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Abstract. For gray-value based multi-modality registration the similar-
ity measure is essential. Excellent results have been obtained with mutual
information for various modality combinations. In this contribution we
consider local correlation as similarity measure for multi-modality regis-
tration. Using a software phantom it is analyzed why local correlation is
suitable for this registration task whereas direct gray-value correlation
itself is usually not. It is shown that registration with local correlation
can be done using only a fraction of the image volume offering an op-
portunity to accelerate the algorithm. Within validation, registration of
the phantom images, two simultaneously acquired dual contrast MR im-
ages, and a clinical CT-MR data set has been studied. For comparison,
the data sets have also been registered with mutual information. The
results show that not only mutual information, but also local correlation
is suitable for gray-value based multi-modality registration.

1 Introduction

There are several clinical applications for which images from different modalities
are required, because they provide complementary information. A typical exam-
ple is the use of MR and CT images for radiation therapy planning. Another
application is the combination of functional images with the underlying anatomy
represented e.g. by an MR image. Different patient posture and positioning dur-
ing image acquisition complicate the interpretation of the images, and various
multi-modality registration algorithms have been developed therefore [1].
For gray-value based methods the similarity measure is essential. Correlation,
for instance, relies on a linear relationship between the gray-values of the images
to be registered. Such a linear relation cannot be expected for multi-modality
data sets and gray-value correlation cannot be applied directly, therefore. To
make correlation or the correlation coefficient suitable for CT-MR registration,
several pre-processing techniques have been proposed. Studholme et al. [2] ap-
plied a non-linear remapping of the CT intensities. Maintz et al. [3] computed
feature images with edges or ridges. Mutual information is much more suited
for multi-modality registration, because it does not rely on a functional relation-
ship between the gray-values. This distinguishes mutual information from other
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similarity measures. Multi-modality registration by maximization of mutual in-
formation has been proven to be very successful and excellent results have been
obtained for various modality combinations (CT-MR, MR-PET etc.) [2,4,5].
In this contribution we consider the registration of CT and MR images by max-
imization of local correlation [6]. To compute local correlation, for each pixel
in the reference image a neighborhood is defined, the correlation coefficient be-
tween this neighborhood and the corresponding neighborhood in the image to
be registered is evaluated, and all resulting correlation coefficients are summed
up. At the first glance, it is not obvious, why local correlation is suitable for
multi-modality registration. In order to answer this question, a multi-modality
data set has been simulated. Using this software phantom, the differences be-
tween correlation and local correlation are thoroughly discussed in the following
section. In section 3 the experiments are described, which have been performed
for validation. Apart from the software phantom, two simultaneously acquired
MR images and a clinical CT-MR data set have been used. For comparison, the
validation experiments have also been carried out using mutual information. The
results are discussed in section 4. Section 5 contains the conclusions.

2 Local Correlation and Multi-Modality Registration

The starting point for the discussion of correlation and local correlation is a
software phantom representing two images of different modality. This phantom is
introduced in the first subsection. On the basis of this phantom the properties of
correlation and local correlation are discussed in the second and third subsection.

2.1 Software Phantom

The software phantom represents a simple model of a multi-modality image set.
It is based on the assumption that each type of tissue leads to a characteristic
gray-value which depends on the physical effect used for imaging and the material
parameters of the tissue. These gray-values are therefore different for different
modalities and there is in general no functional relationship between the gray-
values of multi-modality images.
The software phantom was generated with a segmentation editor based on the
watershed algorithm of Vincent and Soille [7]. To enable interactive editing,
markers can be placed which are handled as constraints within region merging.
With this editor an MR image has been segmented into six different structures
(skin, ventricles, eyes, cortex, background, rest), and two images of different
modality have been simulated by assigning random gray-values to the segmented
structures. The gray-values are listed in Tab. 1. A slice of each of the simulated
multi-modality images is shown in Fig. 1.
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Table 1. Gray-values assigned to the structures of the segmented MR image.

skin ventricles cortex eyes background rest

Image a 48 62 70 123 0 5
Image b 15 83 31 101 0 53

Fig. 1. Simulated multi-modality images (a, b) and spatial distribution of the
contributions to the local correlation for r = 1 (c).

2.2 Correlation

A possibility to register two images of the same modality is the minimization of
the mean-square gray-value difference

D(ω, t) =
1

#M

∑
iεM

(I1(i)− I2(i))
2
, i = (ix, iy, iz) (1)

with respect to the translation t and the rotation ω of a rigid transformation. In
this equation, I1(i) denotes the reference image. The image I2(i) is registered and
depends on the transformation parameters t and ω. The summation is performed
over all pixels in the overlap region given by the set M .
This approach can be considered as a least-squares method. If the gray-values
of the images differ by a gray-value scaling I0 and a gray-value offset ∆I, the
concept of least-squares methods suggests to insert these parameters into (1)
and define the registration result by the minimum of

D′(ω, t) =
1

#M

∑
iεM

(I1(i)− I0I2(i)− ∆I)2 (2)

with respect to the transformation parameters t and ω, the scaling I0, and the
offset ∆I. Minimization with respect to the latter two parameters leads to

D′(ω, t) =
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−
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))2
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I2(i)− Ī2

)2 (3)



Gray-Value Based Registration of CT and MR Images 659

with Ī1 and Ī2 denoting the average gray-values in the overlap region for the
reference image and the image to be registered, respectively. The first term
in this equation is the gray-value variance of the reference image I1(i) within
the overlap region. The second term represents the reduction of the gray-value
variance due to adaptation of the image I2(i). The ratio of both terms

C2(ω, t) =

(∑
iεM

(
I1(i)− Ī1

) (
I2(i)− Ī2

))2

∑
iεM

(
I1(i)− Ī1

)2 ∑
iεM

(
I2(i)− Ī2

)2 (4)

is the square of the well-known correlation coefficient [8].
In the case of a linear relationship between the gray-values of the software
phantom images, the quantity D′(ω, t) should take its global minimum value
(= 0) and the square of the correlation coefficient its global maximum (= 1) if
the images are registered. Because there is no linear relationship, the quantity
D′(ω, t) has a larger value (354) and the square of the correlation coefficient is
smaller (0.36). The maximum of the squared correlation coefficient found during
registration (0.49) does no more correspond to a proper registration showing
that the correlation coefficient is in general not suitable for multi-modality reg-
istration.

2.3 Local Correlation

To evaluate local correlation, for a pixel i in the reference image a spheri-
cal neighborhood Si =

{
l = (lx, ly, lz)|(ix − lx)2 + (iy − ly)2 + (iz − lz)2 ≤ r2

}
of radius r is defined and the squared correlation coefficient C2

i (ω, t) between
this neighborhood and the corresponding neighborhood in the other image is
evaluated:

C2
i (ω, t) =

(∑
lεSi

(
I1(l)− Ī1(i)

) (
I2(l)− Ī2(i)

))2

∑
lεSi

(
I1(l)− Ī1(i)

)2 ∑
lεSi

(
I2(l)− Ī2(i)

)2 (5)

with Ī1(i) and Ī2(i) denoting the average gray-value in the neighborhood Si

for the reference image and the image to be registered. In the case that one of
the images has a constant gray-value within a neighborhood Si, the contribu-
tion C2

i is set to zero to avoid undefined results. The local correlation LC2(ω, t)
is obtained by summing up all contributions within the overlap region:

LC2(ω, t) =
1

#M

∑
iεM

C2
i (ω, t). (6)

The essential difference between the correlation coefficient and local correlation
refers to the relationship between the gray-values of the images to be registered.



660 J. Weese et al.

The correlation coefficient presumes a global linear relationship whereas local
correlation assumes a linear relationship in a local neighborhood only. This linear
relationship can be different in different regions of the image.
If the local correlation is applied to the software phantom, the contributions
C2

i (ω, t) can be divided into three categories:

1. One of the images has a constant gray-value within the neighborhood. In
this case, the contribution C2

i (ω, t) is zero and can be neglected.
2. Both images show only two different gray-values within the neighborhood Si.

In this case, the gray-values can be transformed into each other by a linear
relationship. The better the structures within the neighborhood match, the
larger becomes the contribution C2

i (ω, t), therefore.
3. One of the images has at least two and the other one at least three different

gray-values within the neighborhood Si. In this case, it is usually not possible
to map the gray-values onto each other assuming a linear relationship. Thus,
the contribution C2

i (ω, t) may not take its maximum value, if the images are
registered optimally.

As there are only a few regions in the phantom images with three different struc-
tures next to each other, there are only few contributions of the last category.
Local correlation is dominated by contributions of the second category, there-
fore. These contributions belong to neighborhoods with two different gray-values
– i.e. a gray-value edge – in each image, and these contributions take their max-
imum values if respective edges are aligned. This is illustrated in Fig. 1c which
shows the spatial distribution of the contributions to the local correlation. Con-
tributions can clearly be found in the area of gray-value edges showing that local
correlation essentially quantifies corresponding edges.
From the preceding discussion it is evident that all voxels for which the local
gray-value variance is zero can be neglected. Because of noise, there will hardly
be voxels in real images for which the local variance vanishes. Nevertheless, re-
gions with almost no structures or gray-value edges contribute only little to the
local correlation. All voxels with a local gray-value variance below some thresh-
old can be neglected and only a fraction of the image volume is necessary for
registration. This property can be used to accelerate registration.

3 Experiments and Results

The validation results refer to three data sets. The first data set is the software
phantom of Fig. 1. As both images originate from the same image, they are
registered implicitly. The second data set is a set of MR images shown in Fig. 2.
They have been acquired simultaneously with a multi-slice, dual contrast turbo
spin echo sequence. Thus, the spatial correspondence is not disturbed and the
images are registered, as well. The third data set is a clinical one. It consists of
an MR and a CT image which are shown in Fig. 3. Information about resolution
and the size of the voxel matrix of all images can be found in Tab. 2.
For the experiments, one of the two software phantom images (Fig. 1b) and
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one of the two dual contrast MR images (Fig. 3b) have been reformatted ac-
cording to a rigid transformation with translation (10.3mm, 12.7mm, -3.5mm)
and rotation (9.4◦, 11.1◦, -4.2◦). For the CT-MR data set a registration has
been carried out. Using these parameters, sets with 64 starting estimates have
been generated by adding ±11.42mm and ±11.42◦ to the translations and ro-
tations. Then, registration has been performed for each starting estimate using
the multi-resolution algorithm of Studholme et al. [2]. As similarity measure
local correlation (r = 1), local correlation (r = 1) with 10% of the image vol-
ume and mutual information have been used. Optimization was done using three
isotropic resolutions of 4.0mm, 2.8mm and 2mm and a minimum step size of ap-
proximately 0.01mm and 0.01◦. Finally, the mean rotations and translations as
well as the corresponding standard deviations have been computed. For the CT-
MR data set, 5 (local correlation with 10% of the image volume) and 11 (mutual
information) results have been discarded in this final step, because optimization
was obviously trapped in a local optimum. The results of all experiments are
included in Tab. 3. Fig. 3c shows an overlay of the CT image edges onto the MR
image after registration using local correlation.

Fig. 2. Simultaneously acquired dual contrast MR images.

Table 2. Dimension and voxel size of the images. For the clinical CT image the
slice-to-slice distance is 1mm

dimension (in voxels) voxel size (in mm)

software phantom 256 × 256 × 144 0.98 × 0.98 × 1.2

dual contrast MR images 256 × 256 × 64 0.90 × 0.90 × 3.0

clinical CT image 512 × 512 × 87 0.41 × 0.41 × 3.0
clinical MR image 256 × 256 × 128 0.78 × 0.78 × 1.5

4 Discussion

The results for the software phantom and the dual contrast MR images show
that with local correlation as well as with mutual information the registration re-
sult is almost independent of the starting estimate and that the “ground-truth”
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registration is recovered with high accuracy. Though the highest resolution used
during optimization was 2mm, the accuracy of the translation and rotation pa-
rameters is 0.03mm and 0.01◦, respectively. If only 10% of the image volume is
used for registration with local correlation, the results are slightly degraded. In
the case of the dual contrast MR images, the inaccuracies increase to 0.13mm
and 0.05◦. Nevertheless, the translation inaccuracy remains to be well below the
voxel size used for registration and the rotation inaccuracy is very small.

Table 3. Registration results. Since optimization was obviously trapped in a
local optimum, 5 (LC2

10%) and 11 (MI) registration results have been discarded
for the clinical CT-MR data set.

translations (in mm) rotations ( in ◦)
Software Phantom

LC2 10.30±0.01 12.69±0.01 -3.49±0.01 9.41±0.01 11.12±0.02 -4.19±0.01

LC2
10% 10.31±0.01 12.67±0.01 -3.50±0.02 9.40±0.01 11.11±0.03 -4.20±0.03

MI 10.30±0.00 12.70±0.00 -3.50±0.00 9.40±0.01 11.11±0.00 -4.20±0.00

Dual Contrast MR images

LC2 10.30±0.01 12.71±0.01 -3.51±0.01 9.39±0.01 11.11±0.01 -4.20±0.01

LC2
10% 10.30±0.01 12.83±0.01 -3.47±0.01 9.35±0.01 11.11±0.01 -4.21±0.01

MI 10.29±0.01 12.71±0.01 -3.47±0.02 9.41±0.03 11.11±0.03 -4.20±0.02

Clinical CT-MR data set

LC2 -3.49±0.02 -16.09±0.02 -31.00±0.01 6.92±0.02 -2.21±0.02 -5.13±0.01

LC2
10% -3.46±0.01 -16.06±0.02 -30.69±0.01 6.81±0.01 -2.44±0.01 -5.11±0.01

MI -3.33±0.07 -16.06±0.11 -30.74±0.12 6.79±0.13 -2.15±0.13 -5.00±0.09

In the case of the clinical data set, registration was only successful for all
starting estimates when using local correlation and the entire image volume.

Fig. 3. Clinical data set. CT image (a), MR image (b) and overlay of the CT
image edges onto the MR image after registration with local correlation (c).
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When using only 10% of the image volume or mutual information, the capture
range was slightly smaller and registration was trapped 5, respectively 11 times
in local optima. The variations of the registration result for different starting
estimates are larger for mutual information than for local correlation, though
these variations are small and the registration result is nearly independent of
the starting estimate. The deviations between the results for mutual information
and local correlation have a magnitude of up to 0.26mm for the translations
and 0.13◦ for the rotations. For local correlation using 10% of the image volume,
the deviation for the rotations increases to 0.29◦. Because mutual information
has been used successfully for CT-MR registration, the small deviations are a
strong indication that local correlation leads also to a proper registration. The
good agreement of corresponding structures in the CT and MR image after
registration (see Fig. 3c) confirms that local correlation is suitable for CT-MR
registration.

5 Conclusions

Registration of CT and MR images using local correlation has been investigated.
The differences between correlation and local correlation have been discussed,
and it has been shown that local correlation quantifies corresponding edges in
the images to be registered. There is, therefore, some analogy to the approach of
Maintz et al. [3] where edges or ridges are extracted and registration is carried
out on the basis of the feature images. An important difference is that regis-
tration with local correlation requires no explicit feature extraction. It can be
applied directly to the gray-value images without sophisticated pre-processing.
Since local correlation quantifies corresponding edges, image regions with almost
no structures do not significantly contribute to the measure. Such image regions
can easily be identified using a threshold for the local gray-value variance and
can be excluded during registration. This technique allows to compensate a dis-
advantage related to the numerical evaluation of local correlation which is rather
time consuming, because a neighborhood must be considered for each voxel.
Application to a software phantom and two MR images with different contrast
led to accurate registration results being as good as the results obtained with
mutual information. The good agreement between the registration results com-
puted with local correlation and mutual information for a clinical CT-MR data
set gave further evidence for the suitability of local correlation for multi-modality
registration. The experiments showed also that registration based on local cor-
relation can be done using only 10% of the image volume.
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