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Abstract. In previous work, we have introduced the concept of sulcal
basins. Sulcal basins are subdivisions of cortical folds that allow to estab-
lish a complete parcellation of the cortical surface into separate regions.
In this paper, we present methods of using this concept to support the
analysis of functional activation patterns in the human brain as mea-
sured by fMRI (functional magnetic resonance imaging) experiments. In
particular, we present two methods of performing inter-subject averages.
The first method uses a form of non-linear spatial normalization based
on sulcal basin landmarks. The second method performs group averages
using sulcal basins themselves as entities for averaging. This second ap-
proach has the advantage of ensuring that truly anatomically homologue
entities enter the averaging process. In addition, it yields results that are
immediately interpretable by a specialist.

The methods are presented in the context of an fMRI experiment in
which 10 test subjects were asked to respond to various visual stimuli.

1 Introduction

In previous work, we have introduced the concept of sulcal basins [7],[5],[6]. Sul-
cal basins are subdivisions of cortical folds that allow to establish a complete
parcellation of the cortical surface into separate regions. These regions are neu-
roanatomically meaningful and can be identified from MR data sets across many
subjects.

In this paper, we present methods of using this concept to support the anal-
ysis of functional activation patterns in the human brain as measured by fMRI
(functional magnetic resonance imaging) experiments. FMRI allows to create
digital images that display local changes in blood flow with a spatial resolution
of about 3 mm and a temporal resolution of up to 1 second. Since its invention
a few years ago [1], it has become one of the most important technologies used
in human brain mapping research.

The data produced by a typical fMRI experiment consist of a time sequence of
digital images taken every n seconds. Each image contains several 2D slices where
typically slices are about bmm thick and gaps between slices are about 2mm
wide. Usually, two or more experimental conditions are alternated within the
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same experiment. For instance, some baseline condition may be contrasted with
a condition in which some visual or auditory stimulus is presented.

The aim of fMRI data analysis is threefold. The first aim is to detect image
regions which display a significant difference in image intensity between various
experimental conditions. We will refer to those regions as “activation areas”. Sec-
ondly, the exact anatomical location of activation areas should be reported. And
thirdly, some method of inter-subject averaging must be provided. At present,
inter-subject averaging is usually performed by applying some form of spatial
normalization to each individual data set using image warping techniques, and
then computing pixel-wise averages in a stereotactic coordinate space [13].

In this paper, we will propose a method of inter-subject averaging that does
not require spatial normalizations and warping. In fact, the sulcal basin model
provides a means of performing inter-subject comparisons and group averages
based on individual anatomy rather than on a stereotactic coordinate space.

However, if needed, the sulcal basin model can also used to perform a spatial
normalization based on non-linear warping. In this paper, we will present both
methods of inter-subject averaging. We present the warping method primarily
for the purpose of validating the basin concept.

2 fMRI Data Analysis

2.1 Experimental Data

We will describe our methods in the context of an fMRI experiment described
by Pollmann et al. [14]. In this experiment, 10 healthy test subjects were asked
to respond to various visual stimuli while fMRI data were being recorded.

Sixteen fMRI slices with a thickness of 5mm, interslice distance 2mm, 19,2cm
FOV and an image matrix of 64x64 were collected at a 3T Bruker 30/100 Med-
spec (Bruker Medizintechnik GmbH, Ettlingen, Germany) using a gradient re-
called EPT sequence (TR=2000ms, TE=40ms, flip angle=40). All 16 slices were
recorded every 2 seconds. During the experiment, a baseline condition and an
experimental condition alternated. At the same time, sixteen anatomical T1-
weighted 2D slices were also recorded that were geometrically aligned with the
functional data.

In addition to the fMRI data, we also obtained anatomical 3D MR data sets
from all 10 subjects. The spatial resolution between planes was approx. 1.5mm
and the within-plane resolution was set to approx. 0.95mm x 0.95mm. The
images were resampled to obtain isotropic voxels of size Imm x Imm x 1lmm so
that each data set contained 160 slices with 200 x 160 pixels in each slice. All
3D data sets were rotated into a stereotactic coordinate system such that the
origin was halfway between CA and CP (see also [9]).

2.2 Statistical Analysis

The analysis of the fMRI data proceeds in several steps [3]. After some pre-
processing involving radiometric and geometric corrections, a statistical t-test is
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employed in order to identify image regions that show a significant difference in
image intensities between the experimental conditions.

The result of this analysis is a map in which the fMRI image sequence is
collapsed into one image where each pixel encodes the degree of significance
with which the image intensity differs between the experimental conditions. The
degree of significance is represented by p-values that are given as normalized z-
scores. Therefore, these maps are often called a “zmap”. We obtained such a
zmap for each test subject.

2.3 Spatial Normalization

In order to facilitate group studies, the zmaps from various test subjects must be
geometrically aligned in 3D space. This is achieved in two steps: co-registration
and spatial normalization.

During co-registration the zmaps are rotated and shifted into correspondence
with the 3D anatomical MR data set acquired from each subject. Remember that
the 3D anatomical data sets are already rotated and translated into a common
stereotactic coordinate system. Thus, co-registration also aligns the zmaps.

The co-registration was achieved as follows. As noted before, during the
experimental session we recorded not only functional MR slices but also 2D
anatomical MR slices that were geometrically aligned with the functional data.
We used these antomical slices to compute rotational and translational parame-
ters that maximized the correlation between the anatomical 2D data slices and
the 3D reference data set. We then used these same parameters to register the
zmaps as well. The co-registration algorithm is explained in more detail in [11].

After co-registration, all zmaps reside in a common stereotactic coordinate
system. However, due to differences in individual anatomy, this does not guar-
antee that corresponding anatomical locations of different subjects occupy the
same location within this coordinate system. Therefore, some form of spatial
normalization is required.

Spatial normalization is frequently used in the context of human brain map-
ping in an effort to remove inter-subject or inter-modal variability. Generally,
the aim is to geometrically align one data set with another such that corre-
sponding brain locations are mapped onto each other and spatial variability is
diminished([3],[13]).

The simplest form of spatial normalization is a linear scaling that brings
all data sets into a common standard size. More sophisticated methods involve
non-linear warping techniques that seek to warp individual data sets onto some
reference atlas. Spatial normalization approaches can be loosely classified into
two major groups: intensity-driven and landmark-driven approaches. Intensity
driven approaches try to match locally corresponding image regions of simi-
lar grey value intensity (e.g. [2],[4],[10],[18]). Landmark-driven approaches use
anatomical landmarks such as curves[17] or surfaces [L6][19] to guide the warping.
For a complete reference on spatial normalization and registration see [20],[12].

In the following, we will propose a new method of spatial normalization based
on the concept of sulcal basins.
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Fig. 1. The result of a segmentation and labelling of sulcal basins. The numbers
indicate neuroanatomical labels, e.g. '3’ is the label for the inferior part of the
central sulcus. The anatomical model contains 38 left-hemispheric basins.

3 Sulcal Basins

Sulcal basins are concavities on top of the white matter surface (after removal
of the cortical compartment) that are bounded by convex ridges that separate
one basin from the next so that adjacent sulcal basins meet at the top of the
ridge. The entire white matter surface is covered by such concavities so that a
decomposition into sulcal basins yields a complete parcellation of the surface.

A method for segmenting and labelling sulcal basins was introduced in [7].
Figure 1 shows the resulting labelled basins. The numbers indicate neuroanatom-
ical labels. Our present model contains 38 left-hemispheric basins.

The sulcal basin model facilitates a new approach to non-linear spatial nor-
malization. The basic idea is to guide a surface based warping mechanism by
sulcal basin landmarks.

The surface to be warped is the morphological closure of the white matter
which is obtained by applying a 3D morphological closing filter to the white
matter image. The surface to be warped is the surface of the morphological
closure (figure 2c¢).

To normalize brain shapes, we first selected a “model” brain from our 10
data sets to which all other brains were subsequently deformed. All data sets
were initially subjected to a linear scaling in the x, y and z-directions so that
they all had the same bounding box. We then use a quadratic polynomial F' to
perform an additional non-linear deformation that uses sulcal basin information.
Note that all voxels belonging to the surface of the morphological closure are
also elements of some sulcal basin so that every surface voxel inherits a basin
label from the basin to which it belongs. The quadratic polynomial F' has the
form:

a10 + @112 + a12y + a132 + a142y + a152z + a16yz + a17x” + a18y” + a9z

aoo + @01z + ao2y + aosz + aoary + aosxz + aosyz + aorx® + aosy> + agez’
F(z,y,2z) =
a20 + a21% + az22y + a232 + a24xy + az25xz + a26yz + az7rx” + az28y” + az9z

The deformation parameters a;; pertaining to the quadratic polynomial F'
are estimated using the following definition of pairwise discrepancy. For each
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a) MR image b) white matter ¢) morphological closure

Fig. 2. Extracting a surface for subsequent warping

node p; € R3,i =1,...,n in one data set, we select the corresponding node ¢;
in the model data set. The corresponding node must have the same basin label
and it must be the node whose Euclidean distance ||¢; — p;|| from p; is minimal.
The deformation parameters a;;, are then chosen such that the following term is

minimized:
n

Z F(pi; aix))?.

i=1
The minimization was performed using Powell’s optimization method ([15]). We
selected the model brain by computing pairwise discrepancies between all data
sets, and choosing the one whose average discrepancy to all other brains was the
least in this group.

4 Experiments

4.1 Results of Spatial Normalization and Averaging

We applied the spatial normalization to the co-registered zmaps of our 10 test
subjects. Comparing the effects of the sulcal basin normalization with the simple
linear normalization, we found that the sulcal basin normalization does indeed
decrease the inter-subject variance of the zmaps.

Let z; denote the jth voxel in the zmap of the ith subject, and let

10

1 & 1 i
_og S o1 )

denote the inter-subject average and standard deviation at each voxel. When us-
ing a simple linear normalization, we found that the variance o; across subjects
at each voxel is larger on average than when using the sulcal basin normaliza-
tion. The mean standard deviation Z;I:O 0; using linear normalization was 1.233
(o0 =0.776) compared to 1.187 (¢=0.776) (p < 0.0001,¢ = 51.28).

When performing a voxel-by-voxel comparison of inter-subject variance we
found that 54.8 percent of the voxels had a larger inter-subject variance when
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Fig. 3. Activation areas thresholded at z=2.25 and superimposed on an anatom-
ical MR data set.

using linear instead of sulcal basin normalization. Figure 3 shows the zmap
averaged across subjects after non-linear normalization and superimposed onto
one anatomical data set. It was thresholded at z = 2.25.

Since the inter-subject variance is decreased by spatial normalization, the
functional activation areas become more pronounced and more easily identifiable.
In our context, activation areas are defined as connected components of the
thresholded zmap. Table 1 shows two listings of activation areas obtained after
linear and non-linear normalization.

size sum location
874 2877.10 ( -10, -10, 53)
1221 3772.57 ( -41, -33, 49)
12 33.58 (-42,-22, 52)

a 23 64.74  (-11, 0, 46)
d 32 90.38 (-22,-24, 42)

size sum location
a| 942 310240 (-9, -12,53)
b| 857 2559.49 (-39, -34, 49)
2 551 (-45,-37, 44)
23 65.02 (-21, -24, 42)
C 877 2670.00 (0,-78,-15)

T o

40 112.83 (-12, -85, -17) 3 8.32 (-28, -26, 42)
5 820 (14, 90, -15) c| 767 2389.69 (0,-78,-14)
: ] 1 2.75  (7,-89,-14)

2744 8523.54

a) linear normalization

2933 9239.14
b) sulcal basin normalization

Table 1. Listing of activation areas with z-values thresholded at z=2.75. Activa-
tion sizes are given in mm3. The location is given as Talairach-Fox coordinates of
the voxel with the highest z value. The sum represents the sum over all z-values
within the area. Note that by using non-linear normalization the total sum in-
creases by about 9 percent (from 8523.54 to 9239.14). Corresponding areas are
labelled by a letters a,b,c,d in both tables. For some smaller areas correspon-
dences could not be identified.

4.2 Results of Group Averages Not Using Stereotactic Coordinates

In the previous section, we have described a method of obtaining group averages
using spatial normalization. However, the main advantage of the sulcal basin
model is that is allows to perform group averages using anatomical locations
rather than stereotactic coordinates.
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Table 2 lists the 38 basin locations and the average functional activations
found in each basin. This time however, the average is obtained by summing
across corresponding basins of all subjects, not across corresponding locations
in the stereotactic coordinate space. The activation level of a basin (within one
subject) is defined as the mean z-score within this basin. To determine whether
a significant level of activation is present in a basin, we average activation levels
across subjects and perform a t¢-test against the null hypothesis that no activa-
tion is present in the basin. In this experiment, we found a significant level of
activation (p < 0.05) in 10 basins.

The important point here is that activations are now averaged in an anatom-
ically meaningful manner, and the result is listed in a way that is immediately
interpretable by a specialist. The results listed in table 1 correspond to the re-
sults listed in the table 2 (with the exception of right hemispheric and median
activations). For instance, area “a” corresponds to basins 4,14. Note that due
to the thresholding of z-values inherent in table 1, one major activation area
(basin 24) is missing altogether in table 1 as the z-scores were just below the

threshold.

basin|activation level p basin|activation level P
2 0.732 0.064 21 0.154 0.288
3 1.096 0.002 * 22 0.507 0.062
4 1.103 0.005 * 23 0.472 0.046 *
5 1.291 0.027 * 24 0.332 0.103
6 0.495 0.018 * 25 0.123 0.295
7 0.193 0.160 26 0.489 0.008 *
8 0.253 0.233 27 -0.111 0.353
9 -0.410 0.023 * 28 -0.161 0.191
10 -0.065 0.416 29 0.143 0.107
11 0.065 0.450 30 0.027 0.402
12 0.098 0.451 31 0.605 0.045 *
13 -0.857 0.117 32 0.380 0.160
14 0.533 0.042 * 33 0.085 0.362
15 -0.097 0.390 34 0.089 0.387
16 0.058 0.396 35 -0.049 0.429
17 -0.125 0.380 36 -0.131 0.227
18 0.855 0.016 * 37 0.421 0.082
19 0.586 0.078 38 0.044 0.460
20 0.213 0.108 39 -0.348 0.237

Table 2. Listing of average functional activations levels across 10 subjects.
Basins with significant levels of activations (p < 0.05) are marked by a star.
The p-values resulted from a t-test against the null hypothesis that the activa-
tion level is zero. Only basins of the left lateral hemisphere are listed. The basin
labels correspond to the labels displayed in figure 1.
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5 Discussion

We have introduced a new approach to spatial normalization and inter-subject
averaging using the sulcal basin model. The prime advantage is that this model
allows inter-subject comparisons on the basis of the individual anatomy rather
than on a somewhat arbitrary stereotactic coordinate space. Thus, image warp-
ing might not even be necessary for inter-subject averaging as averaging can be
performed using the sulcal basins instead of voxels in some coordinate space.

This new approach offers three advantages over the standard spatial nor-
malization and pixel-wise average approach. Firstly, in averaging across sulcal
basin locations instead of voxels in stereotactic coordinate space, it is guaran-
teed that truly corresponding entities are matched and averaged. Secondly, the
results are displayed in a way that is much more useful to the specialist as it
is based on an established neuro-anatomical vocabulary. A third advantage is
that this method does not depend on any form of thresholding of z-values as is
required by standard averaging methods. Thresholding of significance values is
often quite arbitrary and might lead to misinterpretations. Using sulcal basins,
we can directly report the presence or absence of an activation in a basin together
with a significance level.

The fact that a spatial normalization based upon sulcal basins reduces the
variance in the zmap-average is evidence that this model is indeed anatomically
and functionally valid although further proof is warranted. The fact that the im-
provement in zmap-variance is only moderate is not surprising. Had we obtained
drastically different results, then we would have to disbelieve either our previous
results obtained by the standard linear normalization method, or be would have
to doubt our new results.

The spatial normalization using second-order polynomials is a somewhat
crude approach and was introduced primarily for the purpose of demonstrat-
ing the validity of the sulcal basin concept. Other methods of using sulcal basins
as landmarks for warping are conceivable and will be tested in the future.
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