
ISR: An Intelligent Service Robot

M. Andersson, A. Orebäck, M. Lindström, and H. I. Christensen

Centre for Autonomous Systems,
Royal Institute of Technology
S-100 44 Stockholm, Sweden

WWW home page: http://www.cas.kth.se

Abstract. A major challenge in mobile robotics is integration of meth-
ods into operational autonomous systems. Construction of such systems
requires use of methods from perception, control engineering, software
engineering, mathematical modelling, and artificial intelligence. In this
paper it is described how such a variety of methods have been inte-
grated to provide an autonomous service robot system that can carry
out fetch-and-carry type missions. The system integrates sensory infor-
mation from sonars, laser scanner, and computer vision to allow nav-
igation and human-computer interaction through the use of a hybrid
deliberative architecture. The paper presents the underlying objectives,
the underlying architecture, and the needed behaviours. Throughout the
paper, examples from real-world evaluation of the system are presented.

1 Introduction

Service robotics is an area of research that is rapidly expanding. We strongly
believe that we will have small robots roaming around in our houses in the
near future. An excellent example of such a device is the autonomous Electrolux
TriLobote vacuum-cleaner, that was revealed to the public during spring 1998.
The application potential of robots is enormous, ranging from boring tasks like
vacuuming, to advanced household tasks such as cleaning up after a dinner party.
Recent progress, particularly in sensor-based intelligent robotics, has paved the
way for such domestic robots. It is however characteristic that relatively few
robots are in daily use anywhere, and very few mobile robot systems are being
mass produced. Examples of mass produced mobile systems include the Help-
Mate Robotics platform for delivery of food and x-ray plates at hospitals, and
the RoboKent floor sweeper produced by the Kent Corporation. Both have only
been produced in relatively small series (in the order of hundreds).

The primary obstacles to the deployment of robots in domestic and commer-
cial settings, are flexibility and robustness. The robots must be flexible so that
they are relatively easy to deploy under different conditions, and so that they
can be used by non-experts. This requires a rich set of control functions, com-
bined with an intuitive user interface and automatic task acquisition functions
(like automatic learning). Robustness, in terms of sensory perception, is needed
to allow for operation 365 days a year under different environmental conditions.



2

Typically, research robots have been demonstrated in a single environment under
ideal working conditions, like an in-door environment with artificial light (and
no windows). Such systems provide a proof of concept, but there is a long way
from such systems to commercially viable systems. Some might claim that the
gap is purely a development process with no or very little research involved. We
claim that there is a need for fundamentally new methods to empower deploy-
ment of robots in everyday settings, and there is thus a need for fundamentally
new research to enable use in the above mentioned market segments.

To pursue research on robust, flexible, and easy-to-use robot systems for
everyday environments, an intelligent service robot project has been initiated at
the Centre for Autonomous Systems at KTH. The long-term goal of the project
is deployment of an intelligent robotic assistant in a regular home. The system
must be able to perform fetch-and-carry operations for the human operator.
To accommodate such tasks, it must be able to understand commands from
a non-expert in robotics. This requires an intelligent dialogue with the user.
Having received an instruction, the robot must be able to plan a sequence of
actions and subsequently execute these actions to carry out the task. In a realistic
scenario, the robot will encounter unexpected events such as closed doors and
obstacles. To be perceived as a useful appliance, the robot must cope with such
ambiguities in an ’intelligent’ manner. To perform fetch and carry missions,
which include opening of doors, picking up and delivery of objects, etc, the
robot must be equipped with actuators that allow for manipulation. A basic
functionality for such a robotic system is the ability to perform robust navigation
in a realistic in-door environment. The first phase of the Intelligent Service Robot
project has thus been devoted to the development of a flexible and scalable
navigation system, that can carry out simple tasks like delivery of mail in an
office environment, that includes rooms similar to a regular living room.

In this paper we describe the results of this initial phase of the project. The
robot is equipped with a speech and gesture interface for human computer in-
teraction. For navigation, a combination of ultra-sonic ranging and laser-based
ranging is used. The different navigational functions are implemented as a set
of behaviours that provide direct coupling between sensory input and actuator
control. The output from different behaviours are integrated using simple super-
position. To control the execution of a mission, a state manager, and a planner
are used. For the integration of the overall system, a hybrid deliberative archi-
tecture has been developed, which allows for easy integration of the different
system components.

Initially, related research on service robotics and navigation in an in-door
environment is reviewed in Section 2. We then outline the overall architecture
of the system in Section 4. Each of the components in the system are described
in the following sections to give an impression of the complexity and diversity
of the overall system. A number of issues related to the implementation of the
system are reviewed in Section 8. The system has been used in a large number
of experiments in laboratory and living room settings. Some of the results from



3

these experiments are provided in Section 9. Finally a summary and issues of
future research are provided in Section 10.

2 Related work

The area of service robotics has recently received significant attention. The area
is, however, closely related to general in-door navigation, where one of the first
efforts was the Stanford cart by Moravec [1, 2]. The area gained significantly
in popularity with the change from sense-plan-act type systems to reactive
behaviour-based systems, as motivated by Brooks subsumption [3] and Arkin’s
AuRA system [4].

In more recent time, some of the most dominating efforts have been those of
Simmons in terms of his Xavier system [5], Reactive Action Packages by Firby [6,
7], the RHINO system from Bonn [8], the ROMAN system from Munich [9], and
the Minerva [10] and Sage [11] systems from CMU.

The Xavier system was specifically designed for autonomous navigation in
an in-door setting. The system has been designed to carry out point-to-point
missions, navigating between known places in an in-door environment. It is well-
known that sensory perception is non-robust, and a principal issue has thus
been to provide the needed functionality to cope with such uncertainty. Xavier
is built around a hybrid deliberative architecture. A topological map of the
environment is used for initial planning of missions, while obstacle handling
is based on potential field methods. The system includes Partially Observable
Markov Processes (POMPS) for managing uncertainty. The system has been
reported to have a success rate of more than 90% for missions, that together
cumulates to a total travel length of several kilometres.

Based on the successful use of Markov models in Xavier, the team at Uni-
versity of Bonn has built a museum tour guiding system [8]. The system has
a probabilistic map of the environment that allows for automatic localisation
and error recovery in structured environments. The system is also based on a
hybrid deliberative architecture that allows for automatic handling of obstacles,
like humans, in its immediate proximity. The RHINO system has later been up-
dated and recoded for the Minerva system [10] that gave tours at the American
Museum of Natural History in New York. Overall, the probabilistic framework
has turned out to be very successful. All of the above systems rely on ultra-sonic
sensing as the primary modality for localisation and navigation.

The RAP (Reactive Action Packages) framework developed by Firby [6, 7] has
been used in a number of different robot systems. The RAP system does situation
specific action selection. Based on sensory interpretation of the context, an index
is generated that enables action selection. The method relies heavily on explicit
internal models of the environment, but in such situations it is a very powerful
and intuitive framework for robot control. The methodology is accompanied
by a framework for programming of reactive systems. The system has been used
extensively at University of Chicago for robots like the Animate Agent [12]. This
system includes colour based vision for obstacle detection, gesture interpretation



4

and object recognition. Robust performance is reported for a laboratory setting
without windows.

In Munich the ROMAN (RObot MANipulator) system has been developed
over the last ten years [9]. This is a system that performs fetch and carry missions
in a laboratory setting. The system includes a manipulator for interaction with
the environment. The system uses a laser scanner for localisation, and sonar
for detection of obstacles. The system relies on vision for recognition of objects
(and obstacles), servoing on natural landmarks like doors, and manipulation of
objects. The system is based on a sense-plan-act type of architecture. Planning
is a key component to facilitate interaction with the environment for tasks like
opening doors or picking up objects in a drawer. For interaction with objects,
the system relies heavily on a priori specified geometric models. The system
has been demonstrated in a laboratory setting, where is it able to navigate and
perform error recovery in the presence of dynamic obstacles like humans. Error
handling is here performed using a plan library that explicitly encodes all of the
situations to be handled.

The Sage system developed by Nourbakhsh et al. [11] at CMU is derived
from ideas originating in the Dervish system [13]. The original Dervish system
uses the layout of an office building to detect symmetries, that allow relative
localisation in combination with odometry. The system is controlled explicitly
by a planner, based on local map information. In this sense, the system is highly
deliberative and only obstacle avoidance, using potential fields, is performed re-
actively. The system uses map abstraction, rather than behavioural abstraction,
for control, which is a departure from the present trend towards behavioural sys-
tems. The Sage system has replaced the planner by pure sequential/imperative
programming of missions in combination with artificial landmarks, for naviga-
tion in the Dinosaur Hall at the Carnegie Museum of Natural History. A unique
characteristic of this system is that it is fully autonomous, in the sense that it
does automatic docking for recharging, and it can thus be used for extended
periods of time without human intervention.

All of the above systems illustrate how robotics gradually has reached a
stage where in-door navigation in natural environments is within reach. Many of
the systems rely on prior defined maps, but when such maps are available, the
systems can perform autonomous navigation. A few of them also include manip-
ulation of objects. The trend has been towards hybrid deliberative architectures,
where low level behaviours are used for control, while the actual invocation and
configuration is carried out by a supervisor, that in turn receives missions speci-
fications from a planner. This is also the approach that has been adopted in the
system described in this paper.

3 Goals

The intelligent service robot demonstrator is intended to show that it is possible
to build a useful robot for a house or office environment. The system therefore has



5

to meet realistic demands concerning task complexity, human-robot interaction
and the capabilities of acting in a realistic environment.

The specification of the operating environment for the robot has been per-
formed in a very pragmatic way. By looking at homes and our own laboratory
environment (mainly offices), specifications of room sizes, floor types, lighting
conditions, etc have been made. To be able to test the robot in a realistic en-
vironment, our main laboratory has been turned into a living room, furnished
with sofas, tables, book shelves, etc., see Figure 1.

Fig. 1. The living room. Our main lab has been turned into a living room in which
there are sofas, tables, book-shelves, and so on, to make it possible to test the robot
in a realistic setting.

We believe that in a typical home or office, changing the environment for
the sake of the robot will either be too costly or undesirable for other reasons.
Therefore, our intentions are for the robot to work in an unmodified environment
without artificial landmarks. The goal is to have the robot navigate safely, com-
bining data from several sensors, and using a minimum of a priori information
about its environment.

To be useful, the robot must also be able to manipulate different objects. The
work is focused on recognition of everyday objects like cups, books, soda cans,
etc., but it is equally important to be able to open doors, drawers etc. as this
will be necessary in a home or an office. The challenge is to be able to do this in
an unstructured and partly changing environment where objects positions are



6

unknown or only partially known. Manipulation work is not described in this
paper as it has only recently been started.

An important skill of home or office robots is the ability to communicate
with its operator or coworker. Therefore a study of the human-robot interface is
performed within the project. The interface includes speech and gesture recog-
nition. Both of these communication modalities are natural for humans and
therefore easy to learn for a non-specialist. A more detailed description is given
in Section 5.2.

There are a variety of possible tasks for a domestic or office robot. The tasks
we are currently considering are mainly fetch-and-carry tasks like

- Go to the refrigerator and bring back the milk.
- Deliver mail to a person.
- Setting and cleaning a table.
- Riding an elevator.

4 System Architecture

Most software architectures for mobile robots are layered. By layers, we mean
distinct parts that have different levels of authority. The distinction is never
totally clear in a modern robot system; a resulting motion of a robot is normally
the consequence of a complex command sequence. It is seldom a direct path from
the top (highest authority) layers to the motors in the lowest layer. However, a
system description can be easier to explain if we divide it into layers.

We have chosen to divide our explanation of the system into three layers; the
deliberate layer, the task execution layer, and the reactive layer. The deliberate
layer makes deliberation decisions according to the state of the system. These can
be derived from robot objectives or orders from a human user. The task execution
layer makes sure that the plans of the deliberate layer are carried out. The last
layer consists of sensor, behaviour, and actuator modules that can be configured
and connected/fused together in a flexible network. The task execution layer
will decide on the configuration of the network, that will solve the task at hand.
This describes a hybrid architecture design of the selection paradigm. In other
words, planning is viewed as configuration, according to the definition by Agre
and Chapman [14]. An overview of the layers in the architecture can be seen in
Figure 2, where each part is described in more detail below.

4.1 Deliberate Layer

The deliberate layer consists of a planner and a human robot interface (HRI).
The HRI interprets human commands and intentions using speech, gestures, and
keyboard as input. The commands are relayed to the planner that makes a plan
for their execution.



7

State
Manager Localizer

Behavior Resource

Planner

Controller

HARDWARE

Task Execution Layer

Reactive Layer

Deliberate Layer

HRI

Fig. 2. Layers of the system architecture

4.2 Task Execution Layer

The task execution layer consists of a state manager and a localiser. The state
manager configures the modules in the reactive layer to solve the task. The
configuration is at the moment done using a lookup table for construction of
the appropriate network. The localiser keeps track of the current position and
provides metric and topological map data. These data are also used by the
planner for path planning.

4.3 Reactive Layer

The reactive layer is closest to the hardware. It consists of a large set of modules
that can be configured into a network connecting the sensors and actuators of
the robot. The network defines tight sensorimotor connections, which results in
fast reflexive behaviours without any involvement of deliberation.

The modules of the reactive layer are of three types: resources, behaviours,
and controllers. The resources read and preprocess sensory data to extract es-
sential information, which is forwarded to the behaviours. The behaviours act
as mappings between sensing and actuation. They present propositions for the
control of the actuators, depending on the data from one or more resources. Fi-
nally, the controllers, the modules closest to the actuators, fuse the propositions
of the behaviours to a unified control of one or more actuators.



8

5 Deliberation

5.1 Planning

The planner belongs to the deliberate layer of the robot system architecture.
It receives orders from the human-robot interface or from keyboard input. The
planner will, depending on the current state of the robot, accomplish the given
orders. During execution, the planner will give information about the state of
the robot to the user. This consists of current action, success or failure to execute
it, the position, and the immediate route.

The planner has access to a topological map (provided by a map server) with
information about important nodes in the environment and metric distances be-
tween nodes. The topological map is augmented by an estimate of the travelling
time between nodes. These time intervals are not necessary proportional to the
actual metric distance, since the area in between the nodes can be cluttered
with obstacles that the robot have to spend time to swirl. When a destination
is given to the planner it will plan the route that has the shortest time esti-
mate to completion. The plan is created using Dijkstra’s algorithm for directed
graph search. The route will normally contain a number of intermediate nodes.
The robot traverses the nodes in the given order, while avoiding obstacles. The
estimate in travelling time is updated when the path between two nodes has
been traversed. Initial estimates of the travelling time are presently set to a time
proportional to the metric distance.

5.2 Human-Robot Communication

A service robot working in a house or office environment will need a user-friendly,
safe, simple-to-use and simple-to-learn human-robot interface (HRI). The most
important reason is that the robot is going to work together with non-experts
as opposed to most industrial robots of today. Possible ways of communicating
with the robot include keyboards, touch-screens, joy-sticks, voice, and gesture
commands. The preferred modes depend upon a combination of environment,
user skill, task, and cost. In a noisy environment keyboard input is probably
preferred over voice input, while in a situation where the operator needs to
use his/her hands for other tasks, voice input is a better choice. However, for
the environments and applications discussed within the intelligent service robot
project, we are focusing our research efforts on a user interface combining both
speech and gesture recognition. These modes of communication are natural for
humans and complement each other well.

An overview of the current system is shown in Figure 3. The input is provided
through a camera and a wireless microphone. The camera is connected to the
gesture recognition module, which will search the images for gestures. The base
unit of the microphone is connected to the speech recognition program, that
will analyse and convert the spoken words into text. Speech and gestures are
then combined into fully working commands in the command constructor. If
a user says “Go there”, a pointing gesture can be used to recognise in which



9

direction to go and the result of this is, e.g., the command “Go left”, which
is then forwarded to the planner. The robot is also equipped with a speech
synthesiser, which today is primarily used for acknowledgement by repeating
the input command. In the future, the speech capabilities will be used in a more
dialogue based communication with the end-user, similar to [15].

Camera

Microphone

Gesture recognition 

Speech recognition 

Speech synthesis 
Loudspeaker

constructor
Command 

Interface

Robot

Fig. 3. Overview of the human-robot interface.

The language interpretor of the robot is built around a finite state automata
framework. The valid voice commands are defined by the grammar listed below.
Capital words are the actual spoken words (terminals). Lower case words are
groups of possible words or sequences (non-terminals). Words in curly brackets
are optional. All voice commands given in a session are described by a voice
sequence.

voice:
ATTENTION {command-sequence} IDLE {voice}

command-sequence:
ROBOT command {command-sequence}

command:
STOP
EXPLORE
HOW ARE YOU DOING TODAY
FIND THE BOX
FOLLOW ME
DELIVER MAIL IN {THE} absolute
LOCATE IN {THE} absolute



10

GO relative
GO TO {THE} absolute

relative:
BACKWARD
FORWARD
LEFT
RIGHT
THAT WAY

absolute:
OLLES ROOM
DINNER TABLE
LAB
LIVING ROOM
MAILBOX
SCIENTIFIC AMERICAN

The current gesture recognition module is able to find pointing gestures, that
allows it to identify if a person is pointing left, right, or not at all. The gesture is
recognised through identification of the relation between the head and the hands.
Skin colour segmentation is used for identification and tracking of the head and
the hands. Recognition of skin colour is not stable enough, there are many objects
that have similar colours. Therefore other cues need to be integrated into the
system and recently depth from stereo, has been incorporated in order to increase
performance. We have so far not used the gesture interpretation in real tasks,
but a probable scenario could be the following. A person is standing in front
of the camera, telling the robot to Pick up that, and pointing at an object in
the scene. The robot then identifies the spoken command, finds out that it also
needs gesture input and uses the image information to identify which object the
operator is pointing at. It is important that the gesture and speech interpretation
is done in parallel as the operator needs to be pointing and talking concurrently.

6 Mission Execution

The Mission Execution layer consists of two parts, a state manager and a lo-
caliser. These two components are described in below.

6.1 The State Manager

The state manager is a finite state automaton that controls the reactive layer.
At startup, the state manager reads a file that associates states and behaviours.
This file can be reread during execution, to allow for online reconfiguration.
Behaviours that are not connected to a controller, are controlled directly by the
state manager.

A new task is initiated by a message from the planner to the state manager.
This message contains a state and data. The state constitutes a certain set of



11

behaviours that should be run in ensemble. An example of a state is GoPoint
which translates into the behaviours Gopoint and Obstacle Avoidance. The data
is usually a goal point, but for some states, such as Explore, the data field is
irrelevant. Each behaviour is associated with a controller. Upon a change of state,
the state manager informs the controllers which behaviours it should integrate.
A task-list may also be supplied by the user through a file when the system is
debugged without a planner.

The state manager awaits messages from the behaviours that tell whether the
task was successfully carried out or if it failed. In the case of success, the planner
is informed and a new command may be issued. Otherwise the state manager
goes into a Stop-state, which is also sent to the controllers. A backup-state may
defined for each state. If a failure occurs, this backup-state is initiated if it exists,
otherwise the planner is notified. At any time a new command from the planner
may be received and execution is then pre-emptied or modified. Especially the
command to stop is given high priority. The state manager will also forward any
goal point updates originating from the localiser.

6.2 Localisation

One of the most important capabilities of a robot is to know where it is. The
knowledge of the current location can be expressed in many different ways. Here,
we will say that the robot is localised if it knows where in a room it is (metric
information). We have used two different approaches to localisation, one using
sonar sensors and one using a laser range finder.

In the sonar approach the robot initially has a topological map of the en-
vironment. To be able to get metric information it uses its sonar sensors. The
basic steps in the localisation process are the following:

– Let the robot explore a room to collect sonar data. The robot can either
automatically perform the exploration or an operator can use the joystick to
guide the robot. The data is used to automatically create a sonar landmark
map. During this process it is also possible for an operator to assign names
to different places in the room (goal points).

– When a room is revisited, the robot collects new sonar data, again by explor-
ing the room, and these are matched to landmarks in the original map. From
this mapping, the position and the orientation of the robot is estimated.

– Following the previous step, the robot iteratively updates its current position
estimate.

The process is described below, for more details see [16].

Sonar data using triangulation Our Nomad 200 robot, used for most of our
experiments, has a ring of 16 ultrasonic sensors. Sonars are known to provide
noisy data. The sound sent out by the sonar is spread in a cone emerging from
the source (actually the process is even more complicated). The emitted sound
is then reflected and the time difference between emission and reception can be



12

used to calculate the distance to the object that reflected the sound. Due to the
spreading of the emitted sound, the reflecting point(s) can be anywhere on a
surface. To remedy the problem, a triangulation technique has been developed,
which fuses sonar readings from multiple positions. The basic idea is that if two
sonar readings come from the same object, the position of that object must be
in the intersection of the two cones. By accumulating such intersection points,
it is possible to use simple voting to identify the most stable landmarks.

Map acquisition The robot is started at an arbitrary position in a room.
This position will become its reference point in the room. It then moves around,
collecting sonar data using the triangulation scheme outlined above. Some of the
collected sonar data will be stable over an extended time interval. By selecting
the most stable data combined with readings from the odometry, it is possible to
create a landmark map of the room. The landmarks are selected automatically
by the robot itself. However, when studying the data a posteriori, it is evident
that corners on bookshelves, tables, chairs and door posts are likely to become
landmarks. At present, the 20 most stable landmarks are stored for each room.
During this process, it is also possible for an operator to name different positions,
called goal points, in the room. The goal points are symbolic references that can
be used by the user when giving commands to the robot.

This map making process is repeated in each room. In larger rooms, for
example a long corridor, the limited number of landmarks is inadequate. Such
rooms are divided into a number of smaller regions that each have a separate
set of landmarks.

Map matching When the robot revisits a room, it will use the previously
stored map to localise itself. The topology map, used by the planner, is used
to determine switches between rooms. Upon entering a room the robot has the
option to carry out a relocalisation process. If the robot encounters an error or
looses track of its position it can perform an absolute localisation in a room.
The robot carries out exploration in the room and collects a set of at least
10 landmarks. The set of collected landmarks are then matched against the
stored map, and the associated rigid transformation (translation and rotation)
is estimated based on the best possible match between the two maps.

6.3 Localisation using a laser range finder

The robot also has an on-board laser scanner. The sensor is a SICK PLS-200
scanner, that provides a 180◦ scan of its environment, represented as 361 mea-
surements in the range 0.7 m – 100 m and with an accuracy of 5 cm. In this
particular work, each room is represented as a rectangle (represented by width
and length). The laser scan is then matched against the room model and an es-
timate of the position is feed into a Kalman filter that maintains an estimate of
the robot position. Given an initial estimate of the position, the following steps
are taken, see also Figure 6:



13

1. Using odometry, the last position estimate is updated. This is the time up-
date phase for the Kalman filter.

2. The updated position estimate is used in combination with the estimated
uncertainty, to generate a set of validation gates that allows filtering of data,
to reject outliers, as shown in Figure 7.

3. The filtered data are feed into a range weighted Hough transformation. Using
an estimate of the position of walls it is now possible to perform model based
segmentation.

4. The estimated Hough lines are used for definition of more accurate validation
gates, that allow segmentation of data points into segments.

5. A least square line fitting is performed on the segmented data points.
6. A rigid transformation between fitted line segments and the model is used

for updating of the Kalman filter. This is the measurement update step of
the Kalman filter.

For a more detailed description of the procedure see [17] and [18].

7 Reactive Control

The reactive control layer consists of resources, behaviours, and controllers.
A resource is a server that distributes data to client behaviours. The data

typically originates from a sensor, such as sonars, cameras, etc. A resource can
also be a client to another resource, and compute higher level information.

A behaviour is a transformation between perception and action. Each be-
haviour in the system delivers proposals for the control of actuators. Depending
on the function of the behaviour, it can use a number of resources to obtain
the necessary information for the decision making. In view of the client/server
concept, a behaviour is a server with controllers as clients. It is also a client with
respect to resource-servers.

In this system, there are basically two types of behaviours. One type, e.g.,
the behaviour GoPoint, receives a goal-value (typically a goal point) from the
state manager and reports back success or failure. The other type requires no
goal-value. Consequently, it never reports to the state manager. One example of
this type of behaviour is AvoidObstacle.

The controllers are responsible for sending direct commands to the robot’s ac-
tuators. They will fuse the output from a set of behaviours defined by the state
manager. This behaviour fusion mechanism has to be specified in the imple-
mentation of the controller. It could for example be an arbitration or a weighted
vector summation of the proposals from the behaviours. Other schemes use fuzzy
logic or voting.

Upon a change of state, the controller receives new directives from the state-
manager that specifies which behaviours the controller should listen to.

The set of behaviours implemented in the system is outlined below.



14

7.1 GoPoint

The GoPoint behaviour steers towards a certain (x,y)-position in space. The
odometry is used to determine the steering angle needed to reach the position.

7.2 Avoid

The Avoid behaviour detects obstacles and provides control to avoid them. The
sonars are used for obstacle detection. Avoid uses a protection shield. It will
suggest the robot to move away from any obstacle entering this shield. One
parameter, the forward protection radius, specifies how close obstacles are al-
lowed to come in front of the robot. A second parameter, the side protection
radius, specifies how close obstacles are allowed to come to the side of the robot.
The fusion of GoPoint and Avoid will drive the robot smoothly around small
obstacles.

7.3 Explore

The Explore behaviour moves the robot away from positions it has visited before.
If the robot for instance starts within a room, this behaviour will try to make
the robot visit every open space in the room. When the behaviour believes there
are no places left to visit, it will clear it’s memory and start over again. This
behaviour uses the sonar resource. Explore together with Avoid, is used during
the localisation phase. When the localiser reports that enough landmarks have
been found, the explore behaviour is terminated.

7.4 MailDocking

The MailDocking behaviour is used to pick up mail from a mail slot. It assumes
that the robot is positioned exactly at the mailbox, where the forklift is used to
pick up a mail-tray at a specified height. Currently, pure dead reckoning is used,
but will later be done using visual servoing.

7.5 DoorTraverser

The DoorTraverser behaviour takes the robot through a doorway. The position
of the doorway is fed into the behaviour by the state manager. The behaviour
itself is incorporating avoidance facilities that have been trimmed for the pur-
pose of narrow doorway traversal. DoorTraverser can tolerate corrupted doorway
position information. In the current state, the behaviour can find the doorway
if the doorway position error is less than 1.5 meters. Two versions of DoorTra-
verser have been implemented. One using sonars and another using laser range
data.



15

7.6 FollowPerson

The FollowPerson behaviour will locomote the robot towards a human. At the
moment, the human must face the robot while it follows. Monocular vision is
normally used to detect and track the skin-colour of the head of the person. The
Avoid behaviour is normally used simultaneously, so that the robot does not run
into the person. The behaviour is described in more detail in [19].

7.7 CornerDocking

The CornerDocking behaviour uses the laser range finder to position itself rela-
tive to a corner. The method deployed is to extract the two walls defining the
corner. Based on an estimate of the corner position from the laser data, a pro-
portional control scheme is used to servo the robot to the desired position. The
behaviour requires that the corner is in the “field of view” of the laser scanner
when it is initiated.

7.8 Behaviour Fusion

The data received from the behaviours is fused or arbitrated by the controller to
give a control signal to the actuators. Upon receiving the command to stop from
the state manager, the controller stops the robot, disconnects the behaviours
and enters an idle mode.

The controller implemented so far, is a vehicle controller. Future work in-
cludes integration of an arm controller, when the system is ported to our Nomad
XR4000. The vehicle controller controls the steering and drive motors of the
robot. Two formats of input data from the behaviours have been implemented.

In the first method, each behaviour provides a histogram containing 72 cells.
The index of each cell represents an absolute direction from the robot centre,
thus resulting in an angular resolution of five degrees (this is similar to a vector
field histogram). The value of each cell indicates how much the behaviour wants
to travel in that direction. The histograms are fused by component-wise summa-
tion and smoothed by convolution with a normalised, truncated, and discretised
Gaussian function g. The resulting fused histogram is given by

f = (
∑

hj) ∗ g,

where the discrete convolution with the Gaussian is performed on the circular
buffer of cells. The robot will set course in the direction of the maximum value
of f .

The second implemented data format is a polar representation (magnitude
and direction). The vector outputs from the behaviours are fused by vector
summation according to

v =
∑

vj ,

where vj is the output from behaviour j. The robot will head in the direction of
the sum vector v. Both formats also include a speed proposal for the robot.



16

In order to make the robot drive along a smooth trajectory around larger
obstacles, two schemes have been investigated. The first consists of exchanging
the GoPoint behaviour with what we call a PathGoPoint behaviour. This uses
sonar-data to construct a grid map used to compute a path around obstacles.
In the other method, the vehicle controller detects when the sum of a behaviour
fusion is close to zero. The controller will then start up another behaviour called
Swirl. This behaviour will produce a steering angle, perpendicular to the object,
to be added in the fusion process. Details on our strategy for smooth control can
be found in [20].

8 Implementation

In this section we discuss the the hardware facilities of the robot, and the actual
software implementation structure.

8.1 Hardware

The described system has been implemented on a Nomadic Technologies Nomad
200 platform. It is a circular robot that is 125 cm high and with a diameter of
53 cm. There is an on-board 133 MHz Pentium computer with 128 MB RAM
running Linux OS. The computer can communicate with the the outside world
through a radio Ethernet link. Our robot is equipped with a wide range of sensors
and actuators. Some of them are displayed in Figure 8.

Sensors The sensors are both of proprioceptive and exteroceptive type. The
proprioceptive sensors give the robot it’s body awareness, while the exteroceptive
sensors sense the world around it. We will describe all exteroceptive sensors in
the following paragraphs, see also Figure 8.

Ultrasound Sensors One of the primary sensors on the platform is an omni-
directional ultrasound sonar ring with 16 equiradial Polaroid elements. The
sonars can measure distances from 15 cm up to 8 m and are placed approx-
imately 0.8 m above the floor making it possible to detect obstacles at table
height even at close range.

Infrared Sensors The infrared sensors are placed in a ring, similar to the sonar
ring, but 38 cm above the floor. The measurement range is up to 40 cm. They
can be used for last minute detection of obstacles that cannot be detected by
the ultrasound sensors, e.g., a low coffee table.

Proximity Laser Scanner On top of the robot body we have mounted a SICK
PLS-200 proximity laser scanner. It measures distances in a half-plane, approx-
imately 95 cm above the floor. The sensor provides 361 readings resulting in an
angular resolution of 0.5 degrees. The maximum measurement range is 100 m
with an accuracy of 5 cm.



17

Odometry The odometry measures the rotation and translation of the wheels
and the turret. The accuracy is high, but due to slippage on the floor etc. the
measurements cannot be fully trusted.

Vision system A camera head, consisting of two relatively fixed colour cameras,
is mounted on a pan-tilt unit on top of the robot. The cameras are connected to
a Fujitsu image processing board.

Actuators The actuators of the robot enables it to locomote and to manipulate.
A short description of the actuators are given below.

Wheel Base The wheel base consists of a three wheel synchro-drive, such that
they always point in the same direction. The robot has a zero gyro-radius drive
which enables it to turn on the spot. The maximum speed of the robot is 61
cm/s and the maximum turning speed is 60 degrees/s.

Turret The turret is mounted on the wheel base with a rotating joint. The joint
can be rotated with a maximum turning speed of 90 degrees/s. All the sensors,
except odometry, are mounted on the turret.

Lift mechanism A lift mechanism is mounted on the front of the robot. The lift
has a gripper that can grip objects that are up to 15 cm wide and weight less
than 9 kg. The lift can reach object from the floor and up to a height of 122 cm.

8.2 Software

The objective of the software implementation was to fulfil the following criteria:

– Easy integration of new behaviours
– Easy interfacing of new hardware devices
– Transparent performance on multiple platforms
– Efficient runtime performance
– Simple debugging

The implementation of the software architecture has been performed using
an object-oriented framework. We have used C++ to code all parts of the ar-
chitecture, except for some Nomad supplied code that is written in C. Separate
parts of the system, e.g., Resources, Behaviours, Controllers etc., run as separate
processes communicating using sockets. This makes it possible to simultaneously
run the system on several different platforms. The programming in C++ is done
in correspondence with the ANSI standard and the operating system specific
parts are wrapped in the software package Adaptive Communication Environ-
ment (ACE), to promote portability [21]. The total system is at the moment
(December 1998) of approximately 68000 lines of code, including comments.



18

Process management All the software components described in Section 4 are
processes. These are connected to each other in a network using global and local
sockets.

The process manager keeps track of all processes used in the architecture. It
is similar to the function of the ORB in CORBA. Each new process has to inform
the process manager of its name, host, and address. It maintains a database for
this information as well as information about dependencies between processes.

If a process wants to establish communication with another process, the
process manager will provide the necessary address. The process manager will
also start processes when they are required.

The process manager has an executor daemon on each computer used in the
system. On demand from the process manager, an executor will start or kill
processes used in the system. The executor will also monitor the processes it
has started and report unexpected terminations. The executor can be viewed as
a tool for the process manager to reach over all the computers in the system.
The executor will always work as a slave for the process manager, except for the
instance when the communication to the process manager is broken. In such an
event, the executor will kill all the processes it has spawned, and return to an
initial state waiting for a process manager to leash it again. Thus, the executor
does not have to be restarted.

ACE - Adaptive Communication Environment The adaptive communi-
cation environment is an object-oriented toolkit that implements strategic and
tactical design patterns, to simplify the development of concurrent, event-driven
communication software. It provides a rich category of classes and frameworks
that perform communication tasks across a wide range of operating system plat-
forms. It can for example handle event demultiplexing and handler dispatching,
interprocess communication, shared memory management, message routing, dy-
namic configuration of network services, threading, and concurrent control. For
more information, see [21].

9 Results

The system presented above has been evaluated in our laboratory, including
the living room shown in Figure 1. The evaluation has included experiments on
localisation, map building, and fully autonomous mission execution for tasks like
mail delivery.

Localisation involving the sonar system is described in detail in [16, 22]. In
general, it is possible to localise the system with an accuracy of 5 cm within
a room of the laboratory. Using the laser scanner, a continuous updating of
ego-position can be achieved with an accuracy of 1-5 cm, depending on the
environment. In certain situations it is only possible to detect the wall at the
side of the robot, i.e., in a long corridor. During such situations the longitudinal
uncertainty grows significantly until a feature like a door becomes visible. The
laser results are reported in further detail in [17, 18].



19

For evaluation of the fully integrated system, a mail delivery scenario has
been defined. The robot receives the command “Robot Deliver Mail in room”
from the speech interface, where room is one of several pre-defined rooms. The
robot will then plan a path to the mail-slot, drive to the mail slot, pick-up
mail and finally drive to the designated room and announce arrival of mail.
During this mission it will avoid obstacles and re-localise, if the uncertainty in
position grows beyond a certain bound. This task has been carried out more
than 100 times. The system has a reliability of about 90%, where the major
source of problems is due to loss of localisation, which can be provoked if the
robot encounters a large number of obstacles, or drives a long distance without
any cues for re-localisation. This might happen in a long corridor with no or
few landmarks that allow re-localisation. The laser range based localisation is
expected to solve this problem, once it has been fully integrated. Another source
of error is the docking to pick-up mail. It is critical that the robot is positioned
with an accuracy of a few centimetres, as it otherwise will miss the mail-tray.
To achieve this the laser-based corner docking is used. Due to lack of tactile
feedback on the fork-lift it is however, possible to miss the tray.

Recently the system was demonstrated at a trade fair, where it navigated
for 8 hours, only interrupted by replacement of batteries, every hour. During
this period the robot moved about in an area of 20 by 20 meters. The map of
the demonstration site was acquired during an explore session and subsequently
used for relocalisation, when the errors grow beyond a fixed threshold. The robot
performed robustly during the demonstration period.

Overall, it is a robust and versatile system. The robot can with little effort
be transferred to a new environment and be taught the layout of the plant using
exploration behaviours. Once a topological map and landmarks for the involved
rooms have been acquired, it can be sent on missions.

10 Summary

A fully operational robot system has been constructed. The system has been
developed using a behaviour-based approach and integrated using a hybrid de-
liberative architecture. The system includes facilities for spoken and gesture
based commanding of the robot. Once instructed to carry out a particular mis-
sion, it will generate a plan to complete the mission. The list of tasks to be
accomplished is given to a state manager that configures the set of behaviours,
and monitors the execution of individual tasks. In the event of errors, a simple
recovery strategy is deployed. For localisation, the system utilises sonars and a
laser scanner. A map of the environment is automatically constructed using an
exploration strategy. The system has been implemented on a Nomad 200 robot
from Nomadic Technologies Inc.

The system is capable of performing a variety of tasks like mail delivery and
point-to-point based navigation in a natural environment, like a regular living
room. Extensive experiments have demonstrated that the system has a very high
degree of robustness.



20

The primary limitations of the system is in terms of robust localisation in
the presence of few natural landmarks. In addition, the system has problems
when it encounters low obstacles and they frequently will not be detected by the
present set of sensors.

The system has been built by a set of 10 graduate students, that each have
contributed methods within their particular area of expertise. The basic archi-
tecture has been carefully designed to allow for easy (and flexible) integration of
new behaviours. Today a “plug-n-play” functionality is available for adding new
behaviours, with a minimum need for behaviour designers to know the internal
structure of the system.

Presently the system is being ported to a Nomadic Technologies XR4000
robot, that includes an on-board PUMA 560 manipulator. This robot has a
richer set of sonars (just above the floor and at 80 cm height), and a better
SICK scanner (LMS-200). These facilities will allow for more robust navigation.
The new challenge will be integration of manipulation into the system, which
introduces a number of interesting research questions in terms of coordination
and non-holonomic path planning. The short-term goal is to extend the current
scenario to include the ability to open and close doors and to ride in an elevator.
The manipulation system also opens up new problems in grasping, using visual
servoing, and force-torque sensing.

11 Acknowledgement

The service robot has been constructed by a team consisting of Magnus Ander-
sson, Henrik I Christensen, Magnus Egerstedt, Martin Eriksson, Patric Jensfelt,
Danica Kragic, Mattias Lindström, Anders Orebäck, Lars Pettersson, Hedvig
Sidenbladh, Dennis Tell, and Olle Wijk. The entire team has been instrumental
in this effort. Throughout the effort valuable guidance and advice was received
from Ronald C. Arkin, Jan-Olof Eklundh, Bo Wahlberg, and Anders Lindquist.

The Centre for Autonomous Systems is sponsored by the Swedish Foundation
for Strategic Research, without this support the effort would never have been
possible.

References

1. H. P. Moravec, “Towards automatic visual obstacle avoidance,” in Proceedings of
Int. Joint. Conf. on Artificial Intelligence in Cambridge,MA, p. 584, 1977.

2. H. P. Moravec, “The Stanford cart and the CMU rover,” Proceedings IEEE, vol. 71,
pp. 872 – 884, 1983.

3. R. Brooks, “A hardware retargetable distributed layered architecture for mobile
robot control,” in Proceedings of the IEEE International Conference on Robotics
and Automation, 1987.

4. R. C. Arkin, “Integrating behavioral, perceptual, and world knowledge in reactive
navigation,” in Robotics and Autonomous Systems, Vol. 6, pp. 105-22, 1990.

5. R. Simmons, “Structured control for autonomous robots,” in IEEE Transactions
on Robotics and Automation, 1994.



21

6. J. R. Firby, “Modularity issues in reactive planning,” in Third International Con-
ference on AI Planning Systems, (Menlo Park, CA), pp. 78–85, AAAI Press, 1996.

7. J. R. Firby, Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Com-
puter Science Dept., Yale University, 1989. TR-YALEU/CSD/RR #672.

8. M. Beetz, W. Burgard, A. B. Cremers, and D. Fox, “Active localization for ser-
vice robot applications,” in Proceedings of the 5th International Symposium on
Intelligent Robotic Systems ’97, 1997.

9. U. D. Hanebeck, C. Fischer, and G. Schmidt, “Roman: A mobile robotic assistant
for indoor service applications,” in Proceedings of the International Conference on
Intelligent Robots An Systems 1997, 1997.

10. S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Delaert, D. Fox,
D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Min-
erva: A second generation museum tour-guide robot.” CMU Tech Report
(url://www.cs.cmu.edu/˜thrun/papers).

11. I. Nourbakhsh, “The failures of a self reliant tour robot with no
planner,” tech. rep., Carnegie Mellon University, Robotics Institute, url:
http://www.cs.cmu.edu/˜illah/SAGE, 1999.

12. J. R. Firby, P. Prokopowicz, and M. J. Swain, Artificial Intelligence and Mobile
Robotics, ch. The Animate Agent Architecture, pp. 243–275. Menlo Park, CA.:
AAAI Press, 1998.

13. I. Nourbakhsh, Artificial Intelligence and Mobile Robotics, ch. Dervish: An Office
Navigating Robot, pp. 73–90. Menlo Park, CA.: AAAI Press, 1998.

14. P. Agre and D. Chapman, “What are plans for?,” Robotics and Autonomous Sys-
tems, vol. 6, pp. 17–34, 1990.

15. H. Asoh, S. Hayamizu, I. Hara, Y. Motomura, S. Akaho, and T. Matsui, “Sociall
embedded leraring of office-conversant robot jijo-2,” in Int. Joint Conf. on Artificial
Intell. 1997, 1997.

16. O. Wijk and H. I. Christensen, “Extraction of natural landmarks and localization
using sonars,” in Proceedings of the 6th International Symposium on Intelligent
Robotic Systems ’98, 1998.

17. P. Jensfelt and H. I. Christensen, “Laser based position acquisition and tracking in
an indoor environment,” in International Symposium on Robotics and Automation
- ISRA’98, (Saltillo, Coahuila, Mexico), December 1998.

18. P. Jensfelt and H. I. Christensen, “Laser based pose tracking,” in International
Conference on Robotics and Automation 1999, (Detroit, MI), May 1999.

19. H. Sidenbladh, D. Kragic, and H. I. Christensen, “A person following behaviour,”
in IEEE International Conference on Robotics and Automation 1999, (Detroit,
MI), May 1999. (submitted).

20. M. Egerstedt, X. Hu, and A. Stotsky, “Control of a car-like robot using a dynamic
model,” in IEEE International Conference on Robotics and Automation, May 1998.
Accepted for presentation.

21. D. C. Schmidt, “The adaptive communication environment: Object-oriented net-
work programming components for developing client/server applications,” in 11th
and 12th Sun Users Group Conference, 1994.

22. O. Wijk, P. Jensfelt, and H. I. Christensen, “Triangulation based fusion of ultra-
sonic sonar data,” in IEEE Conference on Robotics and Automation, IEEE, May
1998.



22

Livingroom
Office

Manipulator lab

Mailbox
Windows Windows

Small corridor

0 10m

1
2

3

4

Fig. 4. A layout of the CAS lab floor showing the path of the robot executing some
commands. At point 1 the robot is told to localise itself in the living-room. It then
wanders around randomly, collecting sonar data and matching these to a previously
stored map. At point 2 it knows where it is and stops. It is then told to deliver mail in
the manipulator lab, which means that it will go to the mail slots, point 3, pick up the
mail, and then go down the hallway to the lab, point 4. Finally it is told to go back to
the living room.



23

!4000 !3000 !2000 !1000 0 1000 2000 3000
!3000

!2000

!1000

0

1000

2000

3000

4000

5000

Dinner tableShelves

Fig. 5. A sonar map of the living room. The circles indicate where a map landmark
has been matched to a point from the current run. In this case 13 landmarks have been
matched.

Kalman filter Val. Gate

Odometry

Pose

Laser

Hough Val. Gate LSQ

Fig. 6. The laser based localisation method



24

!2"

Predicted wallMeasurement

Real wall

Robot

o
o
o o

oo
ooo

o
o
o
o o o o

o

o

o
o
o

o

o o
o
o
oo
o
o
o o

o
ooo oo

o
ooo

o
o o

o
o
o

o
o

oooo

Fig. 7. Selection of reasonable measurements. The concept of a validation gate is in
this case an area, points outside this area will be rejected.

Fig. 8. Hardware Placement.


