
Conformal Geometry and Brain Flattening

Sigurd Angenent1, Steven Haker2, Allen Tannenbaum2, and Ron Kikinis3

1 Department of Mathematics
University of Wisconsin, Madison, Wisconsin 53705

2 Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

tannenba@ece.umn.edu
3 Harvard Medical School, Brigham and Women’s Hospital

Harvard University, Boston, MA 02115

Abstract. In this paper, using certain conformal mappings from com-
plex function theory, we give an explicit method for flattening the brain
surface in a way which is bijective and which preserves angles. The con-
formal equivalence arises as the solution of a certain elliptic equation
on the surface. Then from a triangulated surface representation of the
cortex, we indicate how the procedure may be implemented using finite
elements. Further, we show how the geometry of the cortical surface and
gray/white matter boundary may be studied using this approach. Hence
the mapping can be used to obtain an atlas of the brain surface in a
natural manner.

Keywords: Brain flattening, conformal maps, functional MRI, segmen-
tation.

1 Introduction

The problem of flattening or unfolding a highly undulated surface is of major
importance for a number of problems in 3D medical visualization. Recently a
number of techniques have been proposed to obtain a flattened representation of
the cortical surface; see, e.g., [5,6,7,15,20] and the references therein. Flattening
the brain surface has uses in many areas including functional magnetic resonance
imaging, in which it is important to visualize neural activity within the three
dimensional folds of the brain, as well as the study of various types of brain
pathology.
Our approach to flattening the brain surface is based on the use of a certain

fact from the theory of Riemann surfaces, specifically, that a surface without any
handles, holes or self-intersections can be mapped conformally onto the sphere,
and any local portion thereof onto a disc. This mapping, known as a conformal
equivalence, is conformal in the sense that angles are preserved. It is also bijective
(onto and one-to-one) and thus there is no problem with triangles “flipping” or
overlapping, and no cuts need be made on the surface.
We should note that our approach is quite different from the previous works

cited above in brain flattening which typically consider locally area or length
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preserving deformations. For example, in the nice approaches of [6,15], the au-
thors fit a parameterized deformable surface whose topology is mappable to a
sphere. Then, it is possible to represent the brain surface on a planar map by
using spherical coordinates.
In our work, the key observation is that the flattening function may be ob-

tained as the solution of a second order elliptic partial differential equation
(PDE) on the surface to be flattened. For triangulated surfaces, there exist pow-
erful, reliable finite element procedures which can be employed to numerically
approximate the flattening function.

2 Flattening the Brain Surface

In this section, we sketch the mathematical justification of our brain flattening
procedure. Full details appear in [1]. A basic assumption is that the brain surface
is topologically a sphere. While this is is not exactly correct (there are some
small holes where the ventricles connect to the outer surface), we can always fill
these in by using, e.g., morphological dilation and erosion. This will not affect
the structures in which we are interested in flattening, in particular the brain
hemispheres. Let Σ ⊂ R3 represent this brain model which we assume is an
embedded surface (no self-intersections) of genus zero. In this section, since we
will be giving the analytical solution to the uniformization problem, we assume
that Σ is a smooth manifold. For the finite element method described in the
next section, it will be enough to take it as a triangulated surface. (We refer
the reader to [10] for the basic theory of uniformization of Riemann surfaces,
and to [16] for the solutions of elliptic PDE’s and the Dirichlet problem.) Fix a
point p on this surface. Let δp denote the Dirac delta (impulse) function at p,
∆ the Laplace-Beltrami operator on Σ\{p}, and i the square root of −1. The
Laplace-Beltrami operator is the generalization of the usual Laplacian operator
to a smooth surface. Let S2 denote the unit sphere in R3 and let C be the
complex plane.
The following result provides the analytical basis for our brain mapping pro-

cedure:

A conformal equivalence z : Σ\{p} → S2\{north pole} may be obtained by
solving the equation

∆z =
(

∂

∂u
− i

∂

∂v

)
δp. (1)

Here, u and v are conformal coordinates defined in a neighborhood of p. Further,
we are identifying S2\{north pole} with the complex plane in the standard way
from complex analysis, say via stereographic projection. This result means that
we can get the conformal equivalence by solving a second order partial differential
equation on the surface. Fortunately, on a triangulated surface, this may be
carried out using a finite element technique we will describe below.
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3 Finite Element Approximation of Conformal Mapping

We now describe a numerical procedure for solving (1), assuming that Σ is a
triangulated surface. Using the notation of the previous section, let σ = ABC
be the triangle in whose interior the point p lies.

3.1 Functional Interpretation

The first step in the solution of (1) is to interpret
(

∂
∂u − i ∂

∂v

)
δp as a functional on

an appropriate space of functions, in our case the finite-dimensional space PL(Σ)
of piecewise linear functions on Σ. For any function f smooth in a neighborhood
of p, one has

∫ ∫
Σ

f

(
∂

∂u
− i

∂

∂v

)
δpdS = −

(
∂f

∂u
− i

∂f

∂v

)
|p,

and for f ∈ PL(Σ), this last quantity is completely determined by the value
of f at A, B, and C.
Choose the u and the v axes so that A and B are along the u axis, and

the positive v axis points towards C. Let E be the orthogonal projection of C

on AB. Then for f ∈ PL(Σ), and θ = 〈C−A,B−A,〉
‖B−A‖2 , we have

∫ ∫
Σ

f

(
∂

∂u
− i

∂

∂v

)
δpdS =

fA

‖B − A‖ − fB

‖B − A‖ + i
fC − (fA + θ(fB − fA))

‖C − E‖ .

3.2 Finite Elements

We briefly outline the finite element method for finding our approximation to z.
The heart of the method simply involves the solution of a system of linear equa-
tions [12].
One may show that z satisfies (1) if and only if for all smooth test functions f ,

we have ∫ ∫
Σ

∇z · ∇fdS =
(

∂f

∂u
− i

∂f

∂v

)
|p. (2)

This formulation is the key to the finite element approximation of the solution
to (1) on the triangulated surface Σ. We restrict our attention to PL(Σ), and
seek a z ∈ PL(Σ) such that (2) holds for all f ∈ PL(Σ).
For each vertex P ∈ Σ, let φP be the continuous function which is linear

on each triangle, has the value 1 at P , and is zero at all other vertices. Then
these φP form a basis for PL(Σ), and we seek a z of the form z =

∑
zP φP , for

some vector of complex numbers (zP ), P ∈ Σ. Further, since (2) is linear in f ,
it is enough to show that (2) holds whenever f = φQ for some Q.
Thus we want to find a vector z = (zP ) such that for all Q,

∑
P

zP

∫ ∫
∇φP · ∇φQdS =

∂φQ

∂u
(p)− i

∂φQ

∂v
(p). (3)
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3.3 Formulation in Matrix Terms

The formulation (3) is simply a system of linear equations in the complex un-
knowns zP . Accordingly, we introduce the matrix (DPQ), where

DPQ =
∫ ∫

∇φP · ∇φQdS,

for each pair of vertices P, Q. Note that DPQ �= 0 only if P and Q are connected
by some edge in the triangulation. Thus the matrix D is sparse.
Suppose PQ is an edge belonging to two triangles, PQR, and PQS. A formula

from finite-element theory [12], easily verified with basic calculus, says that

DPQ = −1
2
{cot � R+ cot � S} , P �= Q, (4)

where � R is the angle at the vertex R in the triangle PQR, and � S is the angle
at the vertex S in the triangle PQS. The formula for the diagonal elements of D
is (see [1])

DPP = −
∑
P �=Q

DPQ. (5)

Introducing vectors a = (aQ) = (∂φQ

∂u (p)) and b = (bQ) = (∂φQ

∂v (p)), equa-
tion (3), becomes, in matrix terms,

Dx = a, Dy = −b, (6)

where, using our formula for
(

∂
∂u − i ∂

∂v

)
δp derived in Section 3.1, we have

aQ − ibQ :=




0 Q /∈ {A, B, C},
−1

‖B−A‖ + i 1−θ
‖C−E‖ Q = A,

1
‖B−A‖ + i θ

‖C−E‖ Q = B,

i −1
‖C−E‖ Q = C.

(7)

4 Experimental Results

We tested our algorithm by flattening the brain surface contained in a 256×256×
124 MR brain image provided by the Surgical Planning Laboratory of Brigham
and Women’s Hospital in Boston. These consist of sagittal T1 weighted gradient
echo images of a patient with a brain tumor. We chose a brain with a tumor to
illustrate the effect of the flattening on both normal and pathological features
in an MR brain set.
First, using the segmentation algorithm of [4,14,18], we found the brain cor-

tical surface, i.e the gray matter/CSF interface. The VTK Toolkit [17] was then
used to obtain a triangularization of the surface, which we proceeded to smooth
slightly to reduce the effects of aliasing. This was done by using the flow accord-
ing to mean curvature. A morphological based method was used to remove any
minute handles on the surface formed by the segmentation process.
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We then used the method described in the previous sections to find a flat-
tening map to the plane and then composed this map with a map from the
plane to the unit sphere using standard inverse stereographic projection. This
composition gives us a bijective conformal map from the surface to the sphere.
Note that it is not practical to view the planar mapping directly in its entirety,

because stereographic projection stretches areas near the north pole too much
to be useful. In fact it is not possible to map a sphere, a nearly complete sphere,
or any other similarly shaped surface to the plane in any way without major
distortion. However, smaller surface patches may be mapped to the plane with a
more reasonable amount of distortion, and in fact the “best” (in terms of length
distortion) mapping to the plane from a sphere with a geodesic disk removed
is known. In practice, we have not found the distortion of area near the north
pole to be a problem in solving the linear equations for our flattening map. The
method seems to be stable across a wide variety of surface shapes and varying
fineness of triangulations.
After flattening the brain surface, we used mean curvature to color corre-

sponding points on the two surfaces (the lighter the point the higher the mean
curvature on the brain surface). This provided us with an effective way to see
how the flattening process acted on the gyral lines of the brain surface. This
is shown in Figure 2, which provides two views of the cortical surface and the
corresponding areas on the sphere. Note the tumor on the right parietal lobe
visible in the vertex view. It is interesting to see how the conformality of the
mapping from the brain surface to the sphere results in a flattened image which
is locally very similar in appearance to the original.
Next, we tested our process on the more highly convoluted surface which is

defined by the boundary between the white and gray matter within the brain. To
extract this boundary, we used a combination of the method based on smooth-
ing posterior probabilities as described in [19], and the segmentation method
described in [4,14,18]. (See also [13,21,22], and the references therein for other
approaches to brain segmentation.) Once the surface was obtained, our flatten-
ing method was applied exactly as it was for the cortical surface. The result of
this process is shown in Figure 3. Note that much of the white matter surface
is hidden within its deep convolutions, but that such areas on the sphere are
clearly visible.
We point out that inverting the flattening map allows us easily to establish

orthogonal coordinates on the surface as is seen in Figure 4. Further, the method
allows us to find north and south poles on a highly convoluted surface such as
the brain, giving an alternative method to that discussed in [3].

5 Conclusions

In this paper, we described a general method based on a discretization of the
Laplace-Beltrami operator for flattening a surface in a manner which preserves
the local geometry. The approach can be carried out using a finite element
method which takes into account the special boundary conditions. We also il-
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lustrated the technique on the brain surface and white matter of an MR brain
data set.
In addition to flattening the cortical surface, we have several other appli-

cations in mind including 3D colon and bladder flattening, automatic texture
mappings, and image registration. We are very hopeful that our techniques will
be useful for such problems as well.
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Fig. 1. Two Views of the Flattened Brain Surface
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Fig. 2. Two Views of the Flattened White Matter

Fig. 3. Orthogonal Grid on Brain Surface
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