CA, 1989. Morgan Kaufmann.

[MF90] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction
problems. In AAAI-90: The Eighth National Conference on Artifi-
cial Intelligence, pages 25–32. MIT Press, 1990.

[MW98] D. L. McGuinness and J. R. Wright. Conceptual modelling for
configuration: A description logic-based approach. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing, 12:333–
344, 1998.

[SF96] D. Sabin and E. C. Freuder. Configuration as composite constraint
satisfaction. In George F. Luger, editor, Proceedings of the (1st)
Artificial Intelligence and Manufacturing Research Planning Work-
shop, pages 153–161. AAAI Press, 1996, 1996.

[SFH98] M. Stumptner, G. E. Friedrich, and A. Haselböck. Generative
constraint-based configuration of large technical systems. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing,
12:307–320, 1998.

[Swe03] Swedish Institute of Computer Science. SICStus Prolog User’s Man-
ual, 2003.


