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Abstract. This paper presents a new algorithm for reconstruction of 3D
shapes using a few x-ray views and a statistical model. In many appli-
cations of surgery such as orthopedics, it is desirable to define a surgical
planning on 3-D images and then to execute the plan using standard
registration techniques and image-guided surgery systems. But the cost,
time and x-ray dose associated with standard pre-operative Computed
Tomography makes it difficult to use this methodology for rather stan-
dard interventions. Instead, we propose to use a few x-ray images gen-
erated from a C-Arm and to build the 3-D shape of the patient bones
or organs intra-operatively, by deforming a statistical 3-D model to the
contours segmented on the x-ray views. In this paper, we concentrate
on the application of our method to bone reconstruction. The algorithm
starts from segmented contours of the bone on the x-ray images and an
initial estimate of the pose of the 3-D model in the common coordinate
system of the set of x-ray projections. The statistical model is made of a
few principal modes that are sufficient to represent the normal anatomy.
Those modes are built by using a generalization of the Cootes and Taylor
method to 3-D surface models, previously published in MICCAT’98 by
the authors. Fitting the model to the contours is achieved by using a gen-
eralization of the Iterative Closest Point Algorithm to nonrigid 3D /2D
registration. For pathological shapes, the statistical model is not valid
and subsequent local refinement is necessary. First results are presented
for a 3-D statistical model of the distal part of the femur.

1 Introduction

X-ray images are the dominating image modality in the operating room. Due to
his anatomical knowledge the surgeon is used to mentally fuse 2D images taken
from different view points. However for many applications this mental registra-
tion is not sufficient to obtain all necessary information about the anatomical
situation to properly perform the surgery. Therefore, since the introduction of
Computed Tomography many surgical interventions are preceded by the con-
struction of a CT-based 3D model of the object of interest to provide the sur-
geon with spatial information which is leaking when using only 2D images. To
combine preoperative acquired CT data with intra-operatively acquired X-ray
images, marker based or surface based registration methods are usually applied.
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But the CT data acquisition process is associated with several drawbacks:
First, the total X-ray dose for the patient raises considerably. Further it signifi-
cantly increases the overall intervention costs as well as its duration. Therefore
it is desirable to infer 3D-information from the 2D X-ray images to facilitate the
navigation within the patient and thus allowing to abandon CT data acquisition
at least for many standard surgical applications.

In [Hof97] for instance, authors propose to acquire several images using a
classical C-arm equipped with an image intensifier and to track the position
and orientation of the surgical tools, the image intensifier and a patient’s ref-
erence with an optical localizer, thus allowing to compute relative movements
of the patient or the surgical tools with respect to each acquired image during
the intervention. Although this system is a considerable improvement, real 3D
information is still missing.

The objective of this paper therefore is to recover the surface of an object
using a very limited number (2 - 6) of calibrated X-ray images. We concentrate
here on bone reconstruction but the proposed method is also applicable to other
anatomical structures.

Image intensifiers are subject to geometric distortions due to non planar
shape of the image intensifier and external magnetic fields. Calibration tech-
niques such as the NPBS method [CTL.SC92] for instance can be used to correct
these distortions as well as to compute a pseudo focal point of the source. This
calibration is not further addressed in this paper. However full digital X-ray de-
tectors without any geometric distortion [CCD98] begin to appear on the market
and are likely to replace the image intensifiers in the future.

The remainder of this paper is organized as follows: In section 2 we give a brief
overview about related work and introduce the statistical shape model of Cootes
and Taylor. Section 3 presents a generalization of the Iterative Closest Point
algorithm [BM92] for contour based 3D/2D registration. Section 4 shows how
to efficiently compute matched point pairs by computing the model’s contour
generators. Section 5 shows how to fit the model to the projection data. Section 6
provides results obtained with simulated data and in Section 7 we draw a short
conclusion.

2 Related Work

First considering the simpler case of recovering only the pose parameters of a
3D model from its 2D projections (rigid 2D/3D registration), one can distin-
guish two different concepts: One type of algorithm is based on contours and
requires prior segmentation of the object in the 3D-image as well as in the 2D-
image [[LS95,FABY4] although in [HSLC95] authors propose a cooperative ap-
proach between registration and 2D segmentation. The other concept does not
need segmentation and compares the grey value distribution of the 2D-image
with the distribution obtained when projecting the 3D-image under current reg-
istration parameters [LF94]. Due to the high computational cost for projecting
the 3D image this method is rather slow although in [Wee99] authors recently
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proposed a promising technique for considerable acceleration by using the shear-
warp factorization.

Much less work has been done in the field of nonrigid 3D/2D registration:
In [PV97] for instance, authors aim to recover shape from one single X-ray im-
age by exploiting both, geometric and densitometric constraints while making
two assumptions: the density of the structure to be recovered is approximately
constant and the surface of each structure is smooth. This approach shares ideas
from the work of [TWIK&g]. In [Nik96] authors reconstruct femurs from 2 or-
thogonal X-ray images. They separate the femur into 3 subparts each of them
assumed to be round. They fit cubic parametric surface patches to the subparts
and then assemble them to a complete model. For a general overview about
image registration techniques see for instance [MV98].

We propose to formulate the shape recovery problem as a nonrigid registra-
tion between a deformable shape model and the contour data extracted from the
X-ray views. As we aim to recover the shape from very few projections it is nec-
essary to incorporate a priori knowledge. One possibility is to consider models
such as deformable superquadrics [MT93], however those models are appropriate
to capture shapes defined by many data (the superquadrics convey information
about the global shape but this part of the model is not accurate enough for
our applications). Similarly, using volumetric deformations with regularization
constraints such as octree-splines [SL.96] can be expected to preserve the shape
of an anatomical structure, but this will be true only in the neighborhood of the
available data. The result of those methods is not guaranteed to be a shape that
respects the anatomy.

Another approach is to to consider statistically based shape models in order
to infer the anatomical information. One well known approach is to use statis-
tical models based on Fourier representations, such as [SD92,5kBG96]. Another
method is based on extracting features such as crest-lines and to perform modal
analysis on these features [STA9G]. A third approach is to consider a statistical
model with modal representation based on principal component analysis directly
applied to the nodal representation of a mean contour.

Cootes and Taylor [C'TCG95] have proposed to use Point Distribution Mod-
els (PDM). A PDM is a deformable model built from the statistical analysis
of examples of the object being modeled. Given a collection of N 3D train-
ing shapes of an object, the Cartesian coordinates of M landmark points are
recorded for each image. Each training example is represented by a vector
M = (T1,Y1, 215 cees M YM s ZM )-

After aligning of the training shapes the pointwise mean shape

1 N

is then calculated. Modes of variation are found using Principal Component
Analysis (PCA) on the deviations of examples from the mean. These modes are
represented by 3M orthonormal eigenvectors e;. A new instance of the shape
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is generated by adding linear combinations of the ¢ most significant variation
vectors to the mean shape:

t
m=nm+ Z w;e; (2)
i=1

where w; is the weighting factor for the i*" variation vector. By ensuring
t < 3M, only the important deformations are extracted, discarding training
data noise, and thus object shape and variation can be captured compactly.

A key requirement for building such a model is the collection of several sets
with corresponding landmarks from training images. Doing this manually for a
3D model is impractical due to the considerable effort required for image-model
registration. In [F1.98] the authors present a method which performs an auto-
matic landmark point generation using a template triangle mesh while ensuring
point correspondence between the training shapes.

Fig.1 shows the effect of applying +3 standard deviations of the first two
modes to the mean shape of a model constructed of 10 dry femurs.

-3SD Mean Shape +3SD -3SD Mean Shape +3SD

Mode 1 Mode 2

Fig.1. Applying 3 standard deviations of the first and second deformation
modes on the mean shape

3 Using the ICP Algorithm for 2D /3D Registration

A well known method for rigid registration of a 3D data point set with a 3D
model point set is the Iterative Closest Point algorithm introduced in [BM92].
Each iteration of the ICP algorithm is divided into two steps. Step 1 establishes
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point to point correspondence between the data set and the model set. Step 2
calculates a rigid transformation by a direct method using quaternions such that
the sum of the squared distances between the corresponding points becomes
minimal. To be able to use the ICP algorithm for 3D /2D registration we have to
define the correspondence between the model and each projection ray p;—1i..p
of the X-ray images defined by the coordinates of the contour points x;,y; in
the image plane and the focal point f of the source. We associate the endpoints
of that line segment originating on the projection ray and ending on the model
surface such that their distance to each other is minimal. Note that at each
iteration step new points on both, the model and the projection rays may be
selected, while in the 3D/3D case the points in the data set remains the same
throughout all iterations. In [WH96] authors describe this approach for rigid
2D/3D registration of CAD models to video camera images but do not address
the problem of quickly finding those points on the projection ray and the model
having the smallest distance to each other. This is a key step for applicability
within intra-operative applications. We address this problem in the next section.

4 Efficient Matched Point Pair Building

To efficiently find the above defined correspondence we use the approach de-
scribed in [Gue98] by first computing the actual contour generators g; ;—1...¢ of
the model. Contour generators are those object features constituting the (inner
and outer) contours of the object in image space with respect to the current
projection parameters. As we use a triangle mesh for presentation of our model,
the contour generators are a subset of all triangle edges. Thus establishing cor-
respondence results in the simple computation of shortest lines between two 3D
line segments. When the model is perfectly aligned with the projection rays,
the latter intersect those triangle edges previously found to be contour genera-
tors. In [Gue9s] authors call the contour generators ’apparent contours’ and use
them for a rigid registration algorithm to match a CT model with fluoroscopic
images. We define the triangles in the mesh by pointers to an edge list. Each
edge in the edge list points to the two vertices in a vertex list defining the edge.
This representation enables us to efficiently compute the contour generators us-
ing the following criterion: For each triangle the viewing direction is defined as
the vector originating from the center of projection to the triangle centroid. If
the triangle normal, defined by the cross product of ordered orientated triangle
edges constitutes an obtuse angle with the viewing direction, the triangle is said
to be visible and invisible otherwise. An edge is a contour generator if the tri-
angle on one side of the edge is visible and the triangle on the other side of the
edge is invisible. We store all edges meeting this criterion in a list and rather
than performing brutal force search within the complete edge list of the model
we only have to search within this subset to find matched point pairs. For our
model, consisting of about 5000 edges there are only about 300 contour gener-
ators for each perspective projection. Fig 2 shows the correspondence between
one projection ray and the current contour generators of the model.
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contour generators

/ shortest line segment
—_— between the projection ray
— and all contour generators

y

projection ray

Fig.2. Correspondence between one projection ray and the current contour
generators of the model

5 Model Fitting

To recover the shape from the projection rays it is necessary to find the rigid
transformation (rotation R, translation T) between the matched point pairs
and the decomposition of the t preserved eigenvectors in such a way that the
distances between them are minimized. The objective function to be minimized
is defined as follows:

P

ER,T,w;..w;) = 2 min_ Ip; — (Regk(wi..wy) + T)|? (3)
In theory, we could simultaneously optimize the rigid and the nonrigid pa-
rameters. However, in practise we have found it more efficient to adjust them
sequentially. Given an estimate for the pose parameters R, T by applying the
generalized ICP algorithm we adjust the deformation parameters wy...w; using
the Down Hill Simplex Algorithm. Bounds to the deformation parameters are

applied to force the model to deform only in an anatomical reasonable range.

6 Results

Experiments with simulated data have been established using a simulator tool
allowing to interactively rotate and translate a 3D model of the distal part of a
femur, to project its contour generators onto an image plane and to record the
image together with the projection parameters (Fig. 3 a). Fig 3 (b) shows 4 simu-
lated X-ray shots taken from different view points around the object. The exper-
iments were performed using an image plane / focal point distance of 1000mm
thus roughly approximating real conditions when using a C-arm. Fig 4 shows
the shape model before registration (a), after rigid (b) and after nonrigid (c)
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registration. One recognizes that the projection rays are tangential to the object
surface after the nonrigid registration.

(a) (b)
Fig. 3. (a) Interactive X-ray simulation to compute contours under known per-

spective projection parameters. (b) Four simulated X-ray shots taken around
the object

Experiments using different numbers of X-ray images and varying numbers of
deformation modes show that within the current implementation two orthogonal
views and 4 deformation modes establish the best compromise between accuracy
and computation time. Table 1 shows registration results for different numbers
of calculated projection rays per X-ray image. In this experiment we used 2 or-
thogonal X-ray views and 4 deformation modes. We calculated the RMS between
the projection rays and the model and the RMS between the surface model of
the shape to be recovered (reference) and the deformed model.

We also compared the accuracy of our 2D/3D matching algorithm with
the 3D /3D registration algorithm presented on MICCAT’98. Approximately 500
points randomly distributed on the surface of the shape to be recovered were first
registered rigidly with the mean shape, resulting in a RMS of 2.44mm. The non-
rigid registration between the 3D data set of the test femur and the deformable
model using 4 deformation modes results in a final RMS of 0.85mm. Using 2
(orthogonal) views, each with about 200 projection rays results in a final RMS
between the deformed model and the shape to be recovered of 0.99mm.
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Fig. 4. Surface model of the distal part of the femur: (a) before registration, (b)
after initial rigid registration, (c) after nonrigid registration

RMS (mm)
rays rays—model|reference—model
10 0.34 1.3
20 0.52 1.2
50 0.49 1.13
100 0.55 1.05
200 0.77 0.99

Table 1. RMS for different number of projection rays per view
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7 Conclusion

Statistical shape models have been proven to be effective for different tasks in
the field of computer vision such as segmentation of 2D, 3D images or nonrigid
3D/3D registration. This paper has presented a new approach to perform non-
rigid 3D/2D registration between such a model and relatively few segmented
contour points from calibrated X-ray images. Contour based registration algo-
rithms suffer from the potential drawback that their accuracy directly depends
on the correct segmentation of the objects contour in the image. Our approach is
robust with respect to this problem in such a way that good matching results are
obtained even when considerable parts of the objects contour cannot reliably be
segmented. Computation time of the current implementation directly depends
on the number of used projection rays and is less than one minute on a standard
workstation when using a total number of 400 projection rays and 4 deforma-
tion modes. When dealing with pathological shape deformations which are not
covered by the statistical model, local refinements of the model are necessary to
obtain a sufficient good fit between the model and the projective data. Experi-
ments with real data acquired with a new distortion free digital X-ray detector
(Pixium 4600, Trixell, France) are in progress and will be presented soon.
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