Skip to main content

A Cellular Neural Associative Array for Symbolic Vision

  • Conference paper
Hybrid Neural Systems (Hybrid Neural Systems 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1778))

Included in the following conference series:

Abstract

A system which combines the descriptional power of symbolic representations with the parallel and distributed processing model of cellular automata and the speed and robustness of connectionist symbol processing is described. Following a cellular automata based approach, the aim of the system is to transform initial symbolic descriptions of patterns to corresponding object level descriptions in order to identify patterns in complex or noisy scenes. A learning algorithm based on a hierarchical structural analysis is used to learn symbolic descriptions of objects. The underlying symbolic processing engine of the system is a neural based associative memory (AURA) which enables the system to operate in high speed. In addition, the use of distributed representations allow both efficient inter-cellular communications and compact storage of rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bunke, H.: Structural and syntactic pattern recognition. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition & Computer Vision, pp. 163–209. World Scientific, Singapore (1993)

    Google Scholar 

  2. Tombre, K.: Structural and syntactic methods in line drawing analysis: To which extend do they work? In: Perner, P., Rosenfeld, A., Wang, P. (eds.) SSPR 1996. LNCS, vol. 1121, pp. 310–321. Springer, Heidelberg (1996)

    Google Scholar 

  3. Tanaka, E.: Theoretical aspects of syntactic pattern recognition. Pattern Recognition 28(7), 1053–1061 (1995)

    Article  Google Scholar 

  4. Preston, K., Duff, M. (eds.): Modern Cellular Automata: Theory and Applications. Plenum Press, New York (1984)

    MATH  Google Scholar 

  5. Wolfram, S.: Computation theory of cellular automata. Communications in Mathematical Physics 57, 15–57 (1984)

    Article  MathSciNet  Google Scholar 

  6. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55(3), 601–643 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois Press, US (1970)

    MATH  Google Scholar 

  8. Richards, F.C., Thomas, P.M., Packard, N.H.: Extracting cellular automaton rules directly from experimental data. Physica D 45, 189–202 (1990)

    Article  MATH  Google Scholar 

  9. Takai, Y., Ecchu, K., Takai, K.: A cellular automaton model of particle motions and its applications. Visual Computer 11 (1995)

    Google Scholar 

  10. Pierre, T., Milgram, M.: New and effcient cellular algorithms for image processing. CVGIP: Image Understanding 55(3), 261–274 (1992)

    Article  MATH  Google Scholar 

  11. Duff, M.J.B., Fountain, T.J. (eds.): Cellular Logic Image Processing. Academic Press, London (1986)

    Google Scholar 

  12. Orovas, C.: Cellular Associative Neural Networks for Pattern Recognition. PhD thesis, University of York (1999) (copies are available)

    Google Scholar 

  13. Paun, G., Salomaa, A. (eds.): New Trends in Formal Languages. LNCS, vol. 1218. Springer, Heidelberg (1997)

    Google Scholar 

  14. Csuhaj-Varju, E., Salomaa, A.: Networks of parallel language processors. In: Paun and Salomaa [13], pp. 299–318

    Google Scholar 

  15. Kohonen, T.: Content-Addressable Memories. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  16. Austin, J.: Associative memory. In: Fiesler, E., Beale, R. (eds.) Handbook of Neural Computation. Oxford University Press, Oxford (1996)

    Google Scholar 

  17. Hinton, G.E. (ed.): Connectionist Symbol Processing. MIT/Elsevier (1990)

    Google Scholar 

  18. Sun, R., Bookman, L.A. (eds.): Computational architectures integrating neural and symbolic processing. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  19. Austin, J., Lees, K.: A neural architecture for fast rule matching. In: Proceedings of the Artificial Neural Networks and Expert Systems Conference, Dunedin, New Zealand (December 1995)

    Google Scholar 

  20. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222(7), 960–962 (1969)

    Article  Google Scholar 

  21. Casasent, D., Telfer, B.: High capacity pattern recognition associative processors. Neural Networks 5, 687–698 (1992)

    Article  Google Scholar 

  22. Austin, J., Stonham, T.J.: Distributed associative memory for use in scene analysis. Image and Vision Computing 5(4), 251–261 (1987)

    Article  Google Scholar 

  23. Kennedy, J., Austin, J.: A parallel architecture for binary neural networks. In: Proceedings of the 6th International Conference on Microelectronics for Neural Networks, Evolutionary & Fuzzy Systems (MICRONEURO 1997), Dresden, September 1997, pp. 225–232 (1997)

    Google Scholar 

  24. Rozenberg, G., Salomma, A. (eds.): Handbook of Formal Languages, vol. I-II-III. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  25. Orovas, C., Austin, J.: A cellular system for pattern recognition using associative neural networks. In: 5th IEEE International Workshop on Cellular Neural Networks and their Applications, London, April 1998, pp. 143–148 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orovas, C., Austin, J. (2000). A Cellular Neural Associative Array for Symbolic Vision. In: Wermter, S., Sun, R. (eds) Hybrid Neural Systems. Hybrid Neural Systems 1998. Lecture Notes in Computer Science(), vol 1778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719871_26

Download citation

  • DOI: https://doi.org/10.1007/10719871_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67305-7

  • Online ISBN: 978-3-540-46417-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics