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Abstract. Active Appearance Models (AAMs) provide a method of
modelling the appearance of anatomical structures in medical images
and locating them automatically. Although the AAM approach is com-
putationally efficient, the models used to search unseen images for the
structures of interest are large - typically the size of 100 images. This is
perfectly practical for most 2-D images, but is currently impractical for
3-D images. We present a method for compressing the model information
using a wavelet transform. The transform is applied to a set of train-
ing images in a shape-normalised frame, and coefficients of low variance
across the training set are removed to reduce the information stored. An
AAM is built from the training set using the wavelet coefficients rather
than the raw intensities. We show that reliable image interpretation re-
sults can be obtained at a compression ratio of 20:1, which is sufficient
to make 3-D AAMs a practical proposition.

1 Introduction

Model-based interpretation of medical images provides an effective method of
using prior knowledge of a class of images to achieve robust segmentation and
anatomical labelling. We have recently described Active Appearance Models
(AAMs) which provide a generic approach to modelling the shapes and grey-level
appearance of the structures of interest in a class of images and for locating them
automatically by matching the models to unseen images [1]. So far we have only
described 2-D applications of AAMs [2,3]. In principle AAMs could be straight-
forwardly extended to 3-D. However, although the approach is computationally
efficient, the models are large - typically the size of 100 images. This is perfectly
practical for most 2-D images, but is currently impractical for 3-D images.

Wavelet transforms provide a useful approach to image compression [4,5,6].
By transforming an image, they enable relatively high compressions with very
little degradation to the original image. In medical images all information is
potentially important, and the near lossless nature of wavelet compression lends
itself well to medical image compression [7].

By combining the image search effectiveness of the AAM with the compres-
sion capabilities of wavelets, we hope to develop a 3D image search algorithm
which is both efficient and robust.
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2 Active Appearance Models

In this section we provide a brief outline of the standard AAM approach, and de-
scribe two models used to evaluate our new approach. For a more comprehensive
description of the AAM algorithm, see [1].

2.1 Modelling Image Appearance

Active Appearance Models are generated using a statistical analysis of the shape
and texture variation over a training set of images. Rather than model the com-
plete image, a region of interest is first labelled using a set of landmark points
that describe the shape of the labelled objects in each image. Each example in
the training set is labelled with the same number of points marking out the
same structures. After alignment with the mean shape, the coordinates of the
landmark points are concatenated to form the shape vector x. Figure 1 shows
two examples of images labelled with landmark points.

(a) (b)

Fig. 1. Two examples of an MR brain slice labelled with landmark points. One
around the ventricles, the caudate nucleus, the lentiform nucleus, and the outside
of the skull (a), and the other around the brain stem, brain hull and inside of
the skull (b)

The variation in shape across the set is described by applying Principle Com-
ponent Analysis (PCA) to the landmark points, resulting in a Point Distribution
Model (PDM). Full details of this method can be found in [8]. Any valid example
of the shape modelled can then be approximated using:

x = x̄+Psbs (1)

where x̄ is the mean shape vector, Ps is a set of orthogonal modes of variation,
and bs is a vector of shape parameters.
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To build a statistical model of the grey-level appearance we sample points
within the convex hull of the landmark points. This is a somewhat arbitrary
choice which is appropriate for the examples show here. A more sophisticated
sampling scheme could easily be devised. The samples are warped to the mean
shape using a triangulation algorithm. Thus the warped images all match the
mean shape. Grey level information gim is then sampled from this shape nor-
malised image. By applying PCA to the normalised data, we obtain a linear
model that can approximate valid examples of grey-level appearance:

g = ḡ+Pgbg (2)

where ḡ is the mean normalised grey-level vector,Pg is a set of orthogonal modes
of intensity variation, and bg is a set of grey-level parameters.

By varying the vectors bs and bg, the shape and grey-level of any example
can be approximated. There may exist some correlation in the variances of shape
and grey-level, so a further PCA can be applied to the data, concatenating the
vectors, and obtaining a model of the form:(

Wsbs

bg

)
= b =

(
Qs

Qg

)
c = Qc (3)

where Ws is a diagonal matrix of weights for each shape parameter, correcting
for the difference in units between the shape and grey-level models, Q is a set
of orthogonal modes of appearance variation, and c is a vector of appearance
parameters.

The linearity of the resulting model enables us to express shape and grey-
levels as functions of c

x = x̄+PsWsQsc , g = ḡ +PgQgc (4)

where

Q =
(

Qs

Qg

)
(5)

A synthetic image can be generated for a given c by first generating the shape-
free grey-level image, g, and warping it to match the known control points de-
scribed by x.

2.2 Appearance Models of the Brain

Two sets of images were labelled with landmarks to make up the training sets
for two appearance models. Both used slices from T1 weighted MR images of
the brain. The training set for the ventricle model ((a) in Figure 1) contained 36
labelled images each with 163 landmark points, and the brain stem model ((b)
in Figure 1) contained 42 images in its training set, each with 145 landmark
points.

The effect of varying parameters in the vector c in each model is shown in
Figure 2, where the first two parameters, c1 and c2, are varied by ±2 standard
deviations.
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c1 ±2 s.d. c2 ±2 s.d.

Fig. 2. The first two modes of appearance variation in the two models

2.3 Image Search

To complete the tests on the normal model, we built an AAM using both models,
and tested them in a model search.

The AAM search algorithm tries to minimise the difference in the model
frame between a sample, gs, from an image being searched, and a synthesised
image, gm, by varying the appearance model parameters c which, for notational
simplicity, is taken to include parameters for position, orientation and scale. This
difference is given by:

δg = gs − gm (6)

Remember the c parameter also vary the shape, which affects the way the sam-
pled image gs is acquired. A linear relationship between δg and δc, the change
in c required to minimise |δg|, is learnt during a second training phase:

δc = Aδg (7)

The matrix A is obtained by applying linear regression using random displace-
ments, δc, from an image generated using the mean shape, pose and contrast.
Equation (7) can then be used in an iterative matching algorithm by measuring
the difference, δg, between an image generated by the current model parameters
and predicting the change, δc, required to minimise |δg| . Full details of this can
be found in [1].

Figure 3 shows results of AAM image search in each of the models described
above. Quantitative results are given in Section 3.4.

3 Compressing the Model’s Least Variant Features

3.1 Wavelets

Wavelet analysis can be carried out using the Fast Wavelet Transform (FWT)
algorithm developed by Stéphane Mallat [9]. This involves the decompositions
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Fig. 3. Search results for the two brain models, showing the original image, the
start position of the model, and the search result

of a signal by passing it through high-pass and low-pass filters. The wavelet
coefficients are generated using a convolution of the high-pass and low-pass filters
with the signal in turn. The low-pass filter gives rise to the approximation and the
high pass filter gives rise to the details. The approximations, therefore, represent
the low frequencies within the signal, which approximate the original signal, and
the details represent the minor corrections to the approximation for the accurate
reconstruction of the signal. As the signal is being passed through two filters,
the result would be data of double the length of the original. Therefore, a further
step is necessary. This step, downsampling, reduces the data by removing the
coefficients at every second location.

In 2D signals, details are required in multiple directions - one horizontal, one
vertical, and one diagonal. This is implemented using an extra bank of filters
through the second dimension. Figure 4 shows this algorithm diagrammatically.

To reconstruct the signal from the wavelet coefficients we need to reverse
the process and replace the decomposition filters with reconstruction filters.
Upsampling also replaces the downsampling in the diagram, so that zeros are
inserted at every second position.

In the standard FWT, the filtering process can be applied to the approxi-
mation resulting from a previous pass, creating a multi-level tree. Further de-
composition can be achieved using wavelet packet analysis. This is similar to the
method described above, except that it not only decomposes the approximations
at each level, but it also decomposes the details at each level, leading to a binary
(one-dimesional decomposition) or quad- (two-dimensional decomposition) tree
(Figure 5). As the details are the higher frequencies, which only add minor infor-
mation to a signal or an image, then changing the values of small details has little
effect on the reconstructed image. This is the basis of the wavelet compression.
In standard wavelet compression, a threshold is set, and if a detail coefficient
falls below that threshold, it is zeroed. The zeroed values can then be removed
to reduce the data, provided a scheme for their replacement is devised.



Wavelet Compression of Active Appearance Models 549

Fig. 4. 2D wavelet decomposition. The rows of the signal, s, are passed through
high- and low-pass filters, then downsampled. The resulting columns of the signal
are then passed through further filters to give the approximation and three sets
of details.

Fig. 5. A wavelet tree to two levels. Each node holds a set of coefficients giving
a detail or approximation of the previous level

3.2 Compression Over an Image Set

When building an appearance model, a training set of images is used, each
marked with the landmark points. After the shape model has been trained using
the landmarks, the grey-level texture model is built. This is done by taking
a convex hull around the landmarks, sampling from the training image, and
warping the sampled data to the mean shape. This puts the grey-level samples
in a shape free frame, as shown in Figure 6. In this shape free frame all the
images are similar, so this is an ideal place to compress the images, since a
standardised vector can be held for all the images detailing the decompression
information. In the case of standard wavelet compression, zeroed coefficients that
match throughout the image set, after the threshold is applied, can be zeroed.
A vector containing the positions of the zero columns could be stored, and the
zeros replaced at reconstruction time. The main problem with this method is
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Fig. 6. The shape free samples taken from the first and second images in the
brain stem model’s image set

that the zeroed coefficients throughout the set rarely fall into line, giving only
low rates of compression.

A better scheme, giving much higher rates of compression, is to remove the
coefficients that show the least variance throughout the image set. Rather than
zero these coefficients, they can be set to their mean to preserve any non-zero,
but invariant values. A vector is then held which contains the means of all the
positions that have been removed. This vector can be used during reconstruction
to replace the mean values. The resulting vector can be passed through the
wavelet reconstruction to recover the shape free image, with minimised loss of
quality.

This method differs from the standard wavelet compression method in that
compression can be applied to the approximation as well as the detail without
much degradation of the images. This is possible as the coefficients are being set
to the mean rather than being zeroed. The wavelet decomposition is still impor-
tant to the method as most of the change is still in the detail coefficients. This is
due to the fact that in the 2D analysis, the details outweigh the approximations
by 3:1 at the first level of the analysis, and this increases at the lower levels. We
use three levels of decomposition.

The Appearance Models can be trained on the sets of compressed wavelet
coefficients instead of the original image information.

3.3 Improving the AAM Search with Wavelets

A multiresolution version of the AAM algorithm outlined in Section 2 has been
described previously and shown to improve both speed and robustness [10]. The
method requires extra training of the Appearance Model at each resolution at
which the search is to be carried out. As the aim of the wavelet tranform is to
compress the Appearance Model, the standard multiresolution algorithm could
not be applied. One property of the wavelet decomposition, however, is the
downsampling and repeated decomposition of the approximations. These ap-
proximations lie in the left hand nodes of the wavelet tree (Figure 5), such that
node n,0 is the approximation at level n. The images at these nodes can be
reconstructed, and represent a multi-level decomposition of the approximations
as shown in Figure 7
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Level 0 Level 1 Level 2

Level 3 Level 4 Level 5

Fig. 7. Images recovered from the different levels of approximations in the
wavelet tree, showing their multiresolution property

As the model is decomposed to three levels, then we can reconstruct at each
level to represent that resolution of the model. Figure 8 shows the Appearance
Model representation at four resolutions (level 0 being that of the normal Ap-
pearance Model). The AAM can also be trained using the multi-level model. The
mean model is reconstructed at each level, and random model displacements are
reconstructed at the same level to train a regression matrix at that level. This is
repeated at each level in the tree. In image search, a wavelet transform identical
to that of the model is applied to the image to be searched, and its approxima-
tions are reconstructed at each level in turn. The model then searches at each
level from the lowest resolution to the highest, with the result of each level used
as the starting displacement for the next.

Level 0 Level 1

Level 2 Level 3

Fig. 8. The appearance model reconstructed at the different levels of approxi-
mations



552 C. B. H. Wolstenholme and C. J. Taylor

3.4 Compressed Appearance Models of the Brain

Compressed appearance models were built using the sets of training images
labelled as shown in Figure 1 , and three levels of Haar wavelet decomposition,
The models were tested at 75%, 90% and 95% compression, giving compression
ratios of 4:1, 10:1 and 20:1 respectively. The first mode of appearance variation
resulting from the brain stem models is shown in Figure 9 together with the
uncompressed model.

(a) (b)

Fig. 9. The first mode of variation of the model of the brain stem compressed
to 20:1 (a) compared to the normal model (b)

Since the models built using wavelet coefficients could still represent the ap-
pearance of the images, and could be reconstructed with reasonable accuracy,
AAMs of the models were built to test the compressed model’s ability in im-
age search. Only the models at 10:1 and 20:1 compression were used for this
experiment. ’Leave-all-in’ and ’leave-one-out’ tests were used to give estimated
upper and lower bands on search accuracy. Figure 10 shows an example result
from the tests using the 20:1 compressed model using the multilevel search, and
Table 1 shows the mean point to point errors between the search results and
the original training landmarks for the compressed and non-compressed mod-
els. All the models tested gave similar results in the leave-all-in tests, showing
that the compression had little effect on the AAMs search capabilities on previ-
ously seen image. In the leave-one-out tests, however, while the non-compressed
and compressed models using the standard search again gave similar results, the
multilevel search greatly improved the model’s results. The non-compressed and
20:1 compressed models gave mean errors of 16.33 and 16.89 pixels respectively
at their worst (and these failed to locate the brain), while the multilevel model
at 20:1 compression resulted in a worst mean error of only 6.35 pixels, which
located the brain. The best mean error for the multilevel model in the leave-one-
out tests was also better at 1.72 pixels compared to the non-compressed (1.90
pixels) and 20:1 compressed (1.94 pixels) models.
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(a) (b) (c) (d)

Fig. 10. The search results of the 20:1 compressed brain stem model from ’leave-
all-in’ (best (a) and worst (b)) and the ’leave-one-out’ (best (c) and worst (d))
tests using the multilevel search. The top row are the original images, and the
bottom are the search results

Leave-all-in Leave-one-out
Compression

% Successful % Failure P to P % Successful % Failure P to P

None 100 0 3.03 92.86 7.14 4.47
20:1 100 0 3.11 90.48 9.52 4.78

Multi-res 20:1 100 0 3.25 100 0 3.89

Table 1. Search results from the leave-all-in and leave-one-out tests. The mean
Point to Point error is measured between landmarks resulting from the recon-
structed shape after search to the original landmarks in pixels.

4 Discussion and Conclusions

We have demonstrated a method for compressing the amount of data required
to describe an Appearance Model, while still retaining the necessary information
for using the model successfully in the AAM search algorithm. The method uses
wavelets to place the shape-free images used by the appearance model into a
frame where compression can be carried out with minimal degradation to the
images. The compression is achieved by removing the coefficients that vary least
throughout the training set within the wavelet space. We have shown that the
model is still effective when used as an Active Appearance Model in image search.
The level of compression achieved (20:1) is sufficient to reduce a model, which
uncompressed would be around 6 gigabytes, into a size managable within the
memory of a desktop computer.
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The model loses detail as the compression increases, but it still searches accu-
rately, and once the object is located in an image, the more detailed information
can be retrieved directly from the image.

As the model building process is linear, a compression scheme using a linear
transform has the advantage that the final model is equivalent to that which
would have been built from the raw data. Wavelets provide one such scheme.
Wavelets also have the advantage over more traditional compression methods
such as the Discrete Cosine Transform (DCT) of avoiding blocking effects. A
further advantage is the image-like property of the wavelet coefficients, which
allows the use of the multi-level transform as a basis for the multi-resolution
appearance model without the need for extra training.

It is a small step from our current results to accurately locating brains in 2D,
a process that may be used to bootstrap some existing 3D brain stripping algo-
rithms. However, the reason for studying compression is to enable us to extend
the AAMs to 3D. If AAM search can be used for 3D MR images of the brain,
then this could prove an effective, fully automatic method for brain stripping
and structure segmentation, as well as proving useful in solving other medical
imaging location and segmentation problems.
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