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Abstract. In meeting the challenges that resulted from the explosion of
collected, stored, and transferred data, Knowledge Discovery in Databases
or Data Mining has emerged as a new research area. However, the ap-
proaches studied in this area have mainly been oriented towards highly
structured and precise data. In addition, the goal to obtain understand-
able results is often neglected. Therefore we suggest concentrating on In-
formation Mining, i.e. the analysis of heterogeneous information sources
with the main aim of producing comprehensible results. Since the aim of
fuzzy technology has always been to model linguistic information and to
achieve understandable solutions, we expect it to play an important role
in information mining.

1 Introduction: A View of Information Mining

Due to modern information technology, which produces ever more powerful com-
puters every year, it is possible today to collect, store, transfer, and combine huge
amounts of data at very low costs. Thus an ever-increasing number of companies
and scientific and governmental institutions can afford to build up large archives
of documents and other data like numbers, tables, images, and sounds. However,
exploiting the information contained in these archives in an intelligent way turns
out to be fairly difficult. In contrast to the abundance of data there is a lack of
tools that can transform this data into useful information and knowledge. Al-
though a user often has a vague understanding of the data and its meaning—he
can usually formulate hypotheses and guess dependencies— he rarely knows:

– where to find the “interesting” or “relevant” pieces of information;
– whether these pieces of information support his hypotheses and models;
– whether (other) interesting phenomena are hidden in the data,
– which methods are best suited to find the needed pieces of information in a

fast and reliable way;



– how the data can be translated into human notions that are appropriate for
the context in which it is needed.

In reply to these challenges a new area of research has emerged, which has been
named “Knowledge Discovery in Databases” or “Data Mining”. Although the
standard definition of knowledge discovery and data mining [1] only speaks of
discovery in data, thus not restricting the type and the organization of the data
to work on, it has to be admitted that research up to now concentrated on highly
structured data. Usually a minimal requirement is relational data. Most methods
(e.g. classical methods like decision trees and neural networks) even demand as
input a single uniform table, i.e. a set of tuples of attribute values. It is obvious,
however, that this paradigm is hardly adequate for mining image or sound data
or even textual descriptions, since it is inappropriate to see such data as, say,
tuples of picture elements. Although such data can often be treated successfully
by transforming it into structured tables using feature extraction, it is not hard
to see that methods are needed which yield, for example, descriptions of what
an image depicts, and other methods which can make use of such descriptions,
e.g. for retrieval purposes.

Another important point to be made is the following: the fact that pure
neural networks are often seen as data mining methods, although their learning
result (matrices of numbers) is hardly interpretable, shows that in contrast to
the standard definition the goal of understandable patterns is often neglected.
Of course, there are applications where comprehensible results are not needed
and, for example, the prediction accuracy of a classifier is the only criterion of
success. Therefore interpretable results should not be seen as a conditio sine
qua non. However, our own experience—gathered as part of several cooperative
ventures with industry—is that modern technologies are accepted more readily,
if the methods applied are easy to understand and the results can be checked
against human intuition. In addition, if we want to gain insight into a domain,
training, for instance, a neural network is not of much help.

Therefore we suggest concentrating on information mining, which we see as
an extension of data mining and which can be defined in analogy to the KDD
definition given in Fayyad et al [1] as follows:

Information mining is the non-trivial process of identifying valid, novel,
potentially useful, and understandable patterns in heterogeneous infor-
mation sources.

The term information is thus meant to indicate two things: in the first place, it
points out that the heterogeneous sources to mine can already provide informa-
tion, understood as expert background knowledge, textual descriptions, images
and sounds, etc, and not only raw data. Secondly, it emphasizes that the results
must be comprehensible (“must provide a user with information”), so that a user
can check their plausibility and can get insight into the domain from which the
data comes.



For research this results in the challenges:

– to develop theories and scalable techniques that can extract knowledge from
large, dynamic, multi-relational, and multi-medial information sources,

– to close the semantic gap between structured data and human notions and
concepts, i.e. to be able to translate computer representations into human
notions and concepts and vice versa.

The goal of fuzzy systems has always been to model human expert knowledge
and to produce systems that are easy to understand. Therefore we expect fuzzy
systems technology to play a prominent role in the quest to meet these chal-
lenges. In the following we try to point out how fuzzy techniques can help with
information mining.

2 Strengths of Fuzzy Set Models

Although there is still some philosophical discussion going on as to whether
a (symbolic) language is necessary for consciousness and thinking abilities, it
is undisputed that language is humans’ most effective tool to structure their
experience and to model their environment. Therefore, in order to represent the
background knowledge of human experts and to arrive at understandable data
mining results, it is absolutely necessary to model linguistic terms and do what
Zadeh so pointedly called computing with words [2].

A fundamental property of linguistic terms is their inherent vagueness, i.e.
they have “fuzzy” boundaries: for each linguistic term there usually are some
phenomena to which it can clearly be applied and some others, which cannot be
described using this term. But in between these phenomena there lies a “penum-
bra” of phenomena for which it is not definite whether the term is applicable or
not. Well-known examples include the terms pile of sand (which is the basis of
the classic sorites paradox) and bald. In both cases no precise number of grains of
sand or hairs, respectively, can be given which separates the situations in which
the terms are applicable from those in which they are not.

The reason for this inherent vagueness is that for practical purposes full
precision is not necessary and may even be a waste of resources. To quote an
example by Wittgenstein [3], the request “Please stay around here!” is, of course,
inexact. It would be more precise to draw a line on the ground, or, because the
line has a certain width and thus would still not be fully exact, to use a colour
boundary. But this precision would be entirely pointless, since the inexact request
can be expected to work very well.

Fuzzy set theory provides excellent means to model the “fuzzy” boundaries of
linguistic terms by introducing gradual memberships. In contrast to classical set
theory, in which an object or a case either is a member of a given set (defined,
e.g. by some property) or not, fuzzy set theory makes it possible that an object
or a case belongs to a set only to a certain degree, thus modelling the penumbra
of the linguistic term describing the property that defines the set.



Interpretations of membership degrees include similarity, preference, and un-
certainty: they can state how similar an object or case is to a prototypical one,
they can indicate preferences between suboptimal solutions to a problem, or they
can model uncertainty about the true situation, if this situation is described in
imprecise terms. Drawing on Wittgenstein’s example as an illustration, we may
say that the locations “around here” are (for example, with respect to the per-
son being in sight or calling distance) sufficiently similar to “here”, so that the
request works well. Or we may say that it would be preferred, if the person
stayed exactly “here”, but some deviation from “here” would still be acceptable.
Finally, if we tell someone to stay “around here” and then go away, we are uncer-
tain about the exact location this person is in at a given moment. It is obvious
that all of these interpretations are needed in applications and thus it is not
surprising that they have all proven useful for solving practical problems. They
also turned out to be worth considering when non-linguistic, but imprecise, i.e.
set-valued information has to be modelled.

In general, due to their closeness to human reasoning, solutions obtained us-
ing fuzzy approaches are easy to understand and to apply. Due to these strengths,
fuzzy systems are the method of choice, if linguistic, vague, or imprecise infor-
mation has to be modelled.

3 Fuzzy Set Methods in Data Mining

The research in knowledge discovery in databases and data mining has led to
a large number of suggestions for a general model of the knowledge discovery
process. A recent suggestion for such a model, which can be expected to have
considerable impact, since it is backed by several large companies like NCR and
DaimlerChrysler, is the CRISP-DM model (CRoss Industry Standard Process
for Data Mining) [4].

The basic structure of this process model is depicted in Fig. 1. The circle
indicates that data mining is essentially a circular process, in which the evalua-
tion of the results can trigger a re-execution of the data preparation and model
generation steps. In this process, fuzzy set methods can profitably be applied in
several phases.

The business understanding and data understanding phases are usually
strongly human centred and only little automation can be achieved here. These
phases serve mainly to define the goals of the knowledge-discovery project, to
estimate its potential benefit, and to identify and collect the necessary data. In
addition, background domain knowledge and meta knowledge about the data
is gathered. In these phases, fuzzy set methods can be used to formulate, for
instance, the background domain knowledge in vague terms, but still in a form
that can be used in a subsequent modelling phase. Furthermore, fuzzy database
queries are useful to find the data needed and to check whether it may be useful
to take additional, related data into account.

In the data preparation step, the gathered data is cleaned, transformed, and
maybe properly scaled, to produce the input for the modelling techniques. In



Fig. 1. The CRISP-DM Model.

this step fuzzy methods may, for example, be used to detect outliers, e.g. by
fuzzy clustering the data [5, 6] and then finding those data points that are far
away from the cluster prototypes.

The modelling phase, in which models are constructed from the data in or-
der, for instance, to predict future developments or to build classifiers, can, of
course, benefit most from fuzzy data analysis approaches. These approaches can
be divided into two classes. The first class, fuzzy data analysis [7], consists of
approaches that analyse fuzzy data—data derived from imprecise measurement
instruments or from the descriptions of human domain experts. An example
from our own research is the induction of possibilistic graphical models [8] from
data which complements the induction of the well-known probabilistic graphical
models. The second class, fuzzy data analysis [9], consists of methods that use
fuzzy techniques to structure and analyze crisp data, for instance, fuzzy cluster-
ing for data segmentation and rule generation and neuro-fuzzy systems for rule
generation.

In the evaluation phase, in which the results are tested and their quality
is assessed, the usefulness of fuzzy modelling methods becomes most obvious.
Since they yield interpretable systems, they can easily be checked for plausibility
against the intuition and expectations of human experts. In addition, the results
can provide new insights into the domain under consideration, in contrast to,
e.g. pure neural networks, which are black boxes.

To illustrate the usefulness of fuzzy data analysis approaches, in the following
sections we discuss the topics generating fuzzy rules from data and learning
possibilistic graphical models in a little more detail.



4 Rule Generation with Neuro-Fuzzy-Systems

In order to use fuzzy systems in data analysis, it must be possible to induce fuzzy
rules from data. To describe a fuzzy system completely we need to determine
a rule base (structure) and fuzzy partitions (parameters) for all variables. The
data driven induction of fuzzy systems by simple heuristics based on local com-
putations is usually called neuro-fuzzy [10]. If we apply such techniques, we must
be aware of the trade-off between precision and interpretability. A fuzzy solution
is not only judged for its accuracy, but also—if not especially—for its simplicity
and readability. The user of the fuzzy system must be able to comprehend the
rule base.

Important points for the interpretability of a fuzzy system are that:

– there are only few fuzzy rules in the rule base;
– there are only few variables used in each rule;
– the variables are partitioned by few meaningful fuzzy sets;
– no linguistic label is represented by more than one fuzzy set.

There are several ways to induce the structure of a fuzzy system. Cluster-oriented
and hyperbox-oriented approaches to fuzzy rule learning create rules and fuzzy
sets at the same time. Structure-oriented approaches need initial fuzzy partitions
to create a rule base [11].

Cluster-oriented rule learning approaches are based on fuzzy cluster analysis
[5, 6], i.e. the learning process is unsupervised. Hyperbox-oriented approaches use
a supervised learning algorithm that tries to cover the training data by overlap-
ping hyperboxes [12]. Fuzzy rules are created in both approaches by projection
of clusters or hyperboxes. The main problem of both approaches is that each
generated fuzzy rule uses individual membership functions and thus the rule
base is hard to interpret. Cluster-oriented approaches additionally suffer from a
loss of information and can only determine an appropriate number of rules, if
they are iterated with different fixed rule base sizes.

Structure-oriented approaches avoid all these drawbacks, because they do
not search for (hyperellipsoidal or hyperrectangular) clusters in the data space.
By providing (initial) fuzzy sets before fuzzy rules are created the data space is
structured by a multidimensional fuzzy grid. A rule base is created by selecting
those grid cells that contain data. This can be done in a single pass through
the training data. This way of learning fuzzy rules was suggested in Wang and
Mendel [13]. Extended versions were used in the neuro-fuzzy classification sys-
tem NEFCLASS [10]. NEFCLASS uses a performance measure for the detected
fuzzy rules. Thus the size of the rule base can be determined automatically by
adding rules ordered by their performance until all training data is covered. The
performance measure is also used to compute the best consequent for each rule.

The number of fuzzy rules can also be restricted by including only the best
rules in the rule base. It is also possible to use pruning methods to reduce the
number of rules and the number of variables used by the rules. In order to
obtain meaningful fuzzy partitions, it is better to create rule bases by structure-
oriented learning than by cluster-oriented or by hyperbox-oriented rule learning.



The latter two approaches create individual fuzzy sets for each rule and thus
provide less interpretable solutions. Structure-oriented methods allow the user
to provide appropriate fuzzy partitions in advance such that all rules share the
same fuzzy sets. Thus the induced rule base can be interpreted well.

After the rule base of a fuzzy system has been generated, we must usually
train the membership function in order to improve the performance. In NEF-
CLASS, for example, the fuzzy sets are tuned by a simple backpropagation-like
procedure. The algorithm does not use gradient-descent, because the degree of
fulfilment of a fuzzy rule is determined by the minimum, and non-continuous
membership function may be used. Instead a simple heuristics is used that re-
sults in shifting the fuzzy sets and in enlarging or reducing their support.

The main idea of NEFCLASS is to create comprehensible fuzzy classifiers,
by ensuring that fuzzy sets cannot be modified arbitrarily during learning. Con-
straints can be applied in order to make sure that the fuzzy sets still fit their
linguistic labels after learning. For the sake of interpretability we do not want
adjacent fuzzy sets to exchange positions, we want the fuzzy sets to overlap
appropriately, etc.

We will not describe more details of learning fuzzy rules here, but refer to the
paper on “NEFCLASS-J – A Java based Soft Computing Tool” in this volume.
In the next section we discuss some aspects of information fusion that can be
implemented by neuro-fuzzy systems.

5 Information Fusion with Neuro-Fuzzy Models

If neuro-fuzzy methods are used in information mining, it is useful to consider
their capabilities in fusing information from different sources. Information fusion
refers to the acquisition, processing, exploitation, and merging of information
originating from multiple sources to provide a better insight and understanding
of the phenomena under consideration. There are several levels of information
fusion. Fusion may take place at the level of data acquisition, data pre-processing,
data or knowledge representation, or at the model or decision making level. On
lower levels where raw data is involved, the term (sensor) data fusion is preferred.
Some aspects of information fusion can be implemented by NEFCLASS. For
a conceptual and comparative study of fusion strategies in various calculi of
uncertainty see Gebhardt and Kruse [14] and Dubois et al [15].

If a fuzzy classifier is created based on a supervised learning problem, then
the most common way is to provide a data set, where each pattern is labelled—
ideally with its correct class. That means we assume that each pattern belongs to
one class only. Sometimes it is not possible to determine this class correctly due
to a lack of information. Instead of a crisp classification it would also be possible
to label each pattern with a vector of membership degrees. This requires that
a vague classification is obtained in some way for the training patterns, e.g. by
partially contradicting expert opinions.

Training patterns with fuzzy classifications are one way to implement infor-
mation fusion with neuro-fuzzy systems. If we assume that a group of n experts



provide partially contradicting classifications for a set of training data we can
fuse the expert opinions into fuzzy sets that describe the classification for each
training pattern. According to the context model, we can view the experts as
different observation contexts [16]. The training then reflects fusion of expert
opinions on data set level.

Due to the capabilities of its learning algorithms NEFCLASS can handle such
training data in the process of creating a fuzzy classifier. However, it does not
implement fusion on data set level itself. For information fusion in neuro-fuzzy
environments like NEFCLASS we usually consider three operator schemes:

fuse(R,R′) : fuse two rule sets R and R′,
induce(D) : induce a rule set from a given data set D,
revise(R,D) : revise a rule set in the light of a data set D.

An aspect of information fusion that is implemented by NEFCLASS is to
integrate expert knowledge in form of a set of fuzzy rules R and knowledge
induced from a data set D:

fuse(R, induce(D)).

If expert knowledge about the classification problem is available, then the rule
base of the fuzzy classifier can be initialized with suitable fuzzy rules before rule
learning is invoked to complete the rule base. If the algorithm creates a rule from
data that contradicts with an expert rule then we can, for example:

– always prefer expert rule;
– always prefer the learned rule; or
– select the rule with the higher performance value.

In NEFCLASS we determine the performance of all rules over the training data
and in case of contradiction the better rule prevails. This reflects fusion of expert
opinions and knowledge obtained from observations. Note that providing a rule
base and tuning it, e.g. by modifying membership functions, is not information
fusion but knowledge revision or update:

revise(R,D).

In this case the rule base is seen as prior knowledge and the tuned rule base is
posterior knowledge. This approach is also known in Bayesian statistics, where a
given prior probability distribution is revised by additional evidence to a poste-
rior distribution [17, 18]. Since NEFCLASS is mainly used to train a fuzzy rule
base it usually performs

revise(fuse(R, induce(D)))

if an expert’s rule base is given in advance.
Because NEFCLASS is able to resolve conflicts between rules based on rule

performance, it is also able to fuse expert opinions on fuzzy rule level:

fuse(R,R′).



Rule bases R and R′ from different experts can be entered into the system.
They will then be fused into one rule base and contradictions are resolved au-
tomatically by deleting from each pair of contradicting rules the rule with lower
performance.

After all contradictions between expert rules and rules learned from data
were resolved, usually not all rules can be included into the rule base, because
its size is limited by some criterion. In this case we must decide whether:

– to include expert rules in any case; or
– to include rules by descending performances values.

The decision depends on the trust we have in the expert’s knowledge and in the
training data. A mixed approach can be used, e.g. include the best expert rules
and then use the best learned rules to complete the rule base.

A similar decision must be made, when the rule base is pruned after training,
i.e. is it acceptable to remove an expert rule during pruning, or must such rules
remain in the rule base. In NEFCLASS expert rules and rules induced from data
are not treated differently.

An example of information fusion in neuro-fuzzy system with an application
to stock index prediction can be found in Siekmann et al [19].

6 Dependency Analysis with Graphical Models

Since reasoning in multi-dimensional domains tends to be infeasible in the do-
mains as a whole—and the more so, if uncertainty and imprecision are involved—
decomposition techniques, that reduce the reasoning process to computations in
lower-dimensional subspaces, have become very popular. In the field of graphi-
cal modelling, decomposition is based on dependence and independence relations
between the attributes or variables that are used to describe the domain under
consideration. The structure of these dependence and independence relations
are represented as a graph (hence the name graphical models), in which each
node stands for an attribute and each edge for a direct dependence between two
attributes. The precise set of dependence and (conditional) independence state-
ments that hold in the modeled domain can be read from the graph using simple
graph theoretic criteria, for instance, d-separation, if the graph is a directed one,
or simple separation, if the graph is undirected.

The conditional independence graph (as it is also called) is, however, only the
qualitative or structural component of a graphical model. To do reasoning, it has
to be enhanced by a quantitative component that provides confidence informa-
tion about the different points of the underlying domain. This information can
often be represented as a distribution function on the underlying domain, for ex-
ample, a probability distribution, a possibility distribution, a mass distribution,
etc. With respect to this quantitative component, the conditional independence
graph describes a factorization of the distribution function on the domain as a
whole into conditional or marginal distribution functions on lower-dimensional
subspaces.



Graphical models make reasoning much more efficient, because propagating
the evidential information about the values of some attributes to the unobserved
ones and computing the marginal distributions for the unobserved attributes
can be implemented by locally communicating node and edge processors in the
conditional independence graph.

For some time the standard approach to construct a graphical model has
been to let a human domain expert specify the dependency structure of the
considered domain. This provided the conditional independence graph. Then
the human domain expert had to estimate the necessary conditional or marginal
distribution functions, which then formed the quantitative component of the
graphical model. This approach, however, can be tedious and time consuming,
especially, if the domain under consideration is large. In addition, it may be
impossible to carry it out, if no or only vague knowledge is available about the
dependence and independence relations that hold in the domain to be modelled.
Therefore recent research has concentrated on learning graphical models from
databases of sample cases.

Due to the origin of graphical modelling research in probabilistic reasoning,
the most widely known methods are, of course, learning algorithms for Bayesian
or Markov networks. However, these approaches—as probabilistic approaches
do in general—suffer from certain deficiencies, if imprecise information, under-
stood as set-valued data, has to be taken into account. For this reason recently
possibilistic graphical models also gained some attention [8], for which learn-
ing algorithms have been developed in analogy to the probabilistic case. These
methods can be used to do dependency analysis, even if the data to analyse is
highly imprecise, and can thus offer interesting perspectives for future research.

We have implemented these methods as a plug-in for the well-known data
mining tool Clementine (ISL/SPSS). Its probabilistic version is currently used
at DaimlerChrysler for fault analysis.

7 Possibilistic Graphical Models

A possibility distribution π on a universe of discourse Ω is a mapping from Ω
into the unit interval, i.e. π : Ω → [0, 1], see Zadeh [20] and Dubois and Prade
[21]. From an intuitive point of view, π(ω) quantifies the degree of possibility
that ω = ω0 is true, where ω0 is the actual state of the world: π(ω) = 0 means
that ω = ω0 is impossible, π(ω) = 1 means that ω = ω0 is possible without
any restrictions, and π(ω) ∈ (0, 1) means that ω = ω0 is possible only with
restrictions, i.e. that there is evidence that supports ω = ω0 as well as evidence
that contradicts ω = ω0.

Several suggestions have been made for semantics of a theory of possibility as
a framework for reasoning with uncertain and imprecise data. The interpretation
of a degree of possibility we prefer is based on the context model [22, 16]. In this
model possibility distributions are seen as information-compressed representa-
tions of (not necessarily nested) random sets and a degree of possibility as the
one-point coverage of a random set [23].



To be more precise: Let ω0 be the actual, but unknown state of a domain
of interest, which is contained in a set Ω of possible states. Let (C, 2C , P ),
C = {c1, c2, . . . , cm}, be a finite probability space and γ : C → 2Ω a set-valued
mapping. C is seen as a set of contexts that have to be distinguished for a
set-valued specification of ω0. The contexts are supposed to describe different
physical and observation-related frame conditions. P ({c}) is the (subjective)
probability of the (occurrence or selection of the) context c.

A set γ(c) is assumed to be the most specific correct set-valued specification of
ω0, which is implied by the frame conditions that characterize the context c. By
“most specific set-valued specification” we mean that ω0 ∈ γ(c) is guaranteed
to be true for γ(c), but is not guaranteed for any proper subset of γ(c). The
resulting random set Γ = (γ, P ) is an imperfect (i.e. imprecise and uncertain)
specification of ω0. Let πΓ denote the one-point coverage of Γ (the possibility
distribution induced by Γ ), which is defined as

πΓ : Ω → [0, 1], πΓ (ω) = P ({c ∈ C | ω ∈ γ(c)}) .

In a complete model the contexts in C must be specified in detail to make the
relationships between all contexts cj and their corresponding specifications γ(cj)
explicit. But if the contexts are unknown or ignored, then πΓ (ω) is the total mass
of all contexts c that provide a specification γ(c) in which ω0 is contained, and
this quantifies the possibility of truth of the statement “ω = ω0” [22, 24].

That in this interpretation a possibility distribution represents uncertain and
imprecise knowledge can be understood best by comparing it to a probability
distribution and to a relation. A probability distribution covers uncertain, but
precise knowledge. This becomes obvious, if one notices that a possibility distri-
bution in the interpretation described above reduces to a probability distribution,
if ∀cj ∈ C : |γ(cj)| = 1, i.e. if for all contexts the specification of ω0 is precise.
On the other hand, a relation represents imprecise, but certain knowledge about
dependencies between attributes. Thus, not surprisingly, a relation can also be
seen as a special case of a possibility distribution, namely if there is only one
context. Hence the context-dependent specifications are responsible for the im-
precision, the contexts for the uncertainty in the imperfect knowledge expressed
by a possibility distribution.

Although well-known for a couple of years [25], a unique concept of possi-
bilistic independence has not been fixed yet. In our opinion, the problem is that
possibility theory is a calculus for uncertain and imprecise reasoning, the first of
which is related to probability theory, the latter to relational theory (see above).
But these two theories employ different notions of independence, namely stochas-
tic independence and lossless join decomposability. Stochastic independence is
an uncertainty-based type of independence, whereas lossless join decomposability
is an imprecision-based type of independence. Since possibility theory addresses
both kinds of imperfect knowledge, notions of possibilistic independence can be
uncertainty-based or imprecision-based.

With respect to this consideration two definitions of possibilistic indepen-
dence have been justified [26], namely uncertainty-based possibilistic indepen-
dence, which is derived from Dempster’s rule of conditioning [27] adapted to



possibility measures, and imprecision-based possibilistic independence, which
coincides with the well-known concept of possibilistic non-interactivity [21]. The
latter can be seen as a generalization of lossless join decomposability to the
possibilistic setting, since it treats each α-cut of a possibility distribution like a
relation.

Because of its consistency with the extension principle [28], we confine our-
selves to possibilistic non-interactivity. As a concept of possibilistic independence
it can be defined as follows: let X, Y , and Z be three disjoint subsets of variables
in V . Then X is called conditionally independent of Y given Z with respect to
π, abbreviated X ⊥⊥π Y | Z, iff

∀ω ∈ Ω : π(ωX∪Y | ωZ) = min{π(ωX | ωZ), π(ωY | ωZ)}

whenever π(ωZ) > 0, where π(· | ·) is a non-normalized conditional possibility
distribution, i.e.

π(ωX | ωZ) = max{π(ω′) | ω′ ∈ Ω ∧ proj V
X(ω) = ωX ∧ proj V

Z (ω) = ωZ}.

Both mentioned types of possibilistic independence satisfy the semi-graphoid
axioms [29, 30]. Possibilistic independence based on Dempster’s rule in addition
satisfies the intersection axiom and thus can be used within the framework of the
valuation-based systems already mentioned above [31]. However, the intersection
axiom is related to uncertainty-based independence. Relational independence
does not satisfy this axiom, and therefore it cannot be satisfied by possibilistic
non-interactivity as a more general type of imprecision-based independence.

Similar to probabilistic networks, a possibilistic network can be seen as a
decomposition of a multi-variate possibility distribution. The factorization for-
mulae can be derived from the corresponding probabilistic factorization formulae
(for Markov networks) by replacing the product by the minimum.

Just as for probabilistic networks, it is possible in principle to estimate the
quality of a given possibilistic network by exploiting its factorization property.
For each ω ∈ Ω the degree of possibility computed from the network is compared
to the degree of possibility derived from the database to learn from. But again
this approach can be costly.

Contrary to probabilistic networks, the induction of possibilistic networks
from data has been studied much less extensively. A first result, which consists
in an algorithm that is closely related to the K2 algorithm for the induction of
Bayesian networks, was presented in Gebhardt and Kruse [32]. Instead of the
Bayesian evaluation measure used in K2, it relies on a measure derived from
the nonspecificity of a possibility distribution. Roughly speaking, the notion of
nonspecificity plays the same role in possibility theory that the notion of entropy
plays in probability theory. Based on the connection of the imprecision part of a
possibility distribution to relations, the nonspecificity of a possibility distribution
can also be seen as a generalization of Hartley information [33] to the possibilistic
setting.

In Gebhardt and Kruse [34] a rigid foundation of a learning algorithm for
possibilistic networks is given. It starts from a comparison of the nonspecificity



of a given multi-variate possibility distribution to the distribution represented by
a possibilistic network, thus measuring the loss of specificity, if the multi-variate
possibility distribution is represented by the network. In order to arrive at an
efficient algorithm, an approximation for this loss of specificity is derived, which
can be computed locally on the hyperedges of the network. As the search method
a generalization of the optimum weight spanning tree algorithm to hypergraphs
is used. Several other heuristic local evaluation measures, which can be used
with different search methods, are presented in Borgelt and Kruse [35, 36].

It should be emphasized, that, as already discussed above, an essential ad-
vantage of possibilistic networks over probabilistic ones is their ability to deal
with imprecision, i.e. multi-valued, information. When learning possibilistic net-
works from data, this leads to the convenient situation that missing values in an
observation or a set of values for an attribute, all of which have to be considered
possible, do not pose any problems.

8 Concluding Remarks

In knowledge discovery and data mining as it is, there is a tendency to focus
on purely data-driven approaches in a first step. More model-based approaches
are only used in the refinement phases (which in industry are often not nec-
essary, because the first successful approach wins—and the winner takes all).
However, to arrive at truly useful results, we must take background knowledge
and, in general, non-numeric information into account and we must concentrate
on comprehensible models.

The complexity of the learning task, obviously, leads to a problem: when
learning from information, one must choose between (often quantitative) meth-
ods that achieve good performance and (often qualitative) models that explain
what is going on to a user. This is another good example of Zadeh’s principle
of the incompatibility between precision and meaning. Of course, precision and
high performance are important goals. However, in the most successful fuzzy
applications in industry such as intelligent control and pattern classification, the
introduction of fuzzy sets was motivated by the need for more human-friendly
computerized devices that help a user to formulate his knowledge and to clarify,
to process, to retrieve and to exploit the available information in a most simple
way. In order to achieve this user-friendliness, often certain (limited) reductions
in performance and solution quality are accepted.

So the question is: what is a good solution from the point of view of a
user in the field of information mining? Of course, correctness, completeness,
and efficiency are important, but in order to manage systems that are more
and more complex, there is a constantly growing demand to keep the solutions
conceptually simple and understandable. This calls for a formal theory of utility
in which the simplicity of a system is taken into account. Unfortunately such a
theory is extremely hard to come by, because for complex domains it is difficult
to measure the degree of simplicity and it is even more difficult to assess the gain



achieved by making a system simpler. Nevertheless, this is a lasting challenge
for the fuzzy community to meet.
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