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Abstract. Today, 3-D angiography volumes are routinely generated
from rotational angiography sequences. In previous work [7], we have
studied the precision reached by registering such volumes with classical
2-D angiography images, inferring this matching only from the sensors
of the angiography machine. The error led by such a registration can be
described as a 3-D rigid motion composed of a large translation and a
small rotation.
This paper describes the strategy we followed to correct this error. The
angiography image is compared in a two-step process to the Maximum
Intensity Projection (MIP) of the angiography volume. The first step
provides most of the translation by maximizing the cross-correlation. The
second step recovers the residual rigid-body motion, thanks to a modified
optical flow technique. A fine analysis of the equations encountered in
both steps allows for a speed-up of the calculations.
This algorithm was validated on 17 images of a phantom, and 5 pa-
tients. The residual error was determined by manually indicating points
of interest and was found to be around 1 mm.

1 Introduction

In interventional neuroradiology, it is very important for the neuroradiologist
to know, at any time, where the catheter lies within the patient’s body, with
a millimetric precision. This information is deduced from Digital Subtracted
Angiography (DSA) images that he/she mentally links to pre-operative Magnetic
Resonance (MR) images, for example, thanks to his/her anatomical knowledge.

DSA images are the cornerstone of interventional neuroradiology. Lately, neu-
roradiologists have been using in clinical routine 3D X-ray angiography images
of the brain vasculature (3DXA). They have been proven to bring an actual
supplementary help to the physicians [2]. As a consequence, the registration of
DSA images with 3DXA volumes seems an extremely promising feature.

A registration between DSA images and a 3D modality is generally performed
using a stereotactic frame [13]. Nevertheless, many studies have been proposing
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alternative solutions. The closest subject to our work deals with DSA/MR an-
giography (MRA) registration. Previous works made either use of external mark-
ers [11] and/or extract the skeletons of the vessels in both modalities [1,3,9], and
matches the projection of the 3D skeleton with this extracted from the DSA
image using various optimization schemes.

Widening our field of view, 3D/2D registration has also been used to register
non-subtracted angiograms to CT acquisitions. Here again, salient features are
segmented: crest lines [8], contours [4] for the images and the bone surface for
the volume. The registration is reached when the surface is maximally tangent to
the 2D features. However, similarity measures, very popular in 3D/3D matching
studies (see [10] for a recent and complete review of research concerning medical
image registration), recently appeared as a powerful alternative to the above
segmentation-based methods [12].

2 Method

2.1 Definition of the Problem

We showed in a previous work [7] that this registration problem could be for-
malized as follows:

– estimation of a distortion field in the DSA image: we described a calibration
procedure of the angiography machine to solve that first aspect;

– estimation of a conic projection matrix, similar to those used to represent
cameras in computer vision: we also showed that the intrinsic parameters of
this matrix could be retrieved after a simple calibration of the angiography
machine. Concerning the extrinsics, our study concluded on a good estima-
tion of the rotation part, but quite a large imprecision on the translation.

The angiography machine, once it has been calibrated, provides an initial reg-
istration which differs from the expected matching (“perfect registration”) by a
rigid transformation (rotation+translation) in the 3D space. The residual rota-
tion is small, whereas the translation can be considered as unknown.

2.2 Strategy

The type of images to be registered is important. Our algorithm is based on
the comparison of a DSA image to a conic Maximum Intensity Projection of
the 3DXA volume (MIP image). Both images are 512× 512. Our strategy cor-
responds to the problem, as described above. First, the translation is retrieved
while considering that there is no error made on the rotation. The optimal posi-
tion is reached once the normalized centered cross-correlation between the DSA
image and the MIP image is maximal.

This first step allows the assumption that the residual error is due to a
small positioning error of the 3DXA volume in the proper space of the camera
(corresponding to the projection matrix defining the registration).
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In the second step, we consider that the MIP image (resulting from the first
step) and the DSA image correspond to images of the same moving object, taken
at times t and t′ respectively. Then, observing the apparent motion between t
and t′ can give precious information about the small rigid-body transformation
we are seeking. This information is extracted using a modified optical flow tech-
nique.

3 Algorithm

3.1 Maximization of the Cross-Correlation

The normalized centered cross-correlation between the DSA image, Id, and the
MIP image, Im, is defined as:

γ =

∑
(x,y)∈D(Id(x, y)− Id)(Im(x, y)− Im)√∑

(x,y)∈D(Id(x, y)− Id)2
∑

(x,y)∈D(Im(x, y)− Im)2

where D is the common domain to both images and Id, Im are the mean of
images Id and Im respectively.

Let’s consider that the projection matrix M represents the initial registra-
tion. The final matrix M′ differs from M by the translation D = (Dx, Dy, Dz).
Let’s now consider a point P which projects on pixel (u, v) in the initial image
(obtained by projecting the volume along M) and on pixel (u′, v′) in the final
image (obtained after translation). We have:

M′P = (s′u′, s′v′, s′)t = MP +D = (su +Dx, sv +Dy, s+Dz)t (1)

The initial matrix M is normalized thanks to Toscani’s method [15]. We deduce:{
u′ = s

s+Dz
u + Dx

s+Dz

v′ = s
s+Dz

v + Dy

s+Dz

(2)

This formula allows for an interpretation of vector D: Dx and Dy involve a
translation of the initial image, while Dz implies a zoom with respect to the
upper left center of the image. As a result, this zoom entails a translation of
the structures in the image. This dependency upon the parameters perturbs the
optimization.

Now let’s consider a movement composed of a translation (du, dv) parallel to
the image plane and a zoom G with respect to the center of the image (uc, vc):{

u′ = Gu +Gdu + (1− G)uc

v′ = Gv +Gdv + (1 − G)vc
(3)

These more intuitive, independent, parameters du, dv and G better fit the opti-
mization of cross-correlation; but they are not equivalent to vector D. Indeed, in
equation (2), s depends on the coordinates X , Y and Z of point P . Nevertheless,
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we assumed that s was constant over a volume, that is a 3DXA volume could be
considered as reduced to a point. A 3DXA volume roughly occupies the volume
of a sphere with a diameter of 15 cm. It is approximately located at half-distance
between the focal spot of the camera and the image plane, within a system with
a focal distance of approximately 1 meter. The approximation may seem rough
but the matrices we obtain lead to a variation on s of about 1% over the whole
3DXA volume. This validates the hypothesis and we can determine a bijection
between D and (du, dv, G) by identification of (2) and (3).

The optimization procedure with the parameters du, dv and G is as follows:

– exhaustive search at low resolution (64 × 64 pixels). The boundaries for
the variation of the parameters are either constrained by the angiography
machine characteristics (G) or satisfy a reasonable criterion: the images must
overlap on at least one quarter of their surface. This resolution allows to keep
the main arteries (diameter above 2 mm).

– pseudo-exhaustive search at maximal resolution. This technique has been
described by Studholme et al. [14]. Lastly, we separate the optimization over
(du, dv) and G: G’s influence on the cost function is so small compared to
du’s and dv’s that the optimization will not change its initial value.

3.2 Modified Optical Flow

Let’s now assume we found the parameters (du, dv, G) which maximize the cross-
correlation between the DSA image and the MIP image. Consequently, the initial
matrix M is modified (see equation (1)) and the 3DXA volume is projected in
order to generate a new MIP image. This image is close enough to the DSA
image so that the velocity field may be computed using optical flow techniques.

Let’s consider a point P = (X, Y, Z) at time t and the point P ′ = (X ′, Y ′, Z ′)
reached at time t′ by P after a small rigid displacement, composed of a rotation
R = RARBRC (A, B and C are the rotation angles around the three basic
vectors of the 3D space) and the translation T = (U, V, W ):

P ′ = RP + T

That is, under the hypothesis that the rigid-body motion is small:

P ′ − P = Ṗ = Ω × P + T with Ω = (A, B, C) (4)

Where the ˙ (dot) operator is the partial differentiation with respect to time ∂
∂t .

In the proper space of the camera, the point P projects on pixel (u, v),

u = αX/Z and v = αY/Z (5)

where α stands for the ratio between the focal distance and the pixel size. From
the derivation of (5) with respect to time, and combining with (4), it follows:{

u̇ = αB − Cv − A
α uv + B

α u2 + αU−Wu
Z

v̇ = −αA + Cu + B
α uv − A

α v2 + αV −Wv
Z

(6)
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This equation defines a transformation in the image plane, but for the 1/Z
term. This is the classical problem one encounters who tries to retrieve the 3D
motion from the apparent motion [5]: only 5 parameters out of 6 can be retrieved
because of the undetermination on the depth of the object (given by Z) in the
proper space of the camera. However, the MIP projection associates each pixel
to one unique voxel. As a result, for each pixel, Z is uniquely set to the depth
of the corresponding voxel. Thus, equation (6) completely relates the 6 motion
parameters to the pixel coordinates.

Lastly, u̇ and v̇ remain to be dealt with. We follow the optical flow hypothesis,
which assumes that the image intensity remains constant over time [6]:

dI

dt
= ∇I •

(
u̇
v̇

)
+ İ = 0 (7)

This is not valid when comparing the DSA image to the MIP image: both images
are obtained through very different means and, moreover, do not represent the
same object (real object with regard to the result of a tomographic reconstruc-
tion). However, a mere normalization of both images provides images which are
similar enough to satisfy this constraint.

Combining equation (6) (Z is set for each pixel as indicated above) and
equation (7), we obtain for each pixel, two equations that the 6 motion param-
eters must obey. This leads us to an overdetermined system of equations with 6
unknowns, which is solved using a least squares technique (pseudo-inverse).

3.3 Speed-Up

The two phases described above demand a large number of MIP projections. This
is obvious in the optimization of the cross-correlation. Concerning the modified
optical flow, results suffer from a long known disease: they are qualitatively
good (we head towards the right direction) but quantitatively poor (the motion
amplitude is underestimated). As a consequence, an iterative resolution of the
residual motion through this technique was implemented: at the end of each
iteration, the projection matrix is updated to take the newly found rigid-body
transformation into account and the volume is reprojected ; this new MIP image
is compared to the DSA image in the next iteration using equation (6). Therefore,
we also need a large number of projections: one per iteration.

Despite all our efforts, the generation of a MIP conic projection takes 1 second
(3DXA volumes are 5123). This constitutes a big handicap for our method, since
it leads to an unacceptable calculation time: the exhaustive search at low reso-
lution covers 32 values for du and dv, and 35 values for G. We must therefore
perform 32 × 32 × 35 = 35840 cross-correlation calculations, and, as a conse-
quence, as many MIP projections. Given the time of 1 second per projection,
this should take approximately 10 hours!

A finer analysis of the two basic equations (3) and (6) for our method, shows
that they each define a 2D transformation in the image plane, if we know the
motion parameters (du, dv and G for (3) and A, B, C, U , V and W for (6)).
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Thus, given a motion (either translation or small rigid motion), the new MIP
image can be deduced from the old one with no need for an actual reprojection.
This dramatically improves the calculation time.

4 Results

This algorithm allows for the implementation of a fully automatic 3D/2D an-
giography images registration in less than 90 seconds per DSA image (on a Sun
UltraSparc workstation).

The gold standard for registration is usually provided by the use of a stereo-
tactic frame. In our case, however, there is no established method to detect such
a frame in 3DXA images: since the volume is reconstructed from subtracted im-
ages, the frame markers are not reconstructed The problem still remains with
external markers.

Therefore, we adopted two ways of validating the result of a registration.
First, the registration is visually assessed by comparing the original DSA image
and the final MIP image. It allows us to state whether or not the registration
succeeded, the more important information at this stage being whether or not
the registration is usable for a neuroradiology intervention. Second, the error is
manually estimated: given a biplane DSA sequence, each plane being registered
with a 3DXA volume, we can point at salient features in the biplane images
(bifurcations, marked curves, etc..) so as to reconstruct a point in the 3DXA
volume. The error is the 3D distance between the reconstructed point and the
effective location of the selected feature.

The algorithm has been tested on 17 images of a phantom and 5 biplane
sequences of patients (that is, 10 DSA images). It always succeeded. The max-
imum 3D estimated error was 1.5 mm for the phantom images. However, the
reconstructions of the phantom were all artifacted, lowering the quality of the
registration.

Concerning the patient images, the maximum error found was 1 mm. We
display on figure 1 two examples of registration performed with our algorithm
(one per line): the first line shows an internal carotid artery with a previously
treated aneurysm, the second line concerns an Arterio-Veinous Malformation
(AVM) fed by the vertebral artery. The third line gives zoomed versions in order
to better appreciate the quality of the registration.

5 Discussion

A strong filiation exists with studies on frameless DSA/MRA registration. Ex-
ternal markers are difficult to design for angiograms. Furthermore, they have
not proven to be accurate enough. Masutani [11] corrects such a registration by
constraining the catheter to remain on the vessels skeleton extracted in MRA.
All other methods [1,3,9] extract the vessels skeletons in both modality (DSA
and MRA). The registration is considered to be attained when the projection of
the 3D skeleton maximally superimposes the 2D skeleton.
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a

b

c1 c2

Fig. 1. Two examples of registration (a,b). Each line depicts a result on a DSA
acquisition with 3 images: initial MIP image, MIP image at registration, DSA
image. The third line shows a zoom of these results: (c1) left: DSA image, right:
MIP image for example (a), (c2) same for (b). See the text for discussion of these
examples.

All these skeleton-based methods have the same drawbacks. Liu [9] underlines
that the projection of the centerline of the vessels in 3D does not correspond
to the centerline in 2D. These techniques also generally require a test to reject
some parts of the skeletons (parts which were detected in only one modality). In
our opinion, the fundamental problems reside in the skeleton extraction itself.

Examples from figure 1 underline these difficulties. The image on figure 1a
was acquired with a big zoom and a strong collimation (compare the DSA and
MIP images). As a consequence, a lot of bifurcations, vessel superimpositions and
tangencies are present (see zoom on figure 1c1) which is known to be a handicap
for most segmentation methods. On the second example (figure 1b and 1c2), the
AVM blush would clearly perturb the skeleton extraction, though it is the region
of interest where we are looking for the best registration. Thus, our technique is
well suited to the 3D/2D registration of complex vascular structures.
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6 Conclusion

We presented in this paper a new algorithm which leads to a fully automatic
3D/2D subtracted angiography images registration. The initial conditions state
that the DSA images are distortion-free, the intrinsics of the projection matrix
are known and that a good initial guess can be made on the rotation: all of which
are valid once the angiography machine has been properly calibrated [7].
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