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Abstract. A system for interactive, 3–D, craniofacial surgery simula-
tion is presented. It is used for the 3–D simulation of osteotomies of
the facial and skull bones and for the prediction of soft–tissue changes
caused by bone movement. The result of the simulation process is a 3–D,
photorealistic model of the patient’s postoperative appearance that can
be viewed from any position.
The system is based on the individual preoperative bone structure of a
patient’s skull derived from a computer tomography scan and on the pa-
tient’s photorealistic, preoperative appearance obtained by a laser scan-
ner. The elasto–mechanical properties of the multi–layer soft–tissue are
represented by springs. The model incorporates additional features such
as skin turgor, gravity, and sliding bone contact.
The prediction of soft–tissue deformation due to simulated bone move-
ment is computed using an optimization approach. Several optimization
methods have been tested and compared with regard to robustness of
the simulation result and to computational costs.
While the osteotomy simulation can be performed interactively, the com-
putation of the corresponding soft–tissue changes usually takes less than
10 seconds even in sophisticated cases. Tests have been performed on a
SGI O2 R10000, 175MHz. The system is able to simulate bimaxillary os-
teotomies, physiological jaw movement and has been used in the planning
process in case of a craniosynostosis.

1 Introduction

The success of complex craniofacial surgical procedures is critically dependent
on careful planning. The planning process is aimed at the restoration of function-
ality and at the improvement of the patient’s aesthetics. There are two principal
methods of planning surgeries based on models. One method is to build physical
models that are generated from CT scans, e. g., stereolithography. These real-
istic models improve osteotomy planning and allow accurate manufacturing of

C. Taylor, A. Colchester (Eds.): MICCAI’99, LNCS 1679, pp. 1183–1190, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



1184 Matthias Teschner et al.

transplants. Moreover, these models can be used for educational purposes and
demonstrations. While physical models provide information on the bone struc-
ture, they do not contain knowledge of the soft–tissue, which is of importance
to assess the patient’s aestethics. The second method of planning craniofacial
surgical procedures is to utilize medical imaging for generating computer mod-
els [1,2,3,4,5,6,7]. Computer models are more flexible than physical models and
are able to provide more information by integrating several modalities. A mul-
timodal computer model of the bone structure and soft–tissue can be used for
simulating osteotomies as well as for assessing the patient’s appearance. Various
simulations can be performed with less additional effort compared to physical
models. This is especially helpful in cases where various surgical options are
possible.
In our laboratory, we have investigated methods for craniofacial surgery sim-

ulation based on 3–D computer models since 1993 [8,9]. In this paper, a refined
system is presented, that uses an optimization approach for fast soft–tissue sim-
ulation. The paper is organized as follows. In the next section the generation
of the 3–D computer models of the bone structure and the face surface is de-
scribed. In Section 3 the structure and parametrization of the soft–tissue model
is described. In Section 4 optimization methods are compared that are used to
estimate the soft–tissue deformation due to bone realignment. Simulation results
are presented in Section 5.

2 Data Acquisition

Triangle meshes that describe the surface of the face and the bone structure
of the head are the basic elements of the simulation process. These meshes are
built using two different sensory modalities. A CT scan provides the anatomi-
cally correct representation of the bone structure and a laser scanner records a
photorealistic, 3–D model of the patient’s face. The triangle mesh that repre-
sents the surface of the bone structure is generated by segmenting bone from
the CT scan and applying the Marching–Cubes–algorithm [10] to the result. An
implementation of these methods is adopted from [6]. The triangle mesh that
represents the face surface is computed from the depth and color map of the
laser scan.
Both modalities are registered by exploiting corresponding cephalometric

landmarks of the laser scan and the skin surface taken from the CT scan [6].

3 Soft–Tissue Model

Given the triangle meshes that represent the skull and the face, the soft–tissue
model is generated. In recent years, several soft–tissue models based on springs
or finite elements have been developed [3,5,6,11,12], [13]. As computational costs
for finite–element methods are high and these methods seem to be less suitable
for interactive applications, in our work, a mesh of springs is utilized. The springs
are categorized according to their location and function (Fig. 1):
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– Layer springs represent soft–tissue layers. In order to model differentiated
elasto–mechanical properties of soft–tissue layers, each layer is represented
by a particular class of springs. The number and the thickness of soft–tissue
layers are variable. Simulations have been performed with one, three, and
five layers.

– Bone springs represent connections between bone and soft–tissue. Only some
regions of the soft–tissue are connected to the underlying bone structure. To
mimic sliding contact, these connections are modeled using springs.

– Boundary springs prevent the soft–tissue model from undergoing global
transformation. Due to the fact that the face model does not include the
complete head surface but only the facial region, these springs anchor the
face and the underlying soft–tissue in space.

bone bone

soft tissue position

bone spring

boundary spring layer spring

Fig. 1. Soft tissue model.

A spring is characterized by a spring constant k, which describes its stiff-
ness, and by a length l. Every spring class is parametrized with a particular
spring constant to model the elasto–mechanical properties of the corresponding
soft–tissue layer. Bone springs and boundary springs are parametrized with a
comparatively large spring constant. The length of bone springs and boundary
springs is zero. The springs that represent the skin surface are given a certain
strain. This strain corresponds to the skin turgor. Setting the natural length of
all surface springs to cturgor · l, with 0 < cturgor < 1, introduces a certain strain.
The difference of l and cturgor · l corresponds to the desired skin turgor.
A soft–tissue position is characterized by a location P ∈ R

3 and a mass m in
order to enable simulation of gravity. Every soft–tissue layer is parametrized by
an overall mass, which is distributed according to the topology of the representing
soft–tissue positions.
Due to the masses and the strain of the surface there are forces at each soft–

tissue position. In order to prevent the model from changing without performing
any bone realignment and obtaining a stable equilibrium of the mesh, the sum of
these forces has to be zero. This is achieved by determining appropriate strains
for all springs, given the strain of the skin surface.
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4 Soft–Tissue Deformation

The described soft–tissue model is used to estimate soft–tissue deformation due
to simulated bone realignment. Basically, the soft–tissue deformation is com-
puted by applying an optimization method that minimizes the energy of the
spring mesh. In the initial state of the simulation process the energy is zero. The
energy is increased by performing bone transformation. An optimization process
deforms the spring mesh in order to minimize the energy. The energy function

f(P0, P1, . . . , PN−1) = λ
∑

i

ki(l0i − li)2 + (1− λ)
∑

j

(v0j − vj)2 (1)

depends on 3 · N independent variables determining N soft–tissue positions
Pi ∈ R

3. It mainly captures differences between initial spring lengths l0i and
current spring lengths li and differences between initial volumes v0i and current
volumes vi. The values ki are spring constants, and λ (0 < λ < 1) weights the
influence of both terms of the function. The values vi and v0i are volumes of
basic elements of the soft–tissue. The volume consists of prisms.
The initial state of the mesh is characterized by li = l0i for every spring.

Bone movement leads to li �= l0i and (l0i − li)2 > 0 for certain bone springs and
to f(P0, P1, . . . , PN−1) > 0. Now, new soft–tissue positions P ∗ are computed by
minimizing f . These values P ∗ describe the deformed soft–tissue:

P ∗
0 , P ∗

1 , . . . , P ∗
N−1 = argmin f(P0, P1, . . . , PN−1). (2)

During the minimization process there are no additional restrictions applied
to the soft–tissue positions P apart from the energy function. All soft–tissue
positions are considered in the minimization process, regardless of the simulated
bone realignment.
Four optimization methods have been compared with regard to computa-

tional costs and robustness of the result (Tab. 1). All optimization methods are
iterative processes. They terminate if the difference of two P ∗ or the difference
of two evaluations of f in successive steps is tolerably small. This tolerance can
be chosen. On one hand, it influences the accuracy of the minimum, on the
other hand it has an effect on the computation time. The slightly different min-
ima found by the optimization algorithms (Tab. 1) are due to this tolerance.
Some methods require the calculation of partial derivatives. The methods differ
in the amount of allocated memory. The order of additional memory that is
needed by an optimization method is important due to the fact that its amount
is dependent on the number of soft–tissue positions. If the model consists of 3000
positions, then the energy function (1) has 9000 parameters and an optimization
method that requires memory in order of N2 would need a multiple of 81MByte
memory instead of a multiple of 9kByte for an algorithm with order of N . All
optimization methods are described in [14].
Tests have shown that the conjugate gradient method provides reliable re-

sults and is very efficient with regard to memory and computational complexity.
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Optimization method
Order of
additional
memory

Requires
partial
derivatives

Time [s] min f

Conjugate gradient, parabolic interpolation N yes 0.60 4.33
Conjugate gradient, derivative based N yes 2.21 4.33
Direction set (Powell) N2 no 81.43 4.33
Variable metric (quasi–Newton) N2 yes 2.91 4.30

Table 1. Comparison of optimization methods using a synthetic data set, the
energy function (1), and performing an exemplary bone movement. 138 soft–
tissue positions Pi, 986 springs, 144 volumes (SGI O2, R10000, 175MHz). N is
the number of parameters of the energy function.

Parabolic interpolation is used for 1–D sub–minimization due to the quadratic
form of f . Although partial derivatives of the energy function are calculated
by this optimization method, its computational expense is comparatively low
because of the similarity of the energy function and its partial derivatives. The
partial derivatives are responsible for fast convergence of the optimization pro-
cess and fast convergence reduces the number of function evaluations.

In addition to computational costs another important criterion of an mini-
mization algorithm is the quality of the minimum found. It cannot be guaranteed
that the minimum P ∗ is the global minimum, and it is difficult to prove that
fact in a space with > 103 dimensions. A method to check the robustness of
the minimum P ∗ is to perform a certain bone movement in different ways and
to compare the results. If only a small movement is performed, the distance of
the initial soft–tissue positions P and P ∗ is small, f is comparatively small, and
the global minimum is likely to be found. For example, translating a bone by
0.1mm ten times or translating a bone by 1mm once should lead to the same P ∗.
Several tests using the multidimensional conjugate gradient method have been
performed and all minima have been reliable.

5 Results

Table 2 and Fig. 2–4 show examples of simulations performed. The soft–tissue
prediction is tested with two individual patient data sets. Several simulations
of bone movement have been applied to each model. The last column of Tab. 2
shows the maximum time needed by the optimization process. All tests have been
performed on a standard workstation SGI O2, R10000, 175MHz. Fig. 5 shows
parts of the simulated planning process in case of a craniosynostosis. In this case,
only cutting of the bone structure and its realignment has been simulated.
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Fig.
Nu mb e r of
sof t –t i ssu e

positions

Nu mb e r of
sp r i n g s

Nu mb e r of
vo l u m e s

Max. simu lation
tim e [ s]

2, 3 754 6067 874 1.1

Ta b l e 2 . Model parameters and simulation speed.

(a) (b) (c) (d) (e)

Fig. 2. Craniofacial surgery simulation for patient 1. a) Preoperative appear-
ance. b) Simulated postoperative appearance. c) Postoperative appearance. d)
Preoperative bone structure. e) Simulated postoperative bone structure. The
upper jaw is repositioned 4mm forward and 2mm upward anteriorly and 4mm
posteriorly. The lower jaw is moved backwards 5mm.

6 Conclusion

In this paper, a new, efficient and robust approach to soft–tissue prediction has
been presented. It is based on an optimization method and has been tested with
several individual patient data sets. The soft–tissue prediction is integrated in a
system for craniofacial surgery simulation. It simulates bimaxillary osteotomies
and physiological jaw movement and predicts the soft–tissue changes caused
by bone realignment. Ongoing work focuses on the integration of interactive
collision detection and collision response algorithms into the system to enable
a realistic simulation of bone movement and transplants. As well as estimating
the patient’s static postoperative appearance and simulating physiological bone
movement, the visualization of the patient’s post–operative facial expressions is
very useful. Therefore, it is planned to add muscles to the existing soft–tissue
model. Further, it is intended to register very accurate measurements of the jaws
with the CT scan, in order to consider the occlusion of the jaws in the planning
process.

4              2092        16547         2820              3.3
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(a) (b) (c) (d)

Fig. 3. Simulated physiological lower jaw movement for patient 1.

(a) (b) (c) (d) (e)

Fig. 4. Craniofacial surgery simulation for patient 2. a) Preoperative appear-
ance. b) Simulated postoperative appearance. c) Postoperative appearance. d)
Preoperative bone structure. e) Simulated postoperative bone structure.

(a) (b) (c)

Fig. 5. Planning process in case of a craniosynostosis. a) Reconstructed pre-
operative skull. b) Segmentation of the Cranial Vault. c) Reconstruction of the
Cranial Vault.
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