
Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern
approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and contain numerous
examples and problems. Many include fully worked solutions.

Also in this series

Iain D. Craig

Object-Oriented Programming Languages: Interpretation

978-1-84628-773-2

Max Bramer

Principles of Data Mining

978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson

Semantics with Applications: An Appetizer

978-1-84628-691-9

Michael Kifer and Scott A. Smolka

Introduction
to Operating
System Design
and Implementation
The OSP 2 Approach

Michael Kifer, PhD
State University of New York
at Stony Brook, NY, USA

Scott A. Smolka, PhD
State University of New York
at Stony Brook, NY, USA

Series editor
Ian Mackie
École Polytechnique, France and King’s College London, UK

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK
Dexter Kozen, Cornell University, USA
Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK
David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007926598

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN 978-1-84628-842-5 e-ISBN 978-1-84628-843-2

Printed on acid-free paper

c© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Contents

Preface . ix

1. Organization of OSP 2 . 1
1.1 Chapter Objective . 1
1.2 Operating System Basics . 1
1.3 OSP 2 Organization . 6
1.4 Simulated Hardware in OSP 2 . 8
1.5 Utilities . 11
1.6 OSP 2 Events . 16
1.7 OSP 2 Daemons . 18
1.8 Compiling and Running Projects . 19
1.9 General Rules of Engagement . 24

1.9.1 A Day in the Life of an OSP 2 Thread 25
1.9.2 Convention for Calling Student Methods 26
1.9.3 Static vs. Instance Methods . 28
1.9.4 Obfuscation of Method and Class Names 28
1.9.5 Possible Hanging After Errors . 29
1.9.6 Possible Exceptions After the End of Execution 29
1.9.7 General Advice: How to Figure it Out 29

1.10 System Log, Snapshots, and Statistics . 30
1.11 Debugging . 31
1.12 Project Submission . 35

2. Putting it All Together: An Example Session with OSP 2 . . 39
2.1 Chapter Objective . 39
2.2 Overview of Thread Management in OSP 2 39

vi Introduction to Operating System Design and Implementation: The OSP 2 Approach

2.3 The Student Method do resume() . 40
2.4 Step 1: Compiling and Running the Project 41
2.5 Step 2: Examining the OSP.log File . 42
2.6 Step 3: Introducing an Error into do resume() 43

3. Tasks: Management of Tasks (a.k.a. Processes) 45
3.1 Chapter Objective . 45
3.2 Conceptual Background . 45
3.3 Class TaskCB . 46
3.4 Methods Exported by the Tasks Package 53

4. Threads: Management and Scheduling of Threads 57
4.1 Chapter Objective . 57
4.2 Overview of Threads . 57
4.3 The Class ThreadCB . 61
4.4 The Class TimerInterruptHandler . 71
4.5 Methods Exported by the Threads Package 72

5. Memory: Virtual Memory Management . 75
5.1 Chapter Objective . 75
5.2 Overview of Memory Management . 75
5.3 Class FrameTableEntry . 83
5.4 Class PageTableEntry . 86
5.5 Class PageTable . 90
5.6 Class MMU . 91
5.7 Class PageFaultHandler . 95
5.8 Methods Exported by Package Memory . 100

6. Devices: Scheduling of Disk Requests . 103
6.1 Chapter Objective . 103
6.2 Overview of I/O Handling . 103
6.3 Class IORB . 106
6.4 Class Device . 109
6.5 Class DiskInterruptHandler . 114
6.6 Methods Exported by Package Devices . 117

7. FileSys: The File System . 119
7.1 Chapter Objective . 119
7.2 File System Design Objectives . 119
7.3 Overview of the OSP 2 File System . 121
7.4 Class MountTable . 123
7.5 Class INode . 127

Contents vii

7.6 Class DirectoryEntry . 129
7.7 Class OpenFile . 131
7.8 Class FileSys . 136
7.9 Methods Exported by the FileSys Package 141

8. Ports: Interprocess Communication . 143
8.1 Chapter Objective . 143
8.2 Interprocess Communication in OSP 2 . 143
8.3 The Message Class . 144
8.4 The PortCB Class . 146
8.5 Methods Exported by Package Ports . 151

9. Resources: Resource Management . 153
9.1 Chapter Objective . 153
9.2 Overview of Resource Management . 153
9.3 Overview of Resource Management in OSP 2 155
9.4 Class ResourceTable . 156
9.5 Class RRB . 157
9.6 Class ResourceCB . 160
9.7 Methods Exported by the Resources Package 166

Index . 167

Preface

OSP 2 is both an implementation of a modern operating system, and a flexible
environment for generating implementation projects appropriate for an intro-
ductory course in operating system design. It is intended to complement the
use of an introductory textbook on operating systems and contains enough
projects for up to three semesters. These projects expose students to many
essential features of operating systems, while at the same time isolating them
from low-level machine-dependent concerns. Thus, even in one semester, stu-
dents can learn about page replacement strategies in virtual memory manage-
ment, cpu scheduling strategies, disk seek time optimization, and other issues
in operating system design.

OSP 2 is written in the Java programming language and students program
their OSP 2 projects in Java as well. Therefore as prerequisites for using OSP 2 ,
students are expected to have solid Java programming skills; be well-versed in
object-oriented programming concepts such as classes, objects, methods, and
inheritance; to have taken an undergraduate Computer Science course in data
structures; and to have working knowledge of a Java programming environment,
i.e., javac, java, text editing, etc. OSP 2 is the successor to the original OSP
software, which was released in 1990 and programmed in C.

OSP 2 consists of a number of modules, each of which performs a basic
operating systems service, such as device scheduling, cpu scheduling, inter-
rupt handling, file management, memory management, process management,
resource management, and interprocess communication. Projects can be orga-
nized in any desired order so as to progress in a manner consistent with the
lecture material. The OSP 2 distribution comes with a reference Java imple-
mentation of each module, which is provided to the course instructor.

Each OSP 2 project has a well-defined API (application programming in-
terface), that the student must implement in order to successfully complete

x Introduction to Operating System Design and Implementation: The OSP 2 Approach

the project. Thus, among other things, OSP 2 teaches students to work with
“open” environments where programming must be conducted to satisfy con-
crete sets of project requirements and where APIs must be used to interface to
other subsystems.

Each OSP 2 project consists of a “partial load module” of standard OSP 2

modules to which the students link their implementation of the assigned mod-
ules. The result is a new and complete operating system, partially implemented
by the student. Additionally, each project includes one or more “*.java” files,
which contain class and method headings for each of the assigned modules.
These files serve as templates in which the student is to fill in the code for the
required methods. This ensures a consistent interface to OSP 2 and eliminates
much of the routine typing, both by the instructor and by the student.

The heart of OSP 2 is a simulator that gives the illusion of a computer
system with a dynamically evolving collection of user processes to be multipro-
grammed. All the other modules of OSP 2 are built to respond appropriately
to the simulator-generated events that drive the operating system. The simu-
lator “understands” its interaction with the other modules in that it can often
detect an erroneous response by a module to a simulated event. In such cases,
the simulator will gracefully terminate execution of the program by delivering
a meaningful error message to the user, indicating where the error might be
found. This facility serves both as a debugging tool for the student and as
teaching tool for the instructor, as it ensures that student programs acceptable
to the simulator are virtually bug-free. (Verification by the simulator does not,
of course, replace the need to examine student programs to ensure that they are
properly designed and acceptable from a software engineering point of view.)

The difficulty of the job streams generated by the simulator can be dy-
namically adjusted by manipulating the simulation parameters . This yields a
simple and effective way of testing the quality of student programs. There are
also facilities that allow students to debug their programs, including a detailed
system log of events and various hooks into the system that allow student-
provided methods to be called when an OSP 2 warning or error is detected.
Also, a graphical user interface (GUI) is available that provides a convenient
way for students and instructors to enter simulation parameters and to view
various statistics concerning the execution of OSP 2 .

The underlying model in OSP 2 is not a clone of any specific operating
system. Rather it is an abstraction of the common features of several systems
(although a bias towards Unix and the Mach operating systems can be seen,
at times). Moreover, the OSP 2 modules were designed to hide a number of
low-level concerns, yet still encompass the most salient aspects of their real-life
counterparts in modern systems. Their implementation is well-suited as the
project component of an introductory course in operating systems.

Preface xi

How to Use this Book

This book is primarily a manual for students on how to program the OSP 2

projects. Chapter 1 describes the overall organization of OSP 2 . Chapter 2 takes
the student through an example session with OSP 2 . Each subsequent chap-
ter constitutes a detailed description of one of the OSP 2 projects, beginning
with a statement of the goals of the project, followed by a short introduction
to the basic OS concepts relevant to that chapter’s subject matter. The latter
is intended to help bridge the gap between the OSP 2 manual and the course
textbook. Before even the first assignment is handed out, students should read
this Preface and Chapters 1 and 2. When a specific project is assigned (e.g. the
thread-management project, project Threads) the appropriate chapter (Chap-
ter 4 in the case of Threads) should be read carefully. Each project chapter
provides a complete description of the API for the OSP 2 module the students
have been asked to implement, including a clear account of the functionality
of each method in the project. Also provided is a list of methods from other
project modules that may be needed to implement the project assignment.
The student should refer to the relevant chapters for a more detailed account
of these methods.

Goals of this Book

Besides serving as the student project manual for OSP 2 , the goals of this book,
and more broadly the OSP 2 environment, are the following:

� To teach students fundamental operating system concepts in the following
areas:

– process and thread management

– memory management

– file systems

– interprocess communication

– I/O device management

– resource management

� To give students the opportunity to practice these skills in a realistic oper-
ating systems programming environment.

� To provide students with challenging individual and group programming
assignments which promote “active learning” to reinforce and amplify the

xii Introduction to Operating SystemDesign and Implementation:The OSP 2 Approach

lecture material.

� To provide programming assignments that involve significant modifications
to an actual, working operating system, thereby familiarizing students with
the internals of OS implementation.

� To provide instructors with a flexible OS programming project that can easily
accommodate their lecture schedule.

Acknowledgments

We would like to gratefully acknowledge the past members of the OSP 2 de-
velopment team, including Sanford Barr, who produced the original design
and implementation of the event engine; William Ries, Adam Sah and Tomek
Retelewski, who, along with Sanford, designed and implemented an earlier ver-
sion of OSP 2 that was written in C++; Fang Yang, who was responsible for
porting the event engine and several other modules from the C++ version to
Java; Kevin McDonnell and Peter Litskevitch, for designing, implementing and
documenting most of the modules in the current version; Jingjing Wei, for im-
plementing the latest configurable version of the GUI; Eric Nuzzi, who devised
a systematic testing protocol for the OSP 2 code; Martin Bruggink, for imple-
menting the Ports module; Xiaohua Wu, for implementing the Resources

module; and David McManamon, for implementing the software that allows
students to submit their solutions to OSP 2 assignments electronically.

Some parts of OSP 2 rely on third-party software. In particular, we thank
Retrologic for developing their excellent Java obfuscator and releasing it under
the Lesser Gnu Public License (LGPL).

Finally, we would like to thank Wayne Wheeler and Catherine Brett of
Springer London Ltd for bringing their editorial expertise to bear on this
project.

	Contents
	Preface

