
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Searching for a Solution to Program Verification=Equation
Solving in CCS

Citation for published version:
Monroy, R, Bundy, A & Green, I 2000, Searching for a Solution to Program Verification=Equation Solving in
CCS. in MICAI 2000: Advances in Artificial Intelligence: Mexican International Conference on Artificial
Intelligence, Acapulco, Mexico, April 11-14, 2000. Proceedings. Lecture Notes in Computer Science, vol.
1793, Springer-Verlag GmbH, pp. 1-12. https://doi.org/10.1007/10720076_1

Digital Object Identifier (DOI):
10.1007/10720076_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
MICAI 2000: Advances in Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Apr. 2024

https://doi.org/10.1007/10720076_1
https://doi.org/10.1007/10720076_1
https://www.research.ed.ac.uk/en/publications/8e09ddbf-6e59-4969-a467-834c9caa2062


Searching for a Solution to
Program Verification=Equation Solving in CCS?

Raúl Monroy1 and Alan Bundy2 and Ian Green2

1 Computer Science Department, ITESM Campus Estado de México
Apdo. Postal 50, Módulo de Servicio Postal Campus Edo. de México del ITESM,

52926 Atizapán, Edo. de México, México,
raulm@campus.cem.itesm.mx

2 Division of Informatics, The University of Edinburgh,
80 South Bridge, EH1 1HN, Scotland, U.K,

{A.Bundy, I.Green}@ed.ac.uk

Abstract. Unique Fixpoint Induction, UFI, is a chief inference rule to
prove the equivalence of recursive processes in CCS [7]. It plays a major
role in the equational approach to verification. This approach is of spe-
cial interest as it offers theoretical advantages in the analysis of systems
that communicate values, have infinite state space or show parameterised
behaviour.

The use of UFI, however, has been neglected, because automating theo-
rem proving in this context is an extremely difficult task. The key prob-
lem with guiding the use of this rule is that we need to know fully the
state space of the processes under consideration. Unfortunately, this is
not always possible, because these processes may contain recursive sym-
bols, parameters, and so on.

We introduce a method to automate the use of UFI. The method uses
middle-out reasoning and, so, is able to apply the rule even without elab-
orating the details of the application. The method introduces variables
to represent those bits of the processes’ state space that, at applica-
tion time, were not known, hence, changing from equation verification to
equation solving.

Adding this method to the equation plan developed by Monroy, Bundy
and Green [8], we have implemented an automated verification planner.
This planner increases the number of verification problems that can be
dealt with fully automatically, thus improving upon the current degree
of automation in the field.

1 Introduction

The Calculus of Communicating Systems [7] (CCS) is an algebra suitable for
modelling and analysing processes. CCS is well-established in both industry and
academia and has strongly influenced the design of LOTOS [5].
? The authors are supported in part by grants CONACyT-REDII w/n and EPSRC

GR/L/11724.



Unique Fixpoint Induction (UFI) is an inference rule for reasoning about
recursive processes in CCS and other process algebras [7]. UFI plays a major role
in the equational approach to verification. This approach is of special interest
as it offers theoretical advantages in the analysis of systems that communicate
values, have infinite state space or show parameterised behaviour.

The use of UFI has been neglected. This is because automating theorem
proving in this context is an extremely difficult task. The key problem with
guiding the use of this rule is that we need to know fully the state space of the
agents under consideration. Unfortunately, this is not always possible, for these
agents may contain recursive symbols, parameters, and so on. We suggest that
a proof planning approach can provide significant automation in this context.

Proof planning [1] is a meta-level reasoning technique. A proof plan captures
general knowledge about the commonality between the members of a proof fam-
ily, and is used to guide the search for more proofs in that family. We introduce
a proof plan to automate the use of UFI, based on middle-out reasoning.

Middle-out reasoning (MOR) is the use of meta-variables to represent un-
known, ‘eureka’ values. These meta-variables are gradually refined as further
proof steps take place. Control of this refinement is the key in the success of this
approach and proof planning provides the necessary means to guide the selection
of instantiations and proof steps.

Using MOR, we can apply UFI even without elaborating the details of the
application. We approach a verification problem by generalising the input con-
jecture in a way that the use of UFI becomes immediate. If successful, the proof
of the generalised goal is then used to justify the initial one. To generalise the
input conjecture, we create a new process family and replace it for the process
under verification. The new process family and the specification have similar size
and structure, hence facilitating the use of UFI. The new process familiy is under
specified, because — via MOR — it contains meta-variables representing those
bits of the process’s state space that, at introduction time, were not known. We
therefore change from equation verification to equation solving.

The proof plan presented here is an extension of the equational verification
plan developed by Monroy, Bundy and Green [8]. The proof plan contains three
additional strategies, with which it fully automatically decides when and how to
apply UFI, as well as driving the solution of equations. The proof plan increases
the number of verification problems that can be dealt with fully automatically,
thus improving upon the current degree of automation in the field.

Overview of Paper In §2 we describe CCS and UFI. In §3 we characterise the
kinds of proofs we shall automate, highlighting search control issues. In §4 we
describe proof planning and the verification plan. In §5, §6 and §7 we introduce
a method for guiding the use of UFI, the generalisation of the input goal and
equation solving. We illustrate aspects of this method with a running example
in §8. Finally, we summarise experimental results, discuss related work, as well
as drawing conclusions in §9.



2 CCS

Terms of CCS represent agents. Agents are circumscribed by their entire capa-
bilities of interaction. Interactions occur either between two agents, or between
an agent and its environment. These communicating activities are referred to as
actions. An action is said to be observable, if it denotes an interaction between
an agent and its environment, otherwise it is said to be unobservable. This inter-
pretation of observation underlies a precise and amenable theory of behaviour:
whatever is observable is regarded as the behaviour of a system. Two agents
are held to be equivalent if their behaviour is indistinguishable to an external
observer.

2.1 Syntax and Semantics

The set of Actions, Act = {α, β, . . .}, contains the set of names, A, the set of
co-names, A, and the unobservable action τ , which denotes process intercommu-
nication. A and A are both assumed to be countable and infinite. Let a, b, c, . . .
range over A, and a, b, c, . . . over A. The set of labels, L, is defined to be A∪A;
hence, Act = L ∪ {τ}. Let `, `′, . . . range over L. Let K, K, L, L, . . . denote
subsets of L.
K is the set of agent constants, which refer to unique behaviour and are

assumed to be declared by means of the definition facility, def=. Let A,B,C, . . .
range over K. Constants may take parameters. Each parameterised constant A
with arity n is assumed to be given by a set of defining equations, each of which
is of the form: b→ A〈x1,...,xn〉

def= E. E does not contain free parameter variables
other than x1, . . . , xn. → denotes logical implication.

We assume parameter expressions, e, built from parameter variables x, y, . . .,
parameter constants v1, v2, . . . and any operators we may require, ×,÷, even, . . ..
We also assume boolean expressions, b, with similar properties except that they
are closed under the logical connectives. Parameter constants might be of any
type.

The set of agent expressions, E , is defined by the following abstract syntax:

E ::= A α.E
∑
i∈I

Ei E E E \ L E[f ]

where f stands for a relabelling function. Informally, the meaning of the com-
binators is as follows: Prefix, ()̇, is used to convey discrete actions. Summation,
(
∑

), disjoins the capabilities of the agents Ei, (i ∈ I); as soon as one performs
any action, the others are dismissed. Summation takes an arbitrary, possibly in-
finite, number of process summands. Here, Summation takes one of the following
forms: i) The deadlock agent, 0, capable of no actions whatever; 0 is defined to
be
∑
i∈∅Ei; ii) Binary Summation, which takes two summands only, E1 +E2 is∑

i∈{1,2}Ei; iii) Indexed Summation over sets,
∑
i∈{e}∪I Ei = E(e) +

∑
i∈I Ei;

and iv) Infinite Summation over natural numbers.



Parallel Composition, ( ), is used to express concurrency: E F denotes an
agent in which E and F may proceed independently, but may also interact with
each other. The Relabelling combinator, ([ ]), is used to rename port labels: E[f ]
behaves as E, except that its actions are renamed as indicated by f . Restriction,
(\), is used for internalising ports: E \ L behaves like E, except that it cannot
execute any action ` ∈ L ∪ L.

Processes are given a meaning via the labelled transition system (E ,Act, α→),
where α→ is the smallest transition relation closed under the following transition
rules (the symmetric rule for has been omitted:)

α.E
α→ E

Ej
α→ E′∑

i∈I Ei
α→ E′

(j ∈ I)
E

α→ E′

A
α→ E′

(A
def
= E)

E
α→ E′

E[f ]
f(α)→ E′[f ]

E
α→ E′

E F
α→ E′ F

E
`→ E′ F

`→ F ′

E F
τ→ E′ F ′

E
α→ E′

E \ L α→ E′ \ L
(α, α 6∈ L)

The interpretation of these rules should be straightforward and is not discussed
here further.

Process (states) are related to each other: E′ is a derivative of E, whenever
E

α→ E′. Similarly, E′ is a descendant of E, whenever E α⇒ E′, where α⇒ is given
as ( τ→)∗ α→ ( τ→)∗.

2.2 Unique Fixpoint Induction

Unique Fixpoint Induction (UFI) is a rule for reasoning about recursive pro-
cesses [7]. UFI states that two processes are equivalent, if they satisfy the same
set of (recursive) equations, so long as the set of equations has one, and only
one, solution.

Uniqueness of solution of equations is guaranteed by two syntactic properties:
guardedness and sequentiality.X is guarded in E if each occurrence ofX is within
some subexpression `.F of E, for ` ∈ L. X is sequential in E if it occurs in E
only within the scope of Prefix or Summation.

The notions of guardedness and sequentially are extended to sets of equa-
tions in the obvious way: the set of equations X̃ = Ẽ is guarded (respectively
sequential) if Ei(i ∈ I) contains at most the variables Xi(i ∈ I) free, and these
variables are all guarded (respectively sequential) in Ei.

Let the expressions Ei (i ∈ I) contain at most the variables Xi (i ∈ I) free,
and let these variables be all guarded and sequential in each Ei. Then, the UFI
inference rule is as follows:

If P̃ = Ẽ{P̃ /X̃} and Q̃ = Ẽ{Q̃/X̃}, then P̃ = Q̃

There is one aspect to the UFI rule that is worth mentioning: it reasons
about process families. We cannot prove that some individuals satisfy a property
without proving that such a property is satisfied by all. This is because the
equations of each individual are incomplete and, by definition, to apply UFI the
system of equations, Xi = Ei(i ∈ I), must be such that each Ei contains at most
the variables Xi(i ∈ I) free.



3 Program Verification

We use CCS both as a programming language and as a specification language.
Specifications are assumed to be explicitly given by means of C-declarations.

Definition 1 (C-declaration). A set of definitions C̃ → S̃
def= Ẽ{S̃/X̃} is

called a C-declaration if it satisfies the following conditions:

1. the expressions Ei (i ∈ I) contain at most the variables Xi (i ∈ I) free, and
these variables are all guarded and sequential in each Ei;

2. Si = Sj implies i = j; and
3. the conditions Ci (i ∈ I) are all fundamental, in that they cannot be given as

the disjunction of two or more relations. For example, ≥ is not fundamental
since x ≥ y means that x > y or x = y.

For example, to specify the behaviour of a buffer of size n, we write:

n 6= 0→ Buf〈n,0〉
def= in.Buf〈n,s(0)〉

n > s(k)→ Buf〈n,s(k)〉
def= in.Buf〈n,s(s(k))〉 + out.Buf〈n,k〉

n = s(k)→ Buf〈n,s(k)〉
def= out.Buf〈n,k〉

where s stands for the successor function on natural numbers.
The systems under verification are arbitrary CCS terms. They reflect at the

required level of detail all concurrency issues. What is more, they may contain
recursive functions, which are used to capture the structure of one or more
process subcomponents. We call these kinds of expressions concurrent forms.
For example, we can implement a buffer of size n by linking n buffers of size 1:

n = 0 → Cs(n) = C
n 6= 0 → Cs(n) = C_C(n) where

C
def= in.D D

def= out.C

P_Q
def= (P [c/out] Q[c/in]) \ {c}

Let P be a concurrent form and let S be a C-declaration. Then we call P = S
an instance of the verification problem. This is an example verification problem:

∀n :nat. n 6= 0→ C(n) = Buf〈n,0〉 (1)

it states that a chain of n copies of a buffer of size one behaves as a buffer of
size n.

We conclude this section noting that, since specifications are given, we need
not use the general form of UFI. Instead we use the following, stronger rule:

P̃ = Ẽ{P̃ /X̃}
P̃ = S̃

S̃
def= Ẽ{S̃/X̃} (2)

We call P̃ = Ẽ{P̃ /X̃} the output equation set and {P̃ /X̃} the process substitu-
tion.

Having given the verification problem, we now attempt to give the reader a
flavour as to the difficulties of automating the search for a verification.



3.1 Search Control Problems within Program Verification

How should one proceed to verify (1)? Clearly, Buf〈n,k〉 and C(n) are both recur-
sive and, so, they suggest the use of induction. However, C(n) suggests the use
of a sort of induction other than UFI, namely: structural induction, or induction
for short.

Induction and UFI play different roles; a proof may resort to both. The use
of these rules has be coordinated. Induction prior to UFI is not a good rule of
thumb and vice versa. For our example, the use of UFI is a bad starting point,
as it is difficult to compute the process substitution. The root of the problem
is that the recursive symbol C(n) is not given in terms of the indexing scheme,
k ∈ {1, . . . , n}, used to define Buf. Fortunately, induction, if successfully applied,
eliminates recursive symbols. Thus, heuristics are required in order to coordinate
the use of UFI and induction.

The process substitution is the key for building the output equation set in an
application of UFI. However, experience indicates that computing process sub-
stitutions is an extremely difficult task. Whenever the use of UFI is suggested
but the process substitution is partially solved, we let an application of the UFI
method introduce a new process family to replace the process under verifica-
tion. The new process family and the specification are similar in both size and
structure. So the use of UFI is immediate. The proof of the new goal is used
to justify the initial one. The process of replacing the program to be verified
for a new process family is called a generalisation. Generalisation increases the
search branching rate and, hence, heuristics are required in order to control its
application.

The new process family is in a way incomplete. In place of some Pi (i ∈ I)
we put meta-variables. We use the term meta-variable to denote a first-order (or
higher-order) unknown entity in the object-level theory. We call M the set of
meta-variables, and letM0,M1, . . . range overM. Introducing meta-variables,
we can use UFI still, but at the expense of solving each equation at verification
time. Thus, heuristics are required in order to control equation solving.

Summarising, automating the use of UFI prompts three major challenges:
i) when and how to use UFI; ii) when and how to use generalisation; and iii)
guide equation solving. These issues explain why radical measures are called for.
Fortunately, as discussed below, proof planning is, at least partially, an answer
to these problems.

4 Proof Planning

Proof planning [1] is a meta-level reasoning technique, developed especially as
a search control engine to automate theorem proving. Proof planning works in
the context of a tactical style of reasoning. It uses AI planning techniques to
build large complex tactics from simpler ones, hence outlining the proof while
emphasising key steps and structure.

Methods are the building-blocks of proof planning. A method is a high-level
description of a tactic. It specifies the preconditions under which the tactic is



applicable, without actually running it, and the effects of its application. The
application of a method to a given goal consists in checking the preconditions
against the goal and then determining the output new goals by computing the
effects.

Proof planning returns a proof plan (i.e., a tactic), whose execution, in the
normal case of success, guarantees correctness of the final proof. Proof planning is
cheaper than searching for a proof in the underlying object theory. This is both
because each plan step covers a lot of ground steps, and because the method
preconditions dramatically restrict the search space.

Inductive proof planning [3] is the application of proof planning to inductive
theorem proving. It has been successfully applied to various domains, including
software and hardware development. Inductive proof planning is characterised
by the following methods: The induction method selects the most promising in-
duction scheme via a process called rippling analysis. The base case(s) of proofs
by induction are dealt with by the elementary and sym eval methods. Elemen-
tary is a tautology checker for propositional logic and has limited knowledge of
intuitionistic propositional sequents, type structures and properties of equality.
Sym eval simplifies the goal by means of exhaustive symbolic evaluation and
other routine reasoning.

Similarly, the step case(s) of proofs by induction are dealt with by the wave
and fertilise methods. Wave applies rippling [2], a heuristic that guides transfor-
mations in the induction conclusion to enable the use of an induction hypothesis.
This use of an induction hypothesis, called fertilisation — hence the name of
the method — is a crucial part of inductive theorem proving and it is handled
by fertilise.

Rippling exploits the observation that an initial induction conclusion is a
copy of one of the hypotheses, except for extra terms, e.g., the successor func-
tion, wrapping the induction variables. By marking such differences explicitly,
rippling can attempt to place them at positions where they no longer prevent
the conclusion and hypothesis from matching. Rippling is therefore an annotated
term-rewriting system. It applies a special kind of rewrite rule, called a wave-
rule, which manipulates the differences between two terms while keeping their
common structure intact.

Monroy, Bundy and Green have extended inductive proof planning with a
special CCS proof plan [8]. The CCS proof plan is circumscribed by the follow-
ing methods: The expansion method transforms a concurrent form into a sum
of prefixed processes. The absorption method gets rid of CCS terms that are
redundant with respect to behaviour. The goalsplit method equates each process
summand on one side of the equation with one on the other side, returning a
collection of subgoals, each of the form α.P = α.Q. Finally, the action method
solves equations of the form α.P = α.S using Hennessy’s theorem [7].

Monroy, Bundy and Green did not allow specifications to be recursive. In
what follows, we shall show how to extend the verification plan to deal with
recursion.



5 The UFI Method

The UFI method is concerned with when to apply the UFI rule. An application
of the UFI method is successful if it introduces a minimum number of meta-
variables, ideally zero. With this, it avoids unnecessary equation solving steps.
The moral is that the more derivatives we associate, the more chances we have
of finding a verification proof.

Concurrent forms often contain a lot of recursive symbols. Recursive symbols
get in the way of an application of UFI, especially when they are not given in
terms of the indexing scheme used by the specification. Then it is necessary to
use induction prior to UFI in order to remove them. However induction prior to
UFI is not generally a good rule of thumb.

Induction before UFI may yield a waste of effort if applied upon an index
variable. This is because it would yield new goals involving Pk, for some k ∈ I, an
individual of the process family. However, recall that we cannot prove that some
individual satisfies a property without proving that such a property is satisfied
by all. So, each goal returned by induction will need to be dealt with using UFI.

Summarising, the strategy to coordinate the use of induction and UFI is as
follows. Use induction prior to UFI both if the verification problem contains
recursive function symbols not given in terms of the indexing scheme, and if the
selected induction variable is other than an index variable in the specification.
If these conditions do not hold, UFI is applied first.

6 The Generalise Method

We now introduce a method, called generalise, which deals with the problem of
using UFI under incomplete information. The rationale behind generalise is that
we can apply UFI still, even without elaborating the details of the application.
The computation of the process substitution is therefore postponed, leaving it
partially defined. Subsequent planning steps are then used in order to elabo-
rate upon the output plan, which will hopefully yield an object-level proof. The
use of meta-variables to represent unknown, ‘eureka’ values is called middle-out
reasoning.

Upon application, generalise builds a conditional, non-recursive process func-
tion, say FP , which is put in place of the process family under verification. FP
has one exceptional feature: not only does it embrace the original process, but it
is also given by the same number of equations that define the specification. Thus,
each equation in FP is pairwise related to one, and only one, equation in S: the
application of UFI becomes immediate. FP is of course initially under-specified
(and so will the output equation set). This is because all of the missing process
derivatives are substituted with meta-variables, each of which it is hoped will
be fixed at later planning steps. We hence change from equation verification to
equation solving, which we shall discuss in §7.

Consider a verification problem, P = S, where the use of UFI is suggested,
but where the process substitution is only partially solved. Then, to generalise
the verification problem, proceed as follows:



1. Introduce a new process symbol, say FP .
2. Define the new process family, so that it matches the size of S as well as its

structure:

Ci → Hi{F̃P/S̃}
def= Mi(P→) only if Ci → Hi

def= Bi ∈ S̃
def= Ẽ{S̃/X̃}

where P→ denotes some P -derivative.
3. Refine the definition of FP , using P = S in order to fix at least one of the

equation bodies, Mi. If this process fails, so will generalise.
4. Simplify the equation system, getting rid of any redundant terms.
5. Finally, replace the original conjecture for FP = S.

7 Verification = Equation Solving in CCS

Now we present a search control strategy to automatically solve the output
equation set. The strategy has been designed to solve equations of the form
P = E, where E may contain meta-variables, but P may not. Each equation in
the output set is, thus, considered independently, one at a time. However, the
result of any equation solving step is spread throughout the entire plan. The
strategy’s guiding factor is the expected behaviour that each meta-variable in E
should satisfy. We call this (behavioural) constraint the context.

The context is nothing but a description of the process’ intended behaviour,
i.e., it is related to the specification. If the definition of the specification involves
mutual recursion, we add the context to every subgoal so that the equation solv-
ing strategy can use it. Accordingly, we let each subgoal in the output equation
set take the following schematic form:

{Ph = Eh{P̃ /X̃} : h ∈ I \ {i} } . . . ` Pi = Ei{P̃ /X̃} (i ∈ I)

The context is a decoration. So, it is marked with a dashed box in order to make
it distinguishable from the actual hypotheses.

Equation solving is applied only when the current equation subgoal is bal-
anced. An equation is balanced iff it has the same number of process summands
on each side of the equality. Equation solving involves both a process, and a
meta-variable. The process and the meta-variable must be prefixed by the same
action, and must appear at a different side of the equality.

The equation solving strategy is specified as follows: Solve M = P , only if
M and P have identical local behaviour, in symbols:

∀α∈Act.M α→ if and only if P α→

While the intended behaviour of M is extracted from the context, the actual
behaviour of P is computed using process expansion.



8 A Worked Example

We illustrate the strength of our approach by showing that full automation is
achieved in proving (1). We have chosen this example because it is a challenge
case study for state-of-the-art automated verification systems.

When input (1), the planner applied induction prior to UFI. This is as ex-
pected since n in C(n) is not an index variable in the definition of Buf. Afterwards,
the planner solved both the base case and the step case, also fully automatically.
In the step case, the planner made use of generalise when induction returned the
goal below:

∀n :nat. n 6= 0→ C_Buf〈n,0〉 = Buf〈s(n),0〉 (3)

Generalise then automatically tackled the new problem outputting the formula
∀n : nat. n 6= 0→ FP〈s(n),0〉 = Buf〈s(n),0〉, where FP was initially given by:

s(n) 6= 0→ FP〈s(n),0〉
def= C_Buf〈n,0〉

s(n) > j → FP〈s(n),j〉
def= M1(M11(C,D),Buf〈n,M12(j)〉)

s(n) = j → FP〈s(n),j〉
def= M2(M21(C,D),Buf〈n,M22(j)〉)

Note that the Ms are all meta-variables. Also note that M11(C,D) sufficed
to represent the state space of C: {C,D}, and similarly for M21(C,D) and
Buf〈n,M22(j)〉.

With the revised conjecture, the use of UFI was immediate, yielding:

` s(n) 6= 0 → PF〈s(n),0〉 = in.PF〈s(n),s(0)〉

` s(n) > k → PF〈s(n),s(k)〉 = in.PF〈s(n),s(s(k))〉 + out.PF〈s(n),k〉 (4)
` s(n) = k → PF〈s(n),s(k)〉 = out.PF〈s(n),k〉

Each goal in the output equation was tackled successfully. For example,
when the equation solving strategy had been already used to successfully fix
M1(M11(C,D),Buf〈n,M12(j)〉) to C_Buf〈n,j〉, the current definition of FP was

as above except for the second case: s(n) > j → FP〈s(n),j〉
def= C_Buf〈n,j〉. The

working subgoal then was (4):

s(n) 6= 0→ FP〈s(n),0〉 = in.FP〈s(n),s(0)〉
s(n) > k → FP〈s(n),s(k)〉 = in.FP〈s(n),s(s(k))〉 + out.FP〈s(n),k〉
s(n) = k → FP〈s(n),s(k)〉 = out.FP〈s(n),k〉

n : nat, n 6= 0
`
s(n) > s(k) → C_Buf〈n,s(k)〉 = in.FP〈s(n),s(s(k))〉 + out.FP〈s(n),k〉

With this goal, a further application of equation solving was required. It occurred
after the application of casesplit upon the partition: [n > s(k), n = s(k)]. The



interesting case is n = s(k), where the planner applied expansion, together with
sym eval, leaving:

. . . ` in.(D_Buf〈n,s(k)〉) + out.(C_Buf〈n,k〉) =

in.M2(M21(C,D),Buf〈n,M22(s(k))〉) + out.(C_Buf〈n,k〉)

Then, second-order matching suggested the following substitution:

M2 7→_, M21 7→ inr(C,D), M22 7→ λx.x

The solution met the constraint imposed by the context, because, by expansion,
D_Buf〈n,s(k)〉 equals out.(D_Buf〈n,k〉). So, it was accepted, yielding a refine-

ment on the third defining equation of FP : s(n) = j → FP〈s(n),j〉
def= D_Buf〈n,j〉,

which is just as required.

9 Results, Related Work and Conclusions

Table 1 gives some of the example systems with which we tested our proof plan.
PT stands for the total elapsed planning time, given in seconds. Space constraints
do not allow us to provide a full description of each verification problem. These
example verification problems are all taken from [7]. They all involve the use
of generalise, UFI and equation solving. The success rate of the proof plan was

Conjecture Description PT (sec)

n-bit counter A chain of n cells, each acting as a 1-bit counter, 57
implements a counter of size n

n-bit sorter A chain of n cells, each acting as a filter implements a 614
bubble-sort algorithm for a string of elements

semaphore array A set containing n 1-bit semaphores implements a 992
semaphore of size n

cycler array A collection of cyclers computes the sequence 411
a1. · · · .an.a1 · · · indefinitely

Table 1. Some example verification conjectures

83%, with an average total elapsed planning time of 750 seconds, and standard
deviation of 345. The test was run on a Solbourne 6/702, dual processor, 50MHz,
SuperSPARC machine with 128 Mb of RAM. The operating system, Solbourne
OS/MP, is an optimised symmetric multi-processing clone of SunOS 4.1. The full
test set, including the planner, are available upon request, by sending electronic-
mail to the first author.

CCS has been mechanised in several proof checkers. For example, Cleaveland
and Panangaden describe an implementation of CCS in Nuprl [4]. Cleaveland
and Panangaden did not strive for automation; instead, they were interested in



showing the suitability of type theory for reasoning about concurrency in general.
Also Nesi implemented CCS in HOL [9]. But Nesi’s motivation was somewhat
different: to show the suitability of (induction oriented) proof checkers for rea-
soning about parameterised systems. The tool was the first to accommodate the
analysis of parameterised systems, but did not improve upon the degree of au-
tomation. Lin reported an implementation of a CCS like value-passing process
algebra in VPAM [6], a generic proof checker. These verification frameworks are
highly interactive, requiring at each step the user to select the tactic to be ap-
plied. By contrast, our verification planner is fully automatic, accommodating
parameterised, infinite-state systems. However, unlike Lin, we do not accommo-
date truly value-passing systems, relying upon infinite Summation to simulate
it.

Concluding, the Verification planner handles the search control problems
prompted by the use of UFI more than satisfactorily. We have planned proofs
of conjectures that previously required human interaction. Full automation is
an unattainable ideal, but we should nevertheless strive towards it. We intend
to apply the verification planner to the verification of larger, industrial strength
examples, and see what extensions are required.

References

1. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th Conference on Automated Deduction, pages 111–120.
Springer-Verlag, 1988.

2. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.

3. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303–324, 1991.

4. R. Cleaveland and P. Panangaden. Type Theory and Concurrency. International
Journal of Parallel Programming, 17(2):153–206, 1988.

5. ISO. Information processing systems - Open Systems Interconnection – LOTOS
– A formal description technique based on the temporal ordering of observational
behaviour. ISO 8807, 1989.

6. H. Lin. A Verification Tool for Value-Passing Processes. In Proceedings of 13th

International Symposium on Protocol Specification, Testing and Verification, IFIP
Transactions. North-Holland, 1993.

7. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
8. R. Monroy, A. Bundy, and I. Green. Planning Equational Verification in CCS.

In D. Redmiles and B. Nuseibeh, editors, 13th Conference on Automated Software
Engineering, ASE’98, pages 43–52, Hawaii, USA, 1998. IEEE Computer Society
Press. Candidate to best paper award.

9. M. Nesi. Mechanizing a proof by induction of process algebra specifications in
higher-order logic. In K. G. Larsen and S. A., editors, Proceedings of the 3rd In-
ternational Workshop in Computer Aided Verification (CAV‘91). Springer Verlag,
1992. Lecture Notes in Computer Science No. 575.


