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Abstract. This paper describes work on the registration of diffusion tensor
images of the human brain. An existing registration algorithm, the multi-
resolution, elastic matching algorithm, [1-3], has been adapted for this purpose.
One problem with the application of such a method to this new data type is that
transformations of the image affect the DT values at each voxel, as the
orientation can change with respect to the surrounding anatomical structures.
Three methods for the estimation of an appropriate reorientation of the data
from the local displacement field, which describes the image transformation,
are presented and tested. Results indicate that the best matches are obtained
from a reorientation strategy that takes into account the effects of local shearing
on the data as well as the rigid rotational component of the displacement. The
methods presented here may be useful for the computation of region based
similarity measures of single valued intensity images, which also vary with
local image orientation.

1 Introduction

Diffusion tensor (DT) imaging is a recent innovation in MRI (magnetic resonance
imaging), [4]. In DT imaging, the measurement acquired at each voxel in an image
volume is a symmetric second order tensor, which describes the local water diffusion
properties of the material being imaged. The DT may be thought of as a Gaussian
density describing the probability of the final position of a molecule, initially at the
centre of a voxel, after some fixed time. DT imaging of the human brain has provoked
particular interest because of the added insight it provides into the structure of white
matter regions. Neuronal axons are fibres that form the connections between different
cells of the brain. In these axons water is free to diffuse along the fibre, but diffusion
in perpendicular directions is greatly restricted by the cell wall. DT measurements
taken from areas in the brain where large numbers of parallel axons are bundled
together, for example the white matter tracts, thus tend to exhibit a high degree of
anisotropy and the principal direction (PD) of the DT points along the axes of the
bundled fibres. By associating neighbouring voxels according to the PD of their DTs,
connection pathways within the brain can be traced and mapped, see for example [5],
although the resolution at which these images can currently be obtained is such that
only major pathways can be extracted reliably. There are an increasing number of
clinical applications of DT imaging, for example, the analysis of stroke and multiple
sclerosis, [6].
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Three images derived from a slice of a DT image of the human brain are shown in
Figure 1. The larger image on the left shows a line at each pixel, which indicates the
PD of the DT projected into the xy plane. For pixels at which the PD is close to the z-
direction, these lines are less meaningful and are drawn in correspondingly lighter
colours. The two images on the right show two common indices that are derived from
the DT. The lattice anisotropy, [7], image (top) is hyperintense in white matter
regions where the diffusion is strongly weighted in one direction. In the PD image,
the crescent shaped regions of high anisotropy at the top and bottom of the image
have configuration that suggests they are bundles of fibres running from one side of
the brain to the other. The DT trace (bottom) is a measure of the total diffusion at a
point and thus tends to be largest in areas where the diffusion is unrestricted in all
directions such as regions of CSF (cerebro-spinal fluid).

Figure 1 Images derived from a slice of a DT image. Left: principal DT eigenvector projected
into the xy-plane. Lighter lines indicate greater z-component in the PD. No line is drawn at

points where the anisotropy falls below a certain threshold. Top right: lattice anisotropy image.
Bottom right: DT trace image.

Here we consider spatial normalisation of DT images and, in particular, the
adaptation of the elastic matching algorithm, [1-3], to work with this new data type.
Adaptation of the algorithm is complicated by the fact that each DT has an associated
orientation. Image transformations tend to change the orientation of DTs with respect
to the surrounding anatomical structure of the image. For a simple image
transformation, such as rigid rotation, DT orientation can be preserved by applying a
similar transformation to each DT. However, more complex transformations are
generally required for accurate spatial normalisation of brain images. The elastic
matching algorithm, [1-3], provides spatial normalisation via high dimensional warps
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described by a displacement field. The required reorientation of the DTs is dependent
on the local properties of the displacement field. In this paper, we discuss strategies
for estimation of this reorientation.

Motivation for this work is twofold. Firstly, spatial normalisation of MR images
from large groups of patients is of great benefit in clinical studies of anatomical
variation over population groups. Spatial normalisation of DT images is required to
assist clinical studies of the variation of diffusion properties. It may also be of use in
the analysis of the variation of pathways within the brain once the technology to
extract these pathways reliably is available. Secondly, the added structure in DT
images may allow better anatomical matches to be made between images acquired
from different patients, than can be obtained by matching on single valued intensity
images. Statistical models of accurate matches based on detailed information, such as
combinations of the DT with complementary structural information, could be used to
constrain spatial normalisations computed using less expressive data. We also note
that the reorientation strategies outlined here may be useful for the computation of
region based similarity measures for single valued intensity images undergoing non-
rigid transformations. Such measures have already proved effective for image
matching, but further improvements might be obtained if the effects of local image
reorientation on their values are taken into account.

In the next section, the elastic matching algorithm is described briefly and some
issues of its application to DT imagery are discussed. In section 3, we present three
strategies for estimating the required reorientation of the DTs during an image
transformation. Some experiments to compare these strategies are detailed in
section 4 and quantitative results are provided. Finally, conclusions are drawn in
section 5.

2 Elastic Matching of DT Images

In this section, we give a brief description of the elastic matching algorithm. Details
of the algorithm can be found in, [1-3]. Issues concerning is application to DT
imagery, in particular the requirement for reorientation of the data as image
transformations are applied, are then discussed.

2.1 Elastic Matching Algorithm

The elastic matching algorithm computes a displacement field describing a warp of
one image, which aligns it with another similar image. The warp is computed by
iteratively minimising an energy function. The basic energy function contains two
terms: a term derived from the similarity of the image data at corresponding points in
the fixed target and warped source images, and a term that expresses the amount of
deformation caused by the warp.

To provide a starting point for the algorithm that is close to the final solution, a
global affine transformation is first applied to the source image. We use Wood’s AIR
(Automated Image Registration) algorithm, [8,9], to compute the global
transformation. Elastic matching is then applied at consecutive levels of a multi-
resolution pyramid, from low resolution to high resolution, to find a warp that
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optimises the balance between pointwise similarity of the image data and deformation
of the source image.

2.2 Application to DT Images

Two issues arise with the application of the elastic matching algorithm to this new
type of data. Firstly, how to define the similarity between data at corresponding
positions in the two images and secondly, consistency of DT orientations.

For intensity images, for example proton density, T1- or T2-weighted images, it is
common to use the squared intensity difference or the cross-correlation of the two
images as the measure of local similarity. A detailed discussion of the similarity
measures that can be used for comparing DTs is beyond the scope of this paper. We
have found that a similarity measure, ST, based on the magnitude of tensor difference
produces good results. Experimental justification of this choice, as opposed to other
tensor comparison measures, matching on PD alone or cross correlation of indices
derived from the DT, is presented in [10]. For two DTs, D1 and D2, ST is given by

[ ]2)(
1

21 DD −−= traceST σ
.

(1)

The expression in the square root is equivalent to the sum of squared differences of
the elements of the DT matrix, and σ is a weighting parameter. ST is used as the
similarity measure in all the experiments presented in this paper.

Here we are concerned with the issue of DT orientation. In the next section we
present various strategies for extracting the appropriate reorientation of the DT from
the local displacement gradient. In doing so, the image transformation is modelled as
locally affine and so we will first consider how we expect basic affine transformations
of an image region to affect the DTs at voxels within the region. An affine
transformation is comprised of the following components:
• Rigid translation of an image region should have no effect on the DTs in the

region, since the measured diffusion is not dependent on absolute position.
• Rigid rotation of a piece of tissue with respect to a laboratory frame would cause

the diffusion characteristics of that tissue to be rotated by the same amount with
respect to the laboratory frame of reference. Thus rigid rotation of an image
region should be accompanied by a similar transformation of the DTs.

• Scaling part (or all) of an image is analogous to changing the size of a particular
tissue region. Such a change in size of a region of tissue would generally
correspond to an increased number of cells comprising the region. We would not
expect the microscopic structure of the tissue to be affected and thus we do not
expect the point-wise diffusion properties of the material to change.

• Shear of an image region, in general, has the both stretching and rotational
effects. Stretching can be viewed in a similar way to scaling and we assume that
it does not affect the DT values. The rotational effect of a shear is more complex
than the effects of rigid rotation, since its effect on a DT depends on the DTs
original orientation with respect to the shear. The orientation of a fibre whose
axis is in the same direction as a shearing force would be unaffected by the
deformation, but if the axis is in a perpendicular direction the fibre would
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undergo some reorientation. We thus expect to observe similar effects in the
orientation of DTs in image regions undergoing these transformations. This is
illustrated in 2D in Figure 2.

Figure 2 Illustration on the effects of image shear on the orientation of DTs. The arrow in each
square of the grid represents the PD of a DT before and after a shear is applied.

We assume throughout that the fundamental diffusion characteristics at any point in
the image are unaffected by an image transformation, i.e., the shape of the DT is
unaffected so its eigenvalues are preserved. The only change that occurs as a result of
the transformation is a reorientation of the axes of the tensor. If T1 is the DT matrix at
a point in an undeformed image, then the matrix, T2, of the DT in the transformed
version of the image is the same matrix after a similarity transform has been applied
to rotate the frame of reference of the measurement:

RTRT 1
T

2 = , (2)

where R is an appropriate rotation matrix, estimations for which are discussed in the
next section.

3 DT Reorientation Strategies

In this section, three strategies are detailed for the extraction of the appropriate
reorientation of the DT at each point, i.e., estimation of the rotation matrix, R, in (2).
The first two strategies use methods from classical continuum mechanics, which
extract the rigid rotation component from the local displacement gradient. The third
method accounts for the additional effects of local shearing forces, which is ignored
in the first two strategies, by applying the local displacement directly to the principal
axes of the DT.

3.1 Small Strain Strategy

Suppose we have two image volumes, I1 and I2, and a displacement field, u(X) =
(ux(X,Y,Z), uy(X,Y,Z), uz(X,Y,Z)), that describes the warp between the two images,
so that if x = X+u, then I2(x) = I2(X+u) = I1(X). The displacement gradient,

Horizontal Shear
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at a point, describes the relative displacements of local points and can be decomposed
into a rigid rotation component and pure deformation component. If we adopt elastic
body models for the two image volumes, as in the elastic matching algorithm, and
further assume that the strain on the elastic volume is everywhere small, then a simple
additive approximation to this decomposition can be used: Ju = E + ΩΩΩΩ. In this
decomposition, E, is a symmetric matrix that represents the pure deformation
component and ΩΩΩΩ is the skew-symmetric matrix, given by,
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ΩΩΩΩ represents the relative displacements due to the rigid rotation component at point
X=(X,Y,Z) in the undeformed image I1. It can be shown, [11], that ΩΩΩΩ is the relative
displacement matrix equivalent to a rotation about axis ω, through angle |ω|, where

kji xyzxyz Ω−Ω−Ω−=ω . (5)

Ωnm in equation (5) is the entry in the n-th row and m-th column of the matrix ΩΩΩΩ
and i, j , and k are unit vectors in the directions of the axes of the original co-ordinate
frame, X.

The transformation matrix, R, corresponding to this rotation can be obtained from
the general formula for rotation through angle θ about an axis given by the unit vector
(rx, ry, rz), [12]:
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(6)

When the transformation is described locally by a displacement vector field, Ju is
obtained by numerical differentiation of u. For a global affine transformation,
described by a matrix G, Ju, and consequently R, is constant over the entire image
volume and Ju can be obtained directly from G.
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3.2 Finite Strain Strategy

Malvern, [11], states that the small strain assumption is justified if the angle of
rotation is small compared to one radian. The displacement gradient can always be
decomposed into deformation and rigid rotation components, but the additive
approximation to this decomposition is inaccurate for larger angles of rotation. In
such cases, called “finite strain” cases, [11], a more complex decomposition must be
used. Here we just give the expression for the rigid rotation matrix, a derivation of
this expression can be found in [11]. For the finite strain case, R is given by:

( ) 2
1

..
−

= FFFR T .
(7)

Where F is the deformation gradient given by,

UJIF +==
Xd

xd
.

(8)

Computation of R in the finite strain case is more computationally complex, since
an eigen-decomposition is required to compute the matrix power in (7), [11].

3.3 Eigenvector Deformation Strategy

The deformation component of the displacement gradient includes transformations
such as shearing and non-uniform scaling. As illustrated in Figure 2, these
transformations can also affect the orientation, but both the previous strategies discard
the deformation component. An alternative approach is to consider the action of the
displacement directly on unit vectors in the principal diffusion directions.

There are a number of possible strategies that could be adopted to estimate the
appropriate reorientation of the DT in this way. In general, the action of the
displacement on a particular elliptical contour of the DT will yield a contour that is no
longer elliptical. We wish to preserve the fundamental shape of the DT and,
furthermore, the property we are most concerned with preserving is the PD. Thus, in
the method we have chosen to use here, we ensure that the PD is mapped perfectly to
its image under the local displacement. Orientation of the DT in the orthogonal
directions is computed in such a way as to ensure that the other eigenvectors of the
DT are as close as possible to their images. The method proceeds as follows:
• Compute unit eigenvectors, e1, e2, e3, of the DT.
• Apply the local deformation gradient, F, to the principal eigenvector, e1, to find

its image in the deformed configuration, F(e1).
• Compute the rotation matrix, R1, that maps e1 onto a unit vector in the direction

of F(e1). The axis and angle of this rotation are obtained from the vector and
scalar products of e1 and F(e1), and R1 can then be calculated using equation (6).

A secondary rotation is required to map the second principal eigenvector, e2, from its
position after the first rotation to a direction as close as possible to its image under F.
• Find the images of e2 under transformations F and R1.
• Find the projection, P(e2), of F(e2) onto a plane perpendicular to R1(e1). Note that

the 2nd principal eigenvector of the rotated DT, R1(e2), already lies in this plane.
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• Compute a second rotation, R2, that rotates R1(e2) onto a unit vector in the
direction of P(e2). The axis of this rotation is R1(e1) and the angle is found from
the dot product of R1(e2) with P(e2).

Note that in this scheme, the DT reorientation is not constant for global affine
transformations, unlike the previous two methods. Although the deformation
gradient, F, is constant, its effect on the eigenvectors of the DT depends on the
orientation of e1 and e2, so a separate reorientation must be computed at every voxel.

4 Experiments and Results

In this section, a set of experiments is described, which test the performance of the
different DT reorientation strategies proposed in the previous section. Experiments
are performed over a single pair of DT images of the human brain. Details of data
acquisition are given first, followed by a description of the experiments and, finally,
results from these experiments and some discussion.

4.1 Data

Both images are taken from young female subjects. The general image acquisition
methodology is identical to that reported in [4]. Images were acquired using
a 1.5T GE Signa Horizon EchoSpeed spectrometer. Each DT image consists of 33
contiguous axial slices, with slice thickness 3.5mm, 220mm field of view
and 128x128 in-plane resolution. Six gradient directions were sampled and 4 images
were acquired for each direction. Four images with no diffusion weighting were also
acquired and so a total of 28 T2-weighted acquisitions were made per slice of the DT
image volume.

Brain regions were extracted from the background by hand in both images and
background voxels are set to a value outside the measurement range.

4.2 Experiments

In all the experiments, the elastic matching algorithm is run at four resolutions from
one sixteenth to one half of the full, isotropic, 1mm3, volume, which is interpolated
from the original image. The weighting of the deformation term in the elastic
matching energy function is varied from 1.0 to 0.125, through successive negative
powers of two for successive levels of the pyramid.

In order to select an optimal value for σ, which controls the weighting of the
similarity term of (1), a number of landmark correspondences were defined in each
image. For each reorientation strategy, the value of σ was chosen to be that for which
the summed distance between landmarks after matching is minimal. For the match
obtained with σ set at this optimum value, a second measure is computed, which
indicates the similarity of PDs at corresponding points. Care must be taken with
measures of this type, as the PD is poorly defined in regions where the diffusion is
isotropic, and the difference cannot be relied upon as a measure of match quality. For
this reason, the final measure of match quality, EPD, is an average of the dot product
of the two PDs weighted by the geometric mean of their lattice anisotropies.
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The sums are taken over the region within both hand extracted brain regions. D1

and D 2 are the DTs in corresponding positions of the two images, v(D) represents the
lattice anisotropy of D and pd(D) is a unit vector in the PD of D.

4.3 Results

Separate matches are computed using each of the DT reorientation strategies and once
more with no DT reorientation. The quality of each match is assessed using EPD and
results are given in Table 1. We also give the magnitude of the tensor difference (-σST

of (1)) averaged over the overlap region to give a measure, ET, in each case. Note that
higher values of EPD indicate better match quality, whereas lower values of ET are
more desirable.

Table 1 Quality measures for the matches between the pair of brain volumes computed using
each of the DT reorientation strategies.

Reorientation
strategy

Small Strain Finite Strain Eigenvector
deformation.

No
reorientation.

ET 627.8 625.3 622.2 623.4
EPD 0.768 0.768 0.772 0.771

The optimal value of the similarity weighting parameter, σ, was found to be
around 200 for each strategy. The value of the landmark distance measure is noisy in
the vicinity of this minimum point and no significant differences in this measure can
be observed between the difference reorientation strategies. The values of EPD and ET,
however are more stable and the differences in these values observed in Table 1 are
consistent in the vicinity of σ=200. With σ set this value, we find that both the small
strain and finite strain reorientation strategies produce poor performance and the
matches obtained with them are worse than with no reorientation at all. The
eigenvector deformation strategy is the only strategy that improves the quality of
match over the control case in which no reorientation is applied.

5 Conclusions

We have presented three methods for estimation of the appropriate reorientation of
DTs in image volumes undergoing non-rigid transformations, which we model as
locally affine. Of the three methods the best results were obtained from the
eigenvector deformation strategy, which explicitly computes the effects of the local
displacement field on vectors along the principal axes of the diffusion ellipsoid. This
is the only method of the three presented that takes into account the reorientation
effects of the deformation component of the image transformation.

The numerical differences in the results above are small. This fact may reflect that
the structure of these particular brains is such that little reorientation is required
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during matching, or it may be that the reorientation is not correct throughout the
matched image volume. Experiments on an extended data set are planned. Simple
experiments with synthetic data can verify that for a known displacement field, the
expected reorientation of the data is extracted correctly by the methods described
above. However, we cannot verify that a good voxel-voxel anatomical match is made
for the real data.

Although the orientation of the DTs is updated throughout the matching process,
there is currently no explicit term in the energy function for their orientation. The
inclusion of such a term should allow the elastic matching algorithm to exploit the
correspondence of orientational information in the DTs while computing the match
and so should further improve the quality of the matches obtained. As mentioned in
the introduction, this issue also arises when matching intensity images using region
based similarity measures and the improvement of these matches is added motivation
for continued investigation in this area.
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