Skip to main content

A Methodology to Parallel the Temperature Cycle in Simulated Annealing

  • Conference paper
Book cover MICAI 2000: Advances in Artificial Intelligence (MICAI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1793))

Included in the following conference series:

Abstract

Simulated Annealing (SA) is usually implemented in a sequential way. We propose a Methodology to Parallel the Simulated Annealing Algorithm (MPSA). This methodology carries out the parallelization of the cycle that controls the temperature in the algorithm. This approach lets a massive parallelization. The initial solution for each internal cycle may be set through a Monte Carlo random sampling to adjust the Boltzmann distribution at the cycle beginning. In MPSA the communication scheme and its implementation must be in an asynchronous way. Through a theoretical analysis we establish that any implementation of MPSA leads to a Simulated Annealing Parallel Algorithm (SAPA) that is in general more efficient than its sequential implementation version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkpatrik, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–720 (1983)

    Article  MathSciNet  Google Scholar 

  2. Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sanvicente, S.H.: Recocido simulado: optimización combinatoria. Estado del arte. Instituto Tecnológico y de Estudios Superiores de Monterrey (campus Morelos), México. p. 72 (1997)

    Google Scholar 

  4. Sanvicente, S.H.: Recocido simulado paralelo. Propuesta de Tesis Doctoral. Instituto Tecnológico y de Estudios Superiores de Monterrey (Campus Morelos), México, p. 38 (1998)

    Google Scholar 

  5. Aarts, E., Korst, J.: Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing, p. 272. John Wiley & Sons, Great Britain (1989)

    MATH  Google Scholar 

  6. Greening, D.R.: Parallel simulated annealing techniques. Physica D. 2, 293–306 (1990)

    Article  Google Scholar 

  7. Azencott, R.: Simulated Annealing: Parallelization techniques. In: Azencott, R. (ed.), p. 200. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  8. Diekmann, R., Lüling, R., Simon, J.: Problem independent distributed simulated annealing and its applications. Tech. Report No. TR-003-93. Department of Mathematics and computer Science, University of Paderborn, Germany, p. 23 (1993)

    Google Scholar 

  9. Krishna, K., Ganeshan, K., Ram, D.J.: Distributed simulated annealing algorithms for job shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics 25(7), 1102–1109 (1995)

    Article  Google Scholar 

  10. Voogd, J.M., Sloot, P.M.A.: Crystallization on a sphere using the simulated annealing algorithm implemented on H.P.C. systems. Technical Report: PSCSG-93-01, Parallel Scientific Computing and Simulation Group, University of Amsterdam, p. 6 (1993)

    Google Scholar 

  11. Voogd, J.M., Sloot, P.M.A., Dantzing, R.V.: Simulated annealing for N-body systems. Technical Report: PSCSG-94-01, Parallel Scientific Computing and Simulation Group, University of Amsterdam, p. 6 (1994)

    Google Scholar 

  12. Dowsland, K.A.: Simulated annealing. In: Reeves, C.R. (ed.) Modern heuristic techniques for combinatorial problems, pp. 20–69. John Wiley and Sons, Great Britain (1993)

    Google Scholar 

  13. Ingber, L.: Simulated Annealing: Practice versus theory. J. Mathl. Comput. Modelling 18(11), 29–57 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Roussel-Ragot, P., Dreyfus, G.: Parallel annealing by multiple trials: an Experimental study on a transputer network. In: Azencott, R. (ed.) Simulated annealing: parallelization techniques, pp. 91–108. John Wiley & sons, USA (1992)

    Google Scholar 

  15. Graffigne, C.: Parallel annealing by periodically interacting multiple searches: An experimental study. In: Azencott, R. (ed.) Simulated annealing: Parallelization techniques, pp. 47–79. Wiley & Sons, USA (1992)

    Google Scholar 

  16. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  17. Kemeny, J.G., Snell, J.L.: Finite Markov chains, p. 210. D. Van Nostrand Company, Inc., USA (1965)

    Google Scholar 

  18. Virot, B.: Parallel annealing by multiple trials: Experimental study of a chip placement problem using a sequent machine. In: Azencott, R. (ed.) Simulated annealing: Parallelization techniques, pp. 109–127. John Wiley & Sons, USA (1992)

    Google Scholar 

  19. Nabhan, T.M., Zomaya, A.Y.: A parallel simulated annealing algorithm with low communication overhead. IEEE Transactios on Parallel and distributed Systems 6(12), 1226–1233 (1995)

    Article  Google Scholar 

  20. Sohn, A.: Parallel N-ary speculative computation of simulated annealing. IEEE Transactions on Parallel and Distributed systems 6(10), 997–1005 (1995)

    Article  Google Scholar 

  21. Voogd, J.M., Sloot, P.M.A., Dantzing, R.V.: Comparison of vector and parallel implementations of the simulated annealing algorithm. Technical Report: PSCSG-95-01, Parallel Scientific Computing and Simulation Group, University of Amsterdam, p. 11 (1995)

    Google Scholar 

  22. Marroqin, J.L., Botello, S., Horebeek, J.: A family of parallel search algorithms. Memorias de la 12va. Reunión Nacional de Inteligencia artificial de la SMIA, 164–171 (1995)

    Google Scholar 

  23. Chen, H., Flann, N.S., Watson, D.W.: Parallel genetic simulated annealing: a massively parallel SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems 9(2), 126–136 (1998)

    Article  Google Scholar 

  24. Mutalik, P.P., Knight, L.R., Blaton, J.L., Wainwright, R.L.: Solving combinatorial optimization problems using parallel simulated annealing and parallel genetic algorithms. ACM 0-89791-502-X/92/0002/1031, pp. 1031 – 1038 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanvicente Sánchez, H., Frausto Solís, J. (2000). A Methodology to Parallel the Temperature Cycle in Simulated Annealing. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_6

Download citation

  • DOI: https://doi.org/10.1007/10720076_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67354-5

  • Online ISBN: 978-3-540-45562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics