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Abstract. Ultrasound (US) imaging could potentially play a major role
in the field of Computer Assisted Surgery (CAS). For doctors and sur-
geons to make full use of CAS tools in planning and executing surgical
operations, they also need user-friendly automatic software based on fast,
precise and reliable registration algorithms. The main goal of this paper
is to take advantage of the segmentation/registration duality to extract
the relevant information from US images. This information will allow the
precise and automatic registration of anatomical structures contained in
the pre-operative model and of intra-operative data contained in US im-
ages. The result of registration will be further used to guide a computer-
assisted intervention such as orthopedics or radiotherapy.

1 Introduction

Among the various imaging techniques available, 2D echography is becoming
more and more important, both for the diagnostic purposes and registration
in CAS applications. In this paper, we will consider the latter case, with the
specific instance of Computer Assisted Orthopedics Applications [1,2] and pa-
tient positioning in prostate radiotherapy [3]. In spite of the problems inherent
to US imaging such as low signal-to-noise ratio and the fact that the images
depend on the angle and the texture of the target anatomy, this modality has
become very popular among practitioners mainly because of its safety, low cost
and non-invasiveness.

Since external radiotherapy makes use of the properties of X − rays to de-
stroy live tissue, the precise localization of the tumor is extremely important in
order to avoid the destruction of neighboring healthy tissues. As described in
details in [4], in the context of isocentric technique applied to radiotherapy, the
procedure for repositioning must ensure that the center of the tumor localized
by the practitioner in the pre-operative model, coincides with the center of ro-
tation of the radiation device. For the intra-operative data acquisition, we are
interested particularly in the transpubic way to realize the US examination of
the prostate. The goal of the registration is to realize an automatic orientation of
the external X − ray beams according to a predetermined dosimetry plan. The
results presented here were obtained on patients. In orthopedic applications, a
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high precision is also required in order to respect the planning established by
the surgeon. Our aim is either to place a screw in a pedicle vertebra [2], or to
insert percutaneously screws in the sacro-iliac bone [1,5]. In both cases, the goal
is to realize a minimally invasive operation. To demonstrate the feasibility of the
method, we worked, for the first application, on a plastic vertebra immersed in
water, for the second application tests were performed on a cadaver.

In this paper, we present an automatic, reliable and precise method that can
be used in soft tissues (e.g. abdominal cavity) as well as in hard tissues (e.g. bone,
cartilage). The medical imagings we focus mainly on, are computed tomography
(CT ) and US imaging. The former is used to build the pre-operative 3D model
and the latter to acquire the 3D intra-operative data volume.

2 Related Work

The general problem of registration between a set of 3D data points and a 3D
model was treated in [6,7]. In this paper, we consider a 3D model made from a
set of CT slices. This approach has been discussed in [2,5] for various applica-
tions. The methods known in the literature is based on the segmentation of the
surface S of an anatomical structure on CT images. This is followed by a man-
ual segmentation of pieces of contours corresponding to this same structure on
US images. Each US image being located in the intra-operative reference frame
by using an external optical localization device, one obtains an image of points
belonging to the surface of the reference structure. The rigid registration of 3D
points with the surface S starting from an initial position is described in various
papers [7,8,9]. Unfortunately none of the existing segmentation procedure of US
images is automatic, precise and robust. Here we propose a method featuring
these characteristics [10].

Grey-Level Approach The most obvious method, as often used in registration,
would be to register directly CT images with US images without going through
segmentation. For images originating from the same modality, one could use
methods based on maximization of correlation, confinement tree [11]. For images
of different nature, optimization based on mutual information could be used [12].
For a given initial registration T0, for each US image in a given position, one
can calculate the slice corresponding to the echographical plane in the volume of
CT images but the calculation of reformatted slices is very time consuming [10].
For this reason an approach based on the use of contours seemed preferable.

Contour Approach As a starting point, the 3D model is assumed to be both
segmented and labeled. To achieve this it is of course possible to use semi-
interactive procedures since the model is constructed before the operation. In
general, one segments contours on 2D slices. These are then interpolated to cre-
ate a homogeneous 3D surface using the shape-based interpolation algorithm
described in [13,10]. Although many registration/3D labeling procedures are de-
scribed in the literature, those based on elastic registration of a model (Atlas
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like) seem the most promising ones [14]. The segmentation/registration duality
was discussed previously in different context. Hamadeh [15] proposed to regis-
ter the 3D model of a segmented vertebra on CT images with intra-operative
X − ray of the same vertebra. Mangin [16] proposed a two-step registration of
Positron Emission Tomography and CT images of the brain while recently Ger-
aud [17] proposed a progressive approach using Atlas-type models to segment
the Magnetic Resonance images of the brain. Our approach, as in the above
cited works, is based on the segmentation/registration duality, its specificities
are that we rely on US imaging and that we propose an original mechanism for
segmentation, guided by the model. As in the method based on gray-levels, we
propose to generate pseudo US images, however, we strictly limit ourselves to
the contours of structures segmented in the model. This is equivalent to con-
sidering only the specular reflection and to neglect all other phenomena. This
approach is detailed in the following sections.

3 Methods

The method we have proposed consists of three stages, the first consists of a
low-level segmentation of a sequence of US images. The second stage exploits
the segmentation/registration duality to extract relevant contours obtained in
the previous step. The last step consists of the final rigid registration of these
relevant contours and the pre-operative model.

3.1 Intra-operative Data Acquisition

Images are taken from an US imager. The US probe is localized in 3D space
by an optical localizer. The US image is calibrated according to a technique
described in [10]. In this way, the position of an image pixel is known in 3D
space with a precision in the range of localizer accuracy (about 1mm).

3.2 Low-Level Segmentation

By low-level segmentation, we mean classical image segmentation techniques
based mainly on linear filtering or mathematical morphology. At the end of this
stage, the images are generally over-segmented (presence of false positives) [18]
and the contours are not labeled. In this work, we choose the watershed as the
segmentation technique. The main advantages of watershed segmentation rela-
tive to methods based on filtering [19] are the following: the watershed always
contains some segments placed correctly on the real contours, the resulting con-
tours are closed, detection of multiple junctions is very insensitive to noise and
the algorithm is based on the modulus of the gradient ‖∇I‖ of the image (the
direction of the gradient is ignored).

To eliminate undesirable effects produced by the speckle on the complexity
of the watershed, the original image is filtered by a recursive Canny-Deriche
filter [20]. The width of this filter is chosen in an empirical way but it remains
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unchanged for the processing of the whole sequence of images. Furthermore, we
observed that the filter width does not change significantly from one patient to
the next. For the test-patient used for the prostatic application, the parameter
for the Canny-Deriche filter is α = 0.2. The result of this first step presented in
Fig. 1.e shows two false watershed segments going through the bladder/prostate
structure and the right iliac bone. One notes immediately that the prostate is well
isolated which demonstrates that the use of watershed is completely realistic. At
this stage, the processing is specific to the structure that needs to be detected.

3.3 High-Level Segmentation

At this stage, we assume the availability of a set of M initial attitudes
Ti(i = 1,M), relating the echographical data and the CT model. Each ini-
tial attitude Ti is applied to each of the N echo slices. One then obtains M
possible intersections between each echo plane and the dense cluster of points
representing the surface of the model. In order to increase the resolution for the
exploration of the volume of the model, to each initial attitude Ti, one asso-
ciates six additional transformations ∆Tj(j = 0, 6) which slightly displace the
image plane as presented in Fig. 2.a. In this scenario, we voluntarily neglected
the displacements inside the image plane since these could be compensated by
the 2D/2D elastic registration described in this section.

For each combination (Ti, ∆Tj), we keep the model points which lie within
the thickness of the US beam (� 2mm). We then perform an elastic multi-level
2D/2D registration between the simulated echo slice and the real echo slice. As
described hereinafter, we minimize an expression of the form:

ε =
N∑

i=1

dist2D (Qj , Tp(Pi))i=1,M (1)

where Pi is the set of N simulated echo points, Qj is the set of M real echo
points and Tp is the elastic 2D transformation relative to the parameter vector p
we are looking for.

In order to give to the registration process the necessary elasticity, we as-
sociate to the image a regular network, the nodes of which can be individually
adjusted. A displacement vector (Vx, Vy)τ is associated to each node as presented
in Fig. 2.b. The global transformation Tp we are looking for is parameterized by
the vector p:

p =
(
α, tx, ty; (Vx, Vy)τ0,0, · · · , (Vx, Vy)τi,j , · · · , (Vx, Vy)τIx,Iy

)τ

(2)

where τ means transposition, (Ix, Iy) is the network dimension, (α, tx, ty)
τ is the

purely rigid component and
(
(Vx, Vy)τ0,0, · · · , (Vx, Vy)τi,j , · · · , (Vx, Vy)τIx,Iy

)τ

is the
purely elastic component of the transformation Tp. To determine the vector p,
we have developed a nonlinear iterative optimization algorithm based on the
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Typical US images (left) and 2D/2D elastic registration (right). (a-b)
Vertebra. (c-d) Sacro-iliac region. (e-f) Bladder and prostate.
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Fig. 2. (a) Additional transformations associated to initial attitude Ti. (b) Elas-
tic 2D transformation.

minimization of the following objective function:

ε =
1
N

N∑
i=1

‖Qj − Tp(Pi)‖2 + ρ1
1

Ix × Iy

[Ix,Iy ]∑
(i,j)=[0,0]

‖Vi,j‖2 +

ρ2
1

Ix × Iy


 (Ix,Iy ]∑

(i,j)=[0,0]

‖Vi+1,j − Vi,j‖2 +
[Ix,Iy)∑

(i,j)=[0,0]

‖Vi,j,1 − Vi,j‖2


 (3)

where the first term represents the distance from the transformed point Pi to the
nearest point Qj, the second term regularizes the dimension of the vectors Vi,j

associated with the (i, j) network node and the third term regularizes the simi-
larity of vectors associated with neighboring nodes.

To speed up the computation of distances, we use the 2D chamfer distance
map for the set of real points Qj. The minimization method used is based on
the calculation of gradient and uses the following iterative mechanism:

pt+1
k = pt

k − λ∇εk (4)
δpk = −λ∇εk (5)

where λ is a dimension less scale factor and ∇εk is the gradient of the objective
function expressed in (3) relative to the component k of the vector p.

Convergence Criteria The criteria for stopping the iterative procedure are
related to the energy and the gradient:

1. ε2
t+1−ε2

t

ε2
t

≤ T1; the relative energy gain between two successive successful
iterations must be below a reasonable threshold T1.
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2. Niterations; after Niterations successive unsuccessful iterations.
3. (Ix, Iy) ; after the convergence using the previously defined criteria, the net-

work resolution can be increased and the minimization starts again.

Retaining the Best (Ti, ∆Tj) Combination In the case of hard tissues,
the choice of the best (Ti, ∆Tj) combination relies on a likelihood principle.
Consequently, we construct an objective discriminating function based on the
first term of (3) and on the number of points Pi of the model. Among many
possibilities, the solution retained is based on the Student test t in order to
compare variances. We have adopted the solution proposed in [21] where the
original data are transformed in the absolute values of the deviation of each
distance relative to the average value using the relation:

t = (x1 − x2)s
√

1
n1

− 1
n2

(6)

s =
(
(n1 − 1) s2

1 + (n2 − 1) s2
2

)
/ (n1 + n2 − 2) (7)

where n1,2 is the sample size, x1,2 is the sample mean value, s1,2 is the sample
variance and s is the global variance. The value tk,l obtained from expression (6)
is used as a dissimilarity measure for the couple [(T,∆T )k, (T,∆T )l]. A sym-
metric matrix T = [tk,l] ; k, l ∈ [1, N ·M ] is then constructed. An objective func-
tion ft(l) =

∑N ·M
k=1 tk,l is obtained by summing over the columns of the matrix T .

The decision mechanism is based on minimizing ft(l). Consequently, the optimal
(T,∆T )opt combination corresponds to the relation (ft)opt = minl=1,N ·M ft(l).

In the case of soft tissues, one cannot defend the use of maximum likelihood
as an objective discriminatory function. For instance it is very easy to register
elastically two transversal slices through the bladder. Taking into account the
preceding observation, we propose a solution adapted to all soft tissues based
on two criteria, a quantitative one followed by a qualitative one: 1. Establish a
measure that determines how well the points of the model fit the intra-operative
data. To achieve this, we compute a distance map based on the new coordinates
of the deformed model points taken after the 2D/2D elastic registration. From
this distance map, we obtain the distance of each intra-operative data point
relative to the model. The average value of all these distances, di,j , defines the
objective measure characterizing the (Ti, ∆Tj) combination. The best combina-
tion being the one with an uniform distribution of the points of the deformed
model as compared with intra-operative data. With a minimization procedure
one obtains (T,∆T )opt = minl=1,N ·M (di,j)l. 2. In problematic situations when
none of the (Ti, ∆Tj) combinations represent a realistic situation (the model
points are not well-distributed) this image will be marked and eliminated from
the final 3D/3D registration process. The decision criteria are the following: the
model points must cover at least 50% of the data and in the case of the prostate,
this area must necessarily cover the base of the bladder. After the choice of the
best (T,∆T )opt combination, another step of 2D/2D elastic registration will
be necessary. This time, intra-operative data are represented by the watershed
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while pre-operative model is represented by the set of anatomic structure of the
region of interest (i.e. the bone, the bladder and the prostate). The results are
presented in Fig. 1.

3.4 Rigid Registration

Choice of Segments For this step, we had to choose between two possibili-
ties: isolate all segments of the watershed pointed by the model or retain the
new coordinates of the points of the model. To show that both possibilities are
realistic, we used the first one in orthopedic applications and the second one in
radiotherapy applications.

A final 3D/3D registration step is necessary to match the points previously
extracted and labeled on US images with the surface of the CT model. For
that purpose, one could use elastic registration [22], but both the prostate (for
radiotherapy) and the bones (for orthopedics) are considered as rigid bodies.
Therefore, standard 3D surface registration techniques were used to estimate
the transformation between CT model and the patient coordinate system in the
local region of interest [23].

4 Results

In order to validate our technique, we compared the final results obtained after
the rigid 3D/3D registration with either those obtained from a manual segmen-
tation of the prostate or, in the case of the orthopedic application, with manual
digitalization of the bone surface with a finger probe localized in 3D space. All
numerical results are presented in the following table where we display the errors
obtained both on rotations εα

max expressed in degrees and on translations εt
max

expressed in mm. In the last column, the same results are presented in terms of
Rodriguez’s rotation and translation.

εα
max[deg] εt

max[mm] Rodriguez
prostate (−1.23, 1.30, 0.75) (0.19,−0.67,−2.58) (2.67◦, 2.07mm)
vertebra (1.90, 2.05,−0.98) (−0.15,−0.52, 0.87) (1.23◦, 1.70mm)
bassin (−2.93, 1.13,−1.83) (−0.39, 0.12,−1.02) (1.14◦, 1.91mm)

In Fig. 3, we present the repositioning of a typical US image in 3D space of
the CT per-operative model. Fig. 3.a displays the superposition of the model on
the spinal process of the vertebra, Fig. 3.b presents a superposition with the US
image representing the sacrum and Fig. 3.c displays an US image of the bladder
and the prostate.

5 Conclusion

In this paper, we have presented automatic and robust algorithms necessary
for registration between a 3D CT model and a set of 2.5D US images. Essen-
tially, these algorithms use methods of low-level segmentation as described in
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(a) (b)

(c)

Fig. 3. Results: (a) Vertebra registration. (b) Sacrum registration. (c) Bladder
and prostate registration

paragraph §3.2 and high-level segmentation by labeling as described in §3.3. To
emphasize the generality of our approach, each application has been analyzed in
the following framework: description of clinical objectives, presentation of spe-
cific pre-processing, labeling by elastic 2D/2D registration, choice of segments
and presentation of results. In all this work, we paid special attention to the
precision and we could demonstrate that the maximum errors are about 2mm
and 2 0 which is compatible with most of applications. While the orthopedic ap-
plication chosen clearly deals with high-risk regions, in the case of the prostate,
the risk is to irradiate healthy organs. Considering the important risks inherent
to an intervention on the spine or in the sacral region, we have tested our method
in vitro. The preliminary results obtained in the automatization of the segmen-
tation process are very encouraging. It is clear that the result of a minimization
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procedure generally used in matching depends strongly on the precision of the
initial attitude T0, this also affects the global computing time. To improve on
this, we hope to find a procedure that estimates an initial attitude T0 as close
as possible to the final attitude for each application. We plan also to correct the
US images, in term of the velocity of US. This will influence the precision of
the results specially in the radiotheray applications. This method is generic and
it could be easily applied to other organs such as liver and kidney.
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17. Géraud T., Segmentation des structures internes du cerveau en IRM 3D, Ph.D.
Thesis TLCOM Paris, 1998. 770

18. Maes F., Segmentation and registration of multimodal medical images, Ph.D. The-
sis ISBN 90-5682-135-0 D/1998/7515/37, 1998. 770

19. Najman L. and Schmitt M., Geodesic saliency of watershed contours and hierar-
chical segmentation, IEEE Trans. PAMI, vol. 18, no. 12, pp. 1163-1173, Dec. 1996.
770

20. Deriche R., Fast algorithms for low-level vision, IEEE Trans. PAMI, vol. 12, no.
1, pp. 78-87, Jan. 1990. 770

21. Manly B., Statistical methods, Chapman and Hall, 1989. 774
22. Szeliski R. et al, Matching 3-D anatomical surfaces with non-rigid deformations

using octree-splines, Intern. Journ. of Comp. Vis., 18(2), pp. 171-186, 1996. 775
23. Lavallée S. et al, Recovering the pos. and orient. of free-form obj. from image

contours using 3D dist. maps, IEEE Trans. PAMI, vol. 17, no. 4, pp. 378-390,
1995. 775


	Introduction
	Related Work
	Grey-Level Approach
	Contour Approach

	Methods
	Intra-operative Data Acquisition
	Low-Level Segmentation
	High-Level Segmentation
	Convergence Criteria
	Retaining the Best (Ti,Tj) Combination

	Rigid Registration
	Choice of Segments


	Results
	Conclusion



