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Abstract 

Conventionally, the problem of plan formation in Artificial Intelligence deals with the 

generation of plans in the form of a sequence of actions. 

This thesis describes an approach to extending the expressiveness of plans to include 

conditional branches and recursion. This allows problems to be solved at a higher level, 

such that a single plan in such a language is capable of solving a class of problems rather 

than a single problem instance. A plan of fixed size may solve arbitrarily large problem 

instances. 

To form such plans, we take a deductive planning approach, in which the formation of 

the plan goes hand-in-hand with the construction of the proof that the plan specifica-

tion is realisable. 

The formalism used here for specifying and reasoning with planning problems is Gi-

r&d's Intuitionistic Linear Logic (ILL), which is attractive for planning problems be-

cause state change can be expressed directly as linear implication, with no need for 

frame axioms. We extract plans by means of the relationship between proofs in ILL 

and programs in the style of Abramsky. 

We extend the ILL proof rules to account for induction over inductively defined types, 

thereby allowing recursive plans to be synthesised. We also adapt Abramsky's frame-

work to partially evaluate and execute the plans in the extended language. 

We give a proof search algorithm tailored towards the fragment of the ILL employed 

(excluding induction rule selection). A system implementation, Lino, comprises mod-

ules for proof checking, automated proof search, plan extraction and partial evaluation 

of plans. 

We demonstrate the encodings and solutions in our framework of various planning 

domains involving recursion. We compare the capabilities of our approach with the 

previous approaches of Manna & Waldinger, Ghassem-Sani & Steel and Stephan & 

Biundo. We claim that our approach gives a good balance between coverage of problems 

that can be described and the tractability of proof search. 
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Chapter 1 

Introduction 

Planning is concerned with the problem of finding a course of action that will achieve 

a given goal. In conventional Al planning, the problem is specified by giving an initial 

state, some desired goal conditions and a repertoire of available actions that can be 

performed. The solution consists of a set of applications of the actions, together with 

a partial or total order for their execution. 

This means that: 

The planner must laboriously discover the whole plan step-by-step, even when 

it has a very simple repetitive structure. The performance of planners generally 

scales very badly with problem size. 

The planner can only solve the problem if every detail is known about the initial 

state of the world. 

We are interested in problems in which plans involving repetition are useful. A simple 

way to model repetitive plans is by the use of recursion. 

Using recursion allows a some kinds of planning problem to be solved at a higher level, 

in which we know the structure but not necessarily the details. For instance, we could 

form a general plan to invert a tower of blocks without knowing in advance exactly 

how many blocks are involved. This tackles issue (1) and also addresses a form of (2). 

This thesis describes a recursive planning approach based on linear logic [Girard 87]. 

Plans are constructed in a language that can express recursion, conditional branching, 

1 



CHAPTER 1. INTRODUCTION 	 2 

and partial ordering of steps. The plan is found by searching for a linear logic proof 

that the plan specification is realisable. A system has been implemented which can 

solve a range of problems in a semi-automatic way. 

1.1 Context 

There have been several notable studies of recursive planning. It is natural to approach 

the task in the deductive planning framework, in which the formation of plans takes 

place as a by-product of forming a proof in some appropriate logic. 

Manna and Waldinger [Manna & Waldinger 87] focussed on formulating a deductive 

system that was expressive enough to describe state-changing actions. Using a de-

ductive approach based on situation calculus, they demonstrated the formation of 

recursive plans by building the corresponding inductive proofs. However, it is difficult 

for a search procedure to automatically control inference in their framework. They do 

not give an automatic search algorithm for their framework. 

Ghassem-Sani and Steel [Ghassem-Sani & Steel 91] use an enhanced STRIPS represen-

tation in a non-linear planner. This gives a good solution to search control, but at the 

expense of limiting the representation to the extent that many interesting problems 

cannot be tackled. 

In general, we have a trade-off between the expressiveness of the representation and 

the ease with which proof search can be carried out. Efficient search is easier for less 

expressive formalisms which, on the other hand, cannot be used to formulate the sorts 

of problems we are interested in. 

In this way, previous work on formation of recursive plans has either given a powerful 

logical representation to the problem which is not amenable to automation, or has 

made search feasible by limiting the logic so much that many problems cannot be 

represented. 
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Abstract problem 	 Lino 
	

Abstract plan 

Problem instantiation 
	

:EvaIuatdion 	 Plan generalisation 

Ground problem 
(inductive types) 

Ground plan 
(inductive types) 

Problem translation I 	Problem translation I 
	 Plan translation 	I 

	
Plan translation 

Ground problem I 
(propositional) I 	STRIPS planner 

Ground plan 
(propositional) 

Figure 1.1: Problems, plans and processes. 

1.2 Approach 

One of the difficulties of describing actions in a logical system is that of describing 

exactly what changes and what remains the same as the result of performing an action. 

This is known as the frame problem. 

Linear logic offers a simple built-in solution to this problem, as its own version of im-

plication can be read directly as describing a state change. This makes it a particularly 

attractive logic on which to base our deductive planning system. 

Linear logic has previously been applied to planning only as a small fragment for 

dealing with a limited kind of plans [Masseron et al 93]. We consider that its strength 

lies in using a larger fragment of the logic to talk about a more general sort of plan. 

We show how plans can be formed in this language by associating terms representing 

constructs in the plan language directly with the deduction rules of the logic. This 

accounts for a plan language that can describe partial ordering of plan steps, conditional 

branches, and actions with uncertain effects. Such a language is given in [Abramsky 

93], and we extend this for our purpose. 

In order to set our work in the context of STRIPS planning we consider three repre- 
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sentations for problems, and their corresponding plan representations. 

Planning problems stated in a STRIPS representation - i.e. propositional, with 

a finite set of objects in the domain. 

Planning problems stated in a linear logic representation allowing inductively 

defined datatypes, but with plan specification fully instantiated. 

Planning problems stated in a linear logic representation allowing inductively 

defined datatypes, in which we seek a general recursive solution. 

Here (1) is the representation conventionally used for planning problems. (3) is the 

representation we have used, and (2) is an intermediate stage. Fig. 1.1 shows the 

methods that may be used to convert between plans and processes in these representa-

tions.The solid ellipses represent processes for which we have an algorithm. The dotted 

ellipses represent processes which have not been automated. 

This thesis deals mainly with the generation of abstract solutions from abstract ex-

pressions of the problems. By also introducing induction rules into the logic we can 

form recursive plans. These ideas form the basis of an interactive proof checker, which 

can be used to synthesise plans interactively to meet to a given specification. 

We describe a proof search strategy which can solve problems automatically if specified 

using a certain fragment of the logic. This fragment is chosen carefully to be just 

expressive enough to represent the features required for a good coverage of planning 

problems. 

Novel aspects are: 

. We extend linear logic with induction rules to allow the formation of recursive 

plans. 

We give a new proof procedure which is adequate for a fragment of intuitionistic 

linear logic chosen for expressing planning problems. 

. We have a system that is expressive enough to model interesting recursive prob-

lems, but restricted enough for automated solution to be realistic. 
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1.3 Thesis structure 

Chapter 2 reviews approaches to planning, considering the situation calculus and 

STRIPS representations. The compromise between expressiveness and tractability 

is considered. Efficient planners based on the STRIPS representation are described. 

Extensions to deal with the formation of conditional structures are reviewed. 

Chapter 3 reviews previous work on systems for forming recursive plans. Manna and 

Waldinger's system is general but has never been automated. Ghassem-Sani and Steel 

implemented a more limited automatic system based on STRIPS planning, but no 

proof of its correctness. Stephan and Biundo implemented a deductive system in 

which interactive proof of recursive plans was a preparatory stage for a fully automatic 

planner. 

Chapter 4 introduces linear logic, and explains how it was used by Masseron to account 

for simple planning problems. Masseron gives a plan extraction procedure which allows 

partially-ordered plans to be extracted from proofs. 

In Chapter 5, we introduce our scheme for relating plans to linear logic proofs. This 

enables a larger fragment of the linear logic to be used in plan formation with a 

correspondingly richer plan language. For each construct in the plan language, we 

define what it means to execute that construct. 

Chapter 6 introduces inductive datatypes, and shows how appropriate induction rules 

can be added to the proof system. The corresponding constructs in the plan lan-

guage are defined. Examples are given of recursive planning problems involving various 

datatypes and induction rules. 

Chapter 7 considers automated proof search in this framework. Techniques from in-

ductive theorem proving such as rippling for controlling rewriting and generalisation 

are described. Other techniques from planning and linear logic programming are also 

considered. We then give a search algorithm which is specialised for planning problems 

expressed in an appropriately chosen fragment of linear logic. 

Chapter 8 describes Lino, our implemented system incorporating proof checking, proof 

search, and the extraction, partial evaluation and execution of plans. 
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Chapter 9 evaluates the planning framework with respect to the range of problems on 

which it can be successfully used. Comparisons are made with other systems. Strengths 

and weaknesses are considered. 

Chapter 10 is the. conclusion. The findings are summarised and put in perspective. 

Opportunities for further development are considered. 



Chapter 2 

Background: Planning 

An intelligent agent should be able to reason about its own actions and the changes 

that these will bring about in the world. In Artificial Intelligence, planning usually 

involves the formation of a sequence of primitive actions in order to change the world 

to a required goal state. 

This chapter reviews the background of planning in Artificial Intelligence, looking at 

both representation and search algorithms. 

We will see that there is generally a trade-off between the expressiveness of the rep-

resentation used for the planning problem, and the tractability of search using that 

representation. 

At one extreme lies situation calculus (Section 2.1), which is very expressive, but for 

which the intractability of proof search makes it impractical for planning. At the other 

extreme is the STRIPS representation, which is not very expressive, but has allowed 

practical search algorithms to be developed. We look at the most successful search 

algorithms for the STRIPS representations. 

We then look at some of the intermediate stages - planners that extend the STRIPS 

representation back in the direction of more expressiveness, and correspondingly adapt 

the STRIPS search algorithm. We focus on the treatment of actions with uncertain 

outcomes, as this is one of the aspects which will be later treated in the linear logic 

framework. 

'4 



CHAPTER 2. BACKGROUND: PLANNING 

2.1 Situation calculus 

Situation calculus is a regime for representing and reasoning about changes of state 

using first order logic. This was first introduced by [McCarthy & Hayes 69]. We present 

its use for reasoning only about state here, but the original work suggested its use for 

reasoning about belief, knowledge, etc. Although this work dates from a long time ago, 

it was influential in setting up background assumptions that underpin much planning 

work since. 

We can describe a static world by assuming it can be described only in terms of: 

Objects Unique objects in the world can be represented by their names, e.g. we might 

have building blocks called a,b, and another object called table, etc. 

Relations We need to also represent the relations between objects using relations, 

e.g. on(a,b), dear(a). 

We could describe a static situation using only a conjunction of such statements, e.g., 

on(a, b) A on(b, table) A clear(a) 

r 
This is fine for describing a single, unchanging state, but we want to describe changes of 

state, so we need to consider also that there are states referred to by an extra argument 

in each relation. 

So we could describe two situations as follows: 

dear(a, Si)  A 
dear(a,so) A 	 dear(b,si) A 
on(a,b,so) A 	 ori(a, table, si) A 
on(b, table, so) 	 o'n(b, table, si) 
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SO 

~io 	Fa I Fi 
S I  

We also want to be able to talk about the relationships between the situations. For in-

stance, Si  is the state that results from s o  by the execution of a command move(a, table). 

We can express this in situation calculus by the use of the result function, which 

maps actions and situations to new situations. In this example, we would have 

= result(move(a, table), s o ). 

So now we have representation which is capable of describing situations and the rela-

tionships between situations. We can also describe sequences of actions (i.e. plans), as 

they simply correspond to nested applications of the result function. 

In order to be able to reason about correct plans using this representation, we will also 

need a general way to describe what are the effects of an action when applied in any 

state. 

We need to express: 

. restrictions on when it is possible to perform actions, 

a specification saying how to derive the description of the state after the change 

from the description of the state before the change. 

For instance, suppose we wish to describe the action of placing one block on another, 

we could write the description as: 

Vx, y, s clear(x, s) A ci ear(y, s) D on(x, y, result(putom(x, y, s))) A 
clear (x, result (put on(x, y, s))) 

On the left of the implication, we can give preconditions to the execution of an action. 

These are the conditions which must be satisfied for the action to be applicable. On 

the right, we give properties of the new situation (the effects). 

Unfortunately, it is not sufficient to only describe those relations which change in the 



CHAPTER 2. BACKGROUND: PLANNING 	 10 

new situation, it is also necessary to provide frame axioms, which allow the unchanged 

relations to also be deduced for the new state. For instance, if we know that a block 

is red, we need to state that it will be still be red after it is moved. 

Vx, y, s colour(x, red, s) D colour(x, red, result (puton(x, y))) 

The fact that we also need to explicitly specify everything that persists as the result of 

an action is a manifestation of the frame problem. Any representation for a planning 

problem needs to find some way of coping with the frame problem. If we use situation 

calculus with frame axioms like the example above, then even small problems require a 

prohibitively large number of frame axioms, and potentially a large amount of inference 

is also required. As we will see Chapter 5, linear logic provides a simple way addressing 

the frame problem. 

2.1.1 Search in the situation calculus 

Having given some idea of how the situation calculus may be used to represent and 

reason about actions, we must now consider how it could be used to automatically 

form plans of action. This requires performing a search. In the simplest case, one 

could imagine a planner which searched through a space of possible states derived by 

non-deterministically selecting applicable actions, then deriving the properties of the 

new state from the axioms defining the actions. 

Cordell Green's QA3 system [Green 69] was an ambitious and noteworthy early plan-

ning system based on the situation calculus. This was a resolution theorem prover 

which anticipated much of the more recent work on deductive planning. It was capa-

ble of forming plans with conditionals, loops, etc. 

This system was not very practical because it had poor of control of inference, and 

no particularly good solution of the frame problem. A more interesting flaw was that 

references to explicit states could appear in the final plan, and this sometimes meant 

that the plan demanded tests on hypothetical states. This problem was subsequently 

taken on by Manna and Waldinger (Section 3.2). 
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2.2 STRIPS representation 

The situation calculus is a very expressive representation language, but a consequence 

of this expressiveness is that making inference in this logic is computationally expensive. 

To counter this problem, The STRIPS planner introduced a more restrictive represen-

tation for plan operators, which allows search to be carried out more efficiently [Fikes 

& Nilsson 71]. 

The following assumptions are made in the treatment of planning work described in 

this section. 

The STRIPS assumption: Nothing changes except by application of an action. 

Atomic time: Execution of an action is indivisible and uninterruptable, so we need 

not consider the state of the world while execution is proceeding. 

Deterministic effects: The effect of executing any action is a deterministic function 

of the action and the state of the world when the action executed. 

A STRIPS operator is defined by a list of preconditions, a list of statements that are 

added by the action, and a list of literals that are deleted by the action. 

operator puton(X,Y) 

preconditions: clear(X) 
clear(Y) 
on (X , Z) 

addlist: 	on(X,Y) 
clear(Z) 

deletelist: 	on(X,Z) 
clear(Y) 

The STRIPS operators describe purely syntactic manipulations on the world descrip-

tion. The STRIPS world description could be seen as a set of (implicitly conjoined) 

formulas. The operator definitions describe what formulas should be added and deleted 

from the world description when the actions are carried out. 
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The STRIPS planner itself worked by goal regression. Starting with the goal conditions, 

an operator is selected that achieves an outstanding goal condition. 

It is usually more efficient to start the planning process from the goal, and to try to 

connect it with the initial state, since the the initial state may contain information not 

relevant to the problem, whereas the goal state is typically only a partial specification. 

This means that only the important information about the goal state is used in the 

search process. 

In the original STRIPS planner, the assumption was made that all goals were inde-

pendent, i.e. that one goal could be completely solved before attempting to solve the 

next. This lead to incompleteness in the plan search space - some solutions could 

simply not be found by STRIPS, since it could not interleave steps required to solve 

different goals at the top level. This is sometimes called the linearity assumption. 

The classic example of this problem is known as the Sussman anomaly problem [Suss-

man 731. The problem can be solved with a three-step plan, but STRIPS could only 

find longer, redundant plans. 

The goal state consists of only two statements on(a, b) and on(b, c). 

a 
c b 
a-c 

If STRIPS attempts to satisfy the goal on(a, b) first, it succeeds in finding a plan 

involving the following sequence of state transitions: 

Ri 	 Ri 

This makes it impossible to achieve on(b, c) without undoing on(a, b). Subsequent steps 

generated by STRIPS would be: 

ri 	 Ri 
1ri - R1[1[1 - rnri 
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Similarly, if STRIPS attempted to satisfy the om(b, c) first, it still would find a similar 

problem. To get around this problem, it is necessary to use a quite different approach. 

2.3 Plan space planners 

The existence of this sort of goal-interaction problem motivated another shift in the 

approach to planning problems. 

Instead of searching through a space of world states, a search is performed through 

a space of partially-specified plans. Partially specified plans may contain unsatisfied 

goals, unbound variables, and only partial descriptions of step ordering. This allows 

a least-commitment approach, in which arbitrary choices in search are deferred until 

more information is available. 

A partially-specified plan consists of: 

a set S of plan steps 

a set 0 of ordering constraints on elements of S 

a set B of binding constraints on variables 

. a set C of causal links. Each causal link names a relation, a producer step (which 

adds the statement as effect) and a consumer step (which requires the statement 

as a precondition). 

The search algorithms for this representation can be considered as a selection of plan 

refinement operations, which attempt to fill in more of the plan to resolve possible 

conflicts in the current partial plan. 

Typically, plan refinement operations are; 

. Select a subgoal. 

. Choose an operator. 

. Resolve threats. 
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- Threats are steps that might delete (clobber) a protected condition. This 

means that the present step ordering could allow the threatening step to 

delete some condition which is required as a precondition of another step. 

- Threats can be resolved by one one of: 

promotion - add an ordering constraint to ensure that the clobbering 

action occurs after the consumer of the threatened link. 

demotion - add an ordering constraint to ensure that the clobbering ac-

tion occurs before the producer of the threatened link. 

Posting equality/ inequality constraints - in the presence of uninstan-

tiated variables, it is possible to add constraints on the binding of van-

ables to ensure that the relation clobbered is not the same as the one 

protected. 

2.3.1 Example solution of the Sussman anomaly 

Here we present a walk-through of such a planner solving the Sussman anomaly prob-

lem. This account is based on Dan Weld's tutorial [Weld 94]. The planning process 

starts off from dummy initial and goal nodes. The start node has effects and no pre-

conditions, and the goal has preconditions and no effects. Here the plan steps are 

represented by boxes with the name of the step at the top, the preconditions in the 

left column, and the effects in right column. 

Initial Goal 
on(c,a) 	on(a,b) 

on(a,table) 	on(b,c) 
on(b,table) 

clear(b) 
clear(c) 

Add a step move(b, table, c) to satisfy goal om(b, c) 

Goal 
on(a,b) 
on(b,c) 

Initial 
on(c,a) 

on(a,table) 
on(b,table) 

clear(b) 
clear(c) 

move(b,table,c) 
on(b,table) on(b,c) 

clear(b) -on(c,table) I  clear(c) -clear(c) 



move(b,table,c) 
on(b,table) on(b,c) 

clear(b) -on(c,table) I  clear(c) -clear(c) 

Goal 
on(a,b) 
on(b,c) 
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Causal links are shown by blue lines, and step ordering is shown by black lines. Step 

ordering is omitted where it is implied by causal links. The '-' before a statement 

indicates the effect is a delete effect. 

We can add a further causal link to satisfy the goal clear(b). We happen to choose not 

to satisfy dear(c) just yet. 

Now suppose we next choose to satisfy the goal on(a, b). We could do this by adding 

a step move(a, table, b). 

move(a,table,b) 
on(a,table) on(a,b) 

clear(a) -on(a,table)-  I  clear(b) -clear(b) 

move(b,table,c) 
on(b,table) on(b,c) 

clear(b) I  -on(c,table) 
clear(c) -clear(c) 

Goal 
on(a,b) 
on(b,c) 

But now we find that the link clear(b) is threatened, since the new step could delete 

this relation before the execution of move(b, table, c) and which requires dear(b) as a 

precondition. Now we have a choice of how to resolve this threat. It turns out that it 

can be removed by promoting the threatening action, which means adding an ordering 

constraint (shown in black). 

move(a,table,b) 
.-,I. •.kI..\ I 	'..1,.' 
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The final plan requires a further step and a further threat resolution, and is shown 

below. 

move(a,table,b) 

2.3.2 Development of causal link planners 

Causal link planning was first introduced by Sacerdoti [Sacerdoti 75], then given a 

more thorough analysis by Tate [Tate 77]. 

Chapman gave a more formal treatment, and proved soundness and completeness of 

a causal link planner, TWEAK [Chapman 87]. Chapman introduced the notion of 

the modal truth criterion, which is a test for determining the consistency of partially 

ordered plans, and which can itself be executed as a planner. 

Pednault [Pednault 87] went back to situation calculus as a basis for his Action De-

scription Language (ADL), which is between STRIPS and situation calculus in expres-

siveness, and provides a STRIPS-like representation. 

A subset of ADL was implemented in the UCPOP [Penberthy & Weld 92] planner, 

a provably sound and complete refinement planner which allowed the extensions of 

universal quantification in effects and goals, and actions which have effects conditional 

on the context in which they are used. 

2.4 Graphplan 

In recent years, an alternative approach to planning emerged, marking a departure 

from the established tradition of causal link planning. Graphplan, [Blum & Furst 95], 

despite being a relatively simple idea, gave considerable performance improvements 

over the planners previously available. Graphplan makes use of a datastructure called 
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a planning graph for representing plans and world states, which allows constraints on 

the plan to be derived and exploited. 

2.4.1 Representation 

The philosophy is that the plan/states are not fully described, but we have a projection 

which gives us necessary conditions for finding a plan. 

In Graphplan, the planning graph consists of alternating levels of proposition nodes 

and action nodes. The planning graph has three types of edge: 

precondition edges 

add-edges 

delete-edges 

The planner works in two phases: 

• In the first phase, the planning graph is constructed by projecting forwards from 

the initial state. The planning graph allows certain constraints to be recorded 

for later exploitation 

• In the second phase the end of the planning graph is matched with the goal state, 

and the search is carried out by regression on the planning graph. 

2.4.2 Algorithm 

The initial phase of graph expansion overlays all actions and propositions which could 

be present in the graph at each level, together with constraints in the form of exclusion 

relations, recording pairs of nodes which cannot be simultaneously present. 

There two types of exclusion relations between actions: 

Interference If either of the actions deletes a precondition or add-effect of the other. 

Competing needs If there is a precondition of a and a precondition of b which are 

marked as mutually exclusive at the previous level. 
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Additionally, exclusion relations can be added between two propositions if all ways of 

achieving one exclude all ways of achieving the other. 

The graph is expanded level-by-level until a state is reached wherein the goal conditions 

are not excluded, and at this point it is worth attempting the solution extraction phase. 

For each goal at time t, Graphplan attempts to find a set of actions compatible with 

exclusion constraints at time t - 1 which achieve these goals. The preconditions for 

these actions then form a goal set for time t - 1. By recursing backwards using this 

process, we have a procedure for finding a plan with t steps. 

If no plan of that length can be found then the extraction phase fails and planning 

may continue by expanding the planning graph by a further level. Using this process, 

we can be assured that we always find the shortest plan (in Graphplan representation) 

first. A further criterion concerning the fixpoint of the planning graph allows detection 

and termination in cases where no solution can exist. 

Note that the Graphplan representation allows for any number of non-interfering ac-

tions to be carried out in parallel in each time step. 

2.5 Conformant and contingent planning 

This section reviews work in the planning literature on extensions of STRIPS planning 

to deal with conformant and contingent planning, which are ways of handling actions 

with uncertain effects. This section is included because this is an area that we consider 

in our linear logic approach (Section 8.7). 

We adopt the term conformant from [Smith & Weld 98], where it is defined to mean 

planning in the presence of uncertainty, but without the ability to resolve the uncer-

tainty when the plan is executed - so a single plan (without conditional branches) 

must be formed that will work under all possible outcomes of the uncertainty. This type 

of problem is also called fail-safe planning in [Pryor & Collins 96]. Examples in this 

class include Moore's Bomb in the toilet problem [McDermott 87] and the matching 

socks problem [Bibel 86]. 

Contingent plans aim to take into account the idea that more information will be 



CHAPTER 2. BACKGROUND: PLANNING 	 19 

available to any executing agent when the plan is being executed than when the plan is 

being formed. Contingent planners are able to gather information and choose between 

conditional branches of the plan at run time. 

Both types of plan can cope with uncertainty about the initial state of the world (e.g. 

whether it is raining), and also with uncertainty in the effects of actions (e.g. the result 

of tossing a coin). 

For our purposes, the most important point to consider is the way that uncertainty, 

sensing and decisions are modelled, rather than the problems of integrating this into 

partial order planning. 

2.5.1 Warplan-C 

The first planner that was capable of planning for contingencies was Warplan-C [War-

ren 76]. This system forms totally ordered plans with conditional branches. It is 

assumed that all information is available to the planner at runtime, and plans simply 

branch at the point at which the distinction needs to be made. 

Here, uncertain effects are represented by conditional actions with two possible out-

comes P or -P. It is assumed that the executing agent will know the result of the 

action as soon as it is carried out, so explicit sensing action is not required. 

The strategy for handling uncertainty is first to assume a particular outcome, then 

later to add branches to the plan to account for other possibilities. 

2.5.2 CNLP 

CNLP [Peot & Smith 92] used a partial-order planning framework. Here the source 

of uncertainty is separated from the conditional action, but it is assumed that the 

consequences of any action are immediately known - i.e. there is no distinction 

between sensing and decision-making. This type of action has different consequences, 

depending on the uncertainty. These different consequences can give rise directly to 

different contingent sub-plans. 
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2.5.3 Cassandra 

[Pryor 95], [Pryor & Collins 96] emphasised the need to separate the sensing actions 

and decision-making actions. Uncertainties are represented in a totally distinct way 

from ordinary literals describing the state of the world. Steps are labelled by the 

contingencies under which they apply. 

The steps which only apply under certain contingencies must be preceded by a decision 

step which is able to distinguish those conditions. The decision step allows the agent 

executing the plan to deduce the outcome of uncertainties which cannot be perceived 

directly. The decision step comprises a set of rules with perceivable conditions as an-

tecedents and contingencies (i.e. possible outcomes of the uncertainty) as conclusions. 

During goal-directed planning, the antecedents of the decision rules give rise to knowl-

edge goals. This requires explicit modelling of knowledge via know-if propositions. 

These know-if conditions are the effects of sensing actions, whose effects are dependent 

on the value of some uncertainty which is not directly perceivable. 

2.5.4 Graphplan derivatives 

Graphplan has been extended to model conformant plans in the SGP planner [Smith 

& Weld 98] and contingent plans in CGP [Weld et al 98]. Both these systems rely 

on modelling of possible worlds in a planning graph. Each time an uncertain effect is 

introduced, the planning graph is split into a new branch for each outcome. Planning 

then handles constraints both within and between possible worlds. 

The SGP system, like Cassandra, adopts a representation for reasoning about knowl-

edge. In this case, it takes the form of exclusion relations between worlds. For example 

K-'u: v represents a proposition that if an agent is in world w, then it will know that 

it is not in world w,. 

2.6 Discussion 

This chapter reviewed background material on planning representations and algo- 

rithms. We considered the very general situation calculus representation, in which 
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inference is awkward to control and frame axioms are required for action descriptions. 

We then considered the STRIPS representation, which pragmatically uses a less ex-

pressive language, but allows for efficient search algorithms. We then described some 

extensions to STRIPS planning for handling actions with uncertain effects. 

In chapters 4 and 5, we will show that the linear logic framework, like situation calculus, 

provides a clear formal description of action. Unlike situation calculus, we can neatly 

express state change without the use of frame axioms, and conveniently extract plans 

directly from proofs. We will see that linear logic approach represents a different 

compromise between expressiveness and tractability than those discussed in the present 

chapter. 



Chapter 3 

Background: Formation of 
Recursive Plans 

3.1 Introduction 

By including control structures in plans, a planner can produce a single general plan 

which will deal with a class of situations. For example, in the blocks world, recursive 

plans can solve problems involving towers of unspecified size, e.g. 

. Inverting a tower. 

Putting one tower on top of another. 

. Inserting a block at the bottom of a tower. 

Clearing a tower from above a certain block - "How to clear a block". 

hat(hat(a)) 

hat(a) 

a 	 a 

- 

fin 
This chapter reviews three approaches to the formation of recursive plans. 

. by deductive planning with situation calculus (Manna and Waldinger) 

. by planning with extended STRIPS operators (Ghassem-Sani and Steel) 

22 
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• by deductive planning in modal logic (Stephan and Biundo) 

These differ in: 

• the choice of representation for problems and plans, and consequently the class 

of problems which can be represented and solved, 

o the degree of automation of the proof process. 

3.2 Manna and Waldinger 

[Manna & Waldinger 871 viewed planning as being similar to the synthesis of imperative 

programs. This is quite similar to the approach used by Green in QA3 system [Green 

69]. 

One particular problem with Green's approach is that, as a consequence of using situ-

ation calculus, the plans formed contained explicit references to states. This can have 

some unwanted consequences, since it allows the construction of some forms of plan 

which it is not possible to execute. 

Manna and Waldinger give the example of the monkey, bomb, bananas problem. This 

is a problem in which a monkey must obtain the banana, given the fact that it is in one 

of two identical closed boxes, a and b. Whichever box does not contain the bananas 

contains a bomb, which will explode if approached. 

There should be no solution to this problem, but the QA3 system allows the following 

plan: 

getbanana(sO) < 

if Hasbanana(goto'(sO,a)) 

then goto'(sO,a) 

else goto'(sO,b) 

This plan involves the monkey testing whether it gets the banana in the hypothetical 

state in which he chooses box a. This plan cannot actually be executed by the monkey. 
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Manna and Waldinger restrict their deductive system to producing plans which are 

executable, by restricting the use of case-splits so as to avoid the problem. 

In order to construct usable plans, the plan should avoid explicit references to states, 

and this is a motivation behind their modification of the situation calculus. They 

propose plan theory, a form of situation calculus including fluents, which have no 

reference to states, but are given a state dependent interpretation by attaching a state 

variable with a linkage operator. Situational expressions and fluent expressions both 

exist in plan theory and they are related by the linkage operators. A fluent expression 

e in state s is written as 

s : e, S :: e, or s; e 

depending on whether e represents an object, a truth value, or a state respectively. 

Static expressions refer to a state, e.g. 

hat'(s, b), Clear(s, b), put'(s, b, c). where s denotes a state and b,c denote blocks. 

Fluent expressions designate elements w.r.t. an implicit state, e.g. 

hat(d), clear(d), put(d,e) 

They are related by linkage operators, e.g. in state w, 

w: hat (u) hat'(w, w: u) 

w::clear(u) Clear(w, w:u) 

w; put (u,v) put'(w, W: U, W: V) 

To construct a plan for achieving a condition Q[so, a, z], where so is the initial situation, 

a an input object, and z the final state, Manna and Waldinger prove the theorem: 

Vs0 Va 3z, Q[so , a, so; zl] 

z 1  is instantiated to a plan fluent term during the proof. 

The solution plan for the "how to clear a block" problem is represented as: 

makeclear(a) < 

if clear(a) 

then skip 
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else makeclear(hat(a)); 

put (hat (a)) ,table) 

The deductive tableau method is used to form proofs. This combines non-clausal 

resolution, well-founded induction, and conditional term rewriting. An equational uni-

fication algorithm is used which has built-in equivalences between static and dynamic 

expressions. 

In the tableau, each row may have either an assertion or goal, as well as a plan ex-

pression. A tableau is true whenever the following holds: if all instances of each of the 

assertions are true, then some instance of at least one of the goals is true. 

The deduction rules add new rows to the tableau, such that if the new tableau is valid, 

then so is the original one. The tableau is proved valid when true appears as a goal or 

false appears as an assertion. 

The proof and the plan are constructed side-by-side, with the restriction that static 

terms cannot appear inside plan terms. 

Manna and Waldinger show how this approach can be used for the formation of condi-

tional expressions and recursive plans. An example of a recursive plan is a general one 

which clears the top of particular block, no matter how many other blocks are stacked 

on top of it. 

Some unresolved issues with their approach are: 

A proposal of how the frame problem should be handled is broadly outlined, but 

has not been fully developed. 

. Their treatment of induction suggests that it has not been very successful in 

practice. The main areas which cause problems are the choice of a well-founded 

relation, and the difficulties of producing strengthened induction schemes in order 

to find an alternative proof choice. 

The axioms relating situational and fluent expressions are built into an equational 

unification algorithm. The redundancy caused by using two equivalent forms 

means that the unifier yields multiple solutions - i.e. there is no unique most 
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general unifier. 

o They do not address the issue of search control. The scheme was not imple-

mented as a fully automatic system. A related deductive tableau systems was 

implemented as an interactive system, in which a user guides the proof. 

3.3 Ghassem-Sani and Steel's RNP 

Ghassem-Sani and Steel's Recursive Nonlinear Planner (RNP) [Ghassem-Sani & Steel 

91, Ghassem-Sani 92] is an extension of a classical partial order planner to generate 

recursive plans. This is a less general method than Manna and Waldinger's, but gives 

improved control over solution search, to the extent that a fully automatic system was 

implemented. 

3.3.1 RNP - Plan representation 

Plan representations using STRIPS operators cannot express recursive plans. Steel 

and Ghassem-Sani extend the plan representation by including three new kinds of plan 

step: 

CASE nodes - Two (or more) subplans are contained inside one node. Each subplan 

has the same postconditions, but different preconditions. The preconditions for 

the case node include the disjunction of the preconditions of the components 

subplans. 

casel 
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PROC nodes - These are equivalent to procedure definitions in programming lan-

guages. They are identical to case nodes, but are invoked by call nodes. 

CALL nodes - These are equivalent to procedure calls in programming languages, 

naming a PROC node to invoke. 

3.3.2 RNP - Induction principle 

To form a recursive plan, a proof by induction is used. The following form of Boyer and 

Moore's induction principle is used. The following form accounts for forming recursive 

plans with a single base and step case: 

If 

P and Q are predicates; 

<denotes a well-founded relation 

I is a function 

x is a variable 

P(x) -4 1(x) <x is theorem 

then in order to prove that Q(y)  is theorem, it is sufficient to prove: 

-'P(x) -* Q(x) 
	

Base case 

(P (x) A Q(f(x))) -4 Q(X) 
	

Step case 

In forming recursive plans, the planner uses a database of theorems of the form of (e), 

defining well-founded relations. P(x) here behaves as a condition which determines 

whether the base or step case applies. 

The figure below gives the corresponding plan structure. 
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RNP - Form of recursive plan 

procl(x) 

	

1 	 2 

—P(x) —P(x) 	 Q(x) 

	

P(x) 	

:VQ(f(x)) Q 

	

I 	 caII:procl(f(x)) 

—P(f(x)) 

-- ----- I 

RNP - example plan 

The plan formation process is an extension of a conventional partial-order causal-link 

planner. Recursive constructs are introduced when the planner detects a similarity 

between between a subgoal and a top level goal, e.g. a subgoal of the form Q(f(x)) 

and a goal of the form Q(x). In these circumstances the planner can then check if the 

two forms are ordered by a known well-founded relation, such that the subgoal is a 

reduced form of the top level goal. 

If this test succeeds, then RNP tries to solve the problem by recursion. The next step 

is to perform a case analysis, e.g. using the predicate P from (e) above to separate 

base and step cases. RNP then tries to find or create a new PROC node with subplans 

for the P(x) and P(x) cases. 

The plan generated for the "how to clear a block" problem is given below. 
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procl(a) 	 3 

clear(a) 

clear(a) 

5 	 4 

EjJ calI:procl(hat(a)) 	 unstack(hat(a).a) 	
31( 

clear(hat(a)) v 
on(hat(hat(a)).hat(a))) 	 clear(hat(a)) 	 clear(a) 

on(hat(a),a) 

on(hat(a).a) 

clear(a)von(hat(a),a) I ---------------------- c!ear(a)  

A form of generalisation is also possible, where a constant may be replaced by a variable 

in order to make the induction work. 

The detection of threats in RNP 's plans is complicated due to the presence of recursive 

constructs. No equivalent of Chapman's modal truth criterion 2.3.2 was developed to 

demonstrate the soundness of the planner. 

3.4 Stephan and Biundo 

A group at DFKI in Saarbrücken has carried out recent work on deductive planning 

[Stephan & Biundo 931, [Stephan & Biundo 95], [Dengler 96], [Koehler 96]. 

Their approach is characterised by the use of programming logics - particularly an 

interval-based temporal logic called logical language for planning (LLP). The intervals 

are sequences of states, and the logic has modal operators: 

QA — nextA 

OA - sometimes A 

DA - always A 

X ; V - X followed by V 
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The operator ; (chop) which expresses the sequential composition of formulae. This 

allows plans and actions to be expressed as programming constructs in the logic, which 

have semantics defined on intervals. 

A planning problem is formulated as a proof of the following formula: 

pre A Plan -* Ogoal 

where pre represents initial conditions and Plan is a variable which is instantiated 

during the proof. 

The changes brought about by action are expressed as operations on local variables, 

which may change their values between states, and this is extended to handle a 

STRIPS-like manipulation of logical relations. 

An example definition of an action is given as: 

rec unstack(x,y). 

if on(x,y) & clear(x) 

then add- table(x); 

add- clear(y); 

delete- on(x,y) 

else abort fi. 

This syntax translates directly into formulas in the temporal logic. From such a de-

scription, axioms describing action effects and frame conditions can be derived auto-

matically. 

This example is taken from [Stephan & Biundo 93], which uses first-order dynamic 

logic. This paper shows how frame conditions can be efficiently handled in the logic by 

treating them as invariants of the actions or action sequences. The frame problem can 

be treated efficiently by generating frame assertions non-deductively. This is part of a 

domain modelling process in which action definitions are analysed to produce temporal 

logic conditions in a form to be used during planning. 
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3.4.1 Recursive planning in LLP 

The LLP language is capable of expressing recursive constructs, but requires user 

interaction to do this. Abstract recursive plans are formed and proved correct as part 

of an interactive domain modelling process. After this domain modelling, the planner 

can work fully automatically. To automatically solve a concrete planning problem, the 

abstract recursive plans are unwound to simple action sequences. This is performed 

by a tactical theorem prover, KIV. 

[Stephan & Biundo 95] develops the idea of planning as refinement, by which a non-

executable specification is refined step-by-step into an executable plan. Stress is laid 

on the idea that the specification and the plan are expressed in the same language. 

[Dengler 96] also considers planning as a process of refinement and shows how LLP 

can be used to perform non-linear planning. (Koehler 96] uses the framework as a basis 

for a system of plan reuse - i.e. stored plans are retrieved and adapted to solve a new 

planning problem. Koehler suggests that a powerful language of plan specification and 

a system for manipulating plans which guarantee to meet the specification are needed 

for a plan reuse system (second principles planner). 
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3.5 Inductive theorem provers 

3.5.1 Introduction 

In this section we consider proof techniques which are specialised for solving the prob-

lems present when constructing inductive proofs. These proofs are crucial to the for-

mation of recursive plans in deductive planning, since recursive constructs in the plan 

correspond to the use of induction in the proof. Some particular problems in forming 

induction proofs are: 

. The choice of the specific induction scheme to use. 

. The choice of the induction variable. 

• The control of rewriting steps in the induction step case. The special heuristic 

technique of rippling has been applied successfully to greatly reduce the amount 

of search in rewriting. The technique makes use of the similarity between the in-

duction hypothesis in induction step cases. The notion of rewriting here includes 

certain deductive steps which yield to being treated as rewrite rules. 

• The need for generalisation. Often the original theorem may be impossible to 

prove inductively, but a more general version of the theorem can be proved. 

Techniques exist for generating these generalisations automatically. 

3.5.2 Boyer and Moore 

The Boyer-Moore theorem prover [Boyer & Moore 79] was an early success at auto-

matically generating inductive proofs. They use a first-order logic with a LISP-like 

syntax and no explicit quantifiers. Destructor syntax is used for inductive problems. 

The prover makes use of a repertoire of separate theorem-proving components and 

heuristics. 

Symbolic evaluation - simplification of an expression by application of rewrite 

rules. 

Induction - The selection and application of an induction rule. 
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Fertilization - The use of the induction hypothesis to prove the induction conclu-

sion. 

Generalisation - Generation of generalised theorem, to allow successful induction. 

Their system incorporated heuristics for dealing with the problems listed in 3.5.1 above. 

For example, the use of induction was attempted only after a failed attempt at a proof 

using only symbolic evaluation. The choice of induction variable was motivated by the 

manner in which the symbolic evaluation proof failed. 

A large contribution towards the success of the Boyer-Moore prover is reasoning about 

about the applicability of these separate components and about the relationships be-

tween them. 

3.5.3 Proof planning 

A rational reconstruction of the Boyer-Moore heuristics led to the concepts of proof 

planning [Bundy 88]. In this section we give an overview of proof planning, with 

particular reference to its use in controlling inference in inductive proofs using the 

technique of rippling. 

Proof plans are meta-level plans for guiding the object-level inference in constructing 

a proof. 

Common strategies for applying object-level proof steps, such as symbolic evaluation, 

are expressed as tactics. Tactics are programs for constructing part of the proof at the 

object-level. 

In order to reason about the application of tactics, meta-level specifications of the 

object-level tactics are used. These specifications are known as methods. 

A method is described by: 

Input Meta-level sequent to which the tactic applies. 

Preconditions Conditions which must hold for the method to be applied. 

Effects Conditions which will hold after the method has been applied. 
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Outputs Subgoals generated (list of meta-level sequents). 

Tactic The name of the tactic to be applied. 

In proof planning, the meta-level plan is constructed using a planning algorithm to 

search in a space of method applications. This meta-level search space is typically 

much smaller than the corresponding object-level search space. 

3.5.4 Rippling 

We will briefly discuss the technique of rippling. Although we do not use this in our 

work, we will refer to it in our discussion of techniques for generalisation (Section 

3.5.6) and for dynamic creation of induction rules (Section 10.3.6). Rippling is a 

heuristic technique for controlling the application of rewrite rules in inductive proofs. 

In the Clam system, it has been implemented as a method within the proof planning 

framework. 

In step cases of inductive proofs, there is typically a need to prove a theorem of the 

form: 

P(x) I- P(f(x)) 

where f (x) is a constructor function - e.g. for natural numbers it might be the successor 

function s (x). Rippling exploits the fact that the presence of the constructor is the only 

difference between the induction hypothesis (on the left) and the induction conclusion 

(on the right). This difference is called a wavefront. Annotations are added to identify 

the presence of the wavefronts. 

The proof involves applying a series of rewrite rules such that the wavefront can be 

moved out of the way, allowing a match between conclusion and hypothesis. Anno-

tations allow the wavefront to be treated as separate entity, which moves on a fixed 

background formula, the skeleton. In the example above, P(x) is the skeleton. 

3.5.5 Choice of induction variable and rule 

Rippling can also be used to inform the choice of induction variable and induction rule, 

so that the choice is made on the basis of what is most likely to work. This process is 
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known as ripple analysis 

3.5.6 Generalisation 

Often a generalisation step is necessary to successfully complete an inductive proof. 

As pointed out in [Manna & Waldinger 87], generalisation is also important in forming 

recursive plans. Techniques have been developed for automatically determining the 

generalisation. Here we sketch the technique used in [Hesketh et al 92]. 

This generalisation is based on middle-out reasoning. The precise form of the gener-

alised theorem is not determined until midway through the proof. Its value is instan-

tiated so as to make the proof work correctly. After creating the generalised theorem, 

and the proof of the generalised theorem, it is also necessary to construct a proof that 

the generalised form entails the original theorem. 

We give an example from [Hesketh et al 92], in which the problem is to transform 

functions into equivalent tail-recursive functions. For example, consider a function for 

reversing a list, revs , defined by the following rules: 

rev(nil) = nil 

rev(h:: t) = append(rev(t),h ::nil) 

We start with a specification using the non-tail-recursive version. This will be used as 

a specification for the tail-recursive version. 

I- Vx.z. z = rev(x) 

Tail recursive algorithms can be extracted from proofs of a certain shape. To create a 

proof from which we can extract the tail recursive version, we need to generalise this 

proof to a version that involves an accumulator variable: 

I- Vx.Va.z. z = append(rev(x),a) 

The generalisation problem here is to perform this step automatically. How do we 

know that append is the correct function to use? The approach is to use a higher-order 

meta-variable as a placeholder for the unknown function. 

I- Vx.Va.z. z = G(rev(x), a) 
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During the inductive proof of this theorem, we then allow G to be instantiated to any-

thing that allows the rippling steps to pass through successfully. The appearance of 

append then comes from the application of the rewrite rules defining rev. For the anal-

ogous generalisation in a planning problem, this would correspond to a reformulation 

of the plan specification (initial and goal states). 

3.5.7 Summary 

Control of reasoning in inductive proofs raises some specific problems - i.e. choice of 

induction rule, choice of induction variable, control of rewriting, and generalisation. 

These can often be tackled by a combination of strategies. Proof planning provides a 

coherent framework to handle high-level plans which talk about the application of such 

strategies. The specific technique of rippling is an important component in proof plans 

for induction, as it allows similarity between induction hypothesis and conclusion to 

be exploited to reduce search. 

3.6 Conclusion 

This chapter reviewed three different approaches to recursive planning problems. 

Manna and Waldinger's deductive synthesis approach, based on a modified situation 

calculus, has good coverage. However, there is no known strategy for controlling infer-

ence so this has not been implemented as an automatic system. 

Ghassem-Sani and Steel's RNP uses a STRIPS-like representation, and is more re-

stricted in expressiveness, but has been implemented as a fully automatic planner. 

Stephan and Biundo's deductive planning approach pushes the difficult theorem-proving 

tasks into the phase of planning domain modelling, which is done interactively. The re-

suit is a domain-specific planner which works fully automatically in a tactical theorem 

prover. 

We also considered the problems which arise in inductive proving: choice of induction 

rule, choice of induction variable, control of rewriting, and generalisation. We described 

approaches to the problems using proof planning and rippling. 
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Proof planning is not used to guide theorem proving in our system. For larger or more 

complex problems than those considered, proof planning would provide a powerful and 

flexible framework for further development. 



Chapter 4 

Linear Logic 

4.1 Introduction 

In this chapter, we give an introduction to a fragment of linear logic and demonstrate 

its use in simple planning problems. See [Girard 951 for a full exposition of linear logic, 

and [Masseron et al 93] for a thorough treatment of its use in conjunctive planning 

problems. 

4.2 Basics of linear logic 

Linear logic is resource-sensitive. This gives us the ability to model change of state 

directly using the linear version of implication, written as -o. The usual example here 

is that we can model the scenario that we can buy a drink for a pound as follows: 

have-pound -o have-drink. 

The notion of implication here is that if we have a pound, we can have a drink, but 

(unlike conventional implication) we won't still have the pound. The resource on the 

left of the implication is used up in producing the resource on the right. 

For simple planning problems we will need the multiplicative conjunction connective, 

written 0. The formula A ® B means that resources A and B are simultaneously 

present. The rules for 0 are given in the next section. 

These rules can only be seen as transitions if the logic itself restricts the copying and 

discarding of resources. 
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Now if we consider resource-limited versions of familiar connectives such as conjunction, 

we find that there are two different versions possible, differing in the way the resources 

are handled. 

The multiplicative conjunction A® B means that resources are simultaneously present. 

This is the form of conjunction which we use in STRIPS-like planning problems. 

The second form additive conjunction means that both resources are available, but 

they are exclusive. Only one or the other may be used and the choice is ours. 

have-pound -o have-tea & have-coffee 

Although this looks somewhat more like a disjunction, we regard it as a conjunction, 

since it would be equivalent to the conventional conjunction if weakening and contrac-

tion were allowed, i.e. the discarding and copying of resources. 

This may be can contrasted with the additive disjunction, El?. 

have-pound -o have-tea have-coffee 

This would correspond to using an erratic drinks machine, which will deliver either tea 

or coffee, but we cannot choose which. 

4.2.1 Exponentials 

An important feature of linear logic the exponential operator!. This provides a means 

to mark out formulas to which weakening and contraction rules can be applied - so that 

they can be used as many or as few times as necessary in a proof. This is particularly 

important because it allows an embedding of intuitionistic logic into intuitionistic linear 

logic, e.g. 

!a —ob 

is equivalent to: 

a —*b 

However, we shall not use exponentials for the rest of this chapter. 
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4.3 Linear logic for planning 

A planning problem can be represented as a sequent of the form I I- G where I 

represents initial conditions and G represents goal conditions. In this intuitionistic 

version, I is a multiset of formulae (implicitly joined by ®). The H behaves as linear 

implication, so we can read this as meaning that the resources I should be consumed 

in deriving G. Similarly, we use transition axioms of the form P F- E to represent 

operators. These axioms can be reused as many times as necessary in the proof, 

each use corresponding to an action. For instance, we could represent an operator 

stack(X, Y) for placing a block as follows: 

hold(X), clr(Y) F- empty ® dr(X) ® on(X, Y) 

To see the correspondence with STRIPS operators, consider the STRIPS version of 

stack(X, Y). This can be written as: 

operator: 	stack(X,Y) 

preconditions: hold(X) 
clr(Y) 

deletelist: 	hold(X) 
clr(Y) 

addlist: 	clr(X) 
on (X , Y) 
empty 

Note that the main difference between the two renditions is that there is no equivalent 

of the delete list in the linear logic description. This is not needed because anything 

used as a precondition will automatically be consumed by the linear logic version of 

implication. This can simply represent problems from the STRIPS notation, since any 

preconditions which are required but not consumed by an action can simply be added 

back onto the right hand side of the H in the action definition. 

Another significant difference is that in linear logic, multiple instances of the same 

entity are regarded as distinct. For example, we could represent the situation of having 

two pounds as have-pound 0 have-pound. 
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We can create proofs for solving simple STRIPS-like planning problems using only the 

® connective, and rules Ax, cut, l®,r®. 

Al-A Ax 

Fl-A F',Al-C 

r,r' I- C 
cut 

F,A,Bl -  C 	 Fl- A F'l-B 
F, A®BFC 1 ® 

The cut rule is crucial here, as it can now be seen as a rule which allows the transition 

between two states to be made via some intermediate state, and this accounts for the 

composition of a plan by combining two subplans in sequence. 

An example of the use of the cut rule is given below. This shows the transition from 

a state described by empty, clr(c), on(c, a), clr(b), ontable(b) by the application of a 

remove action to a state described by hold(c), clr(a), clr(b), ontable(b). 

remove (c, a) 

empty, dr(c), on(c, a) I- hold(c) 0 clr(a) hold(c) 0 clr(a), dr(b), ontable(b) I- Goal 

empty, clr(c), on(c, a), clr(b), ontable(b) F- Goal 
cut 

If the cut rule is always applied to sequents in which the hypothesis list is a superset 

of the formulae on the left of a transition axiom, the proof corresponds to a plan built 

forwards from the initial state. 

So we can build a proof tree with a statement of the planning problem at its root, and 

with instances of transition axioms and Ax at its leaves. If we can build such a proof, 

we can be satisfied that there is a plan that solves the problem, where applications of 

the transition axioms correspond to simple actions in the plan. However, some work is 

still needed to extract the plan from the proof tree. One way to do this is by analysis 

of the proof, as proposed in [Masseron 93]. An alternative approach is described in 

Chapter 5. 
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4.4 Masseron's geometry of conjunctive actions 

[Masseron et al 931 explains how planning problems using conjunction only can be 

represented and solved in linear logic. The linear logic proof does not directly provide 

us with a plan, although it does contain all the information needed to extract the plan. 

The companion paper [Masseron 93] completes this picture by explaining the mapping 

between proofs in a restricted form of linear logic and plans expressed as directed 

graphs. The account below is a summary of this second paper. 

4.4.1 Overview 

This approach is restricted to a certain fragment of intuitionistic linear logic, using 

only the 0 connective and the rules 10, r®, Ax and cut, plus the transition axioms 

which are part of a planning domain description. Now we can sketch the relationship 

between the proof rules and plans as follows: 

• identity axiom corresponds to the empty plan. 

• A transition axiom represents the performance of an action, and is associated 

with a plan containing only that action. 

• The r® rule combines two independent plans. The plans are independent in 

the sense that they affect disjoint multisets of resources, there is therefore no 

dependency between the plans and they can be executed in parallel. 

• The cut rule combines two plans in series, introducing dependency between the 

postconditions of one, and the preconditions of the other. 

4.4.2 Details 

Now we will make this more concrete by defining a representation for plans. 

Definition 1 A pseudo-plan is defined as a finite graph composed of vertices and 

oriented edges, where: 



CHAPTER 4. LINEAR LOGIC 
	

43 

. Each vertex is labelled by the name of a transition axiom. An axiom of the form 

trans: A 1 ,... ,A m  H B 1  ®... 0 B r  

is represented with a vertex with entries iA 1 ,.. . , iA and the exits xB1,.. . ,xB,. 

• Each edge has an exit at its origin and an entry of the same type at its end. 

Edges represent linear resources used in the proof and are labelled as such. 

• Entries of a pseudo-plan are entries of its component vertices which are not 

connected to the end of an edge. 

• Exits of a pseudo-plan are exits of its component vertices which are not connected 

to the start of an edge. 

A pseudo-plan D can be derived from a proof V by induction over proofs as follows 

(we use uppercase letters D, E, F to stand for proofs and corresponding curly letters 

V, S, .F to stand for their associated pseudo-plans): 

• If V is a proper axiom, D is a vertex, labelled by an occurrence of the name of 

the axiom. The vertex has entries and exits corresponding to either side of the 

axiom. 

• If D is any other kind of axiom (e.g. identity axiom, Ax), V is empty. 

• If D is obtained from E by an application of the 10 rule, V is identical to 6. 

• if D is obtained from E and F by an application of the r® rule, V is the union 

of 6 and F. 

• If D is obtained from E and F by an application of the cut rule on the formula 

B 1  ®... ® B, V is obtained from the union of 6 and F, with edges added from 

xBj  to iB2  for each j such that xBj is an exit of 6 and iB3  is an entry of F. 
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The edges of the pseudo-plan can be used to define an ordering relation < over the set 

of entries and exits of vertices: 

iA < xB if iA and xB are attached to the same vertex, and 

xA < iA if there exists an edge between xA and iA. 

This also defines an ordering over the vertices. Vertices can be regarded as minimal 

pseudo-plans, and we can define a relation <<over pseudo-plans and F as follows: 

E <<J if there exists xA E,6 and iB E .F such that xA <iB. 

4.4.3 Example 

Given the blocks world proof below, the conversion would give the pseudo-plan illus-

trated in fig. 4.1. 

take(b) 	 stack(b, a) 

empty, clr(b), ontable(b) F- hold(b) hold(b), clr(a) F- empty ® clr(b) ® on(b, a) 

empty, clr(b), ontable(b, clr(a) F- empty  clr(b) 0 on(b, a) 	
CU 

r 
empty, clr(C), clr(b), ontable(b) , clr(a) F- empty (9 Clr(b) 0 on(b, a) 0 dr(e)  

empty 

take)  
empty 

clear(a) __:i stack(b,a) 	
clear(b) 

on(b,a) 

Figure 4.1: Example pseudo-plan 

4.4.4 Discussion 

This technique allows a pseudo-plan, represented as a directed graph, to be extracted 

from a linear logic proof. 1  The graph notation is less redundant in that a single graph 

The paper also considers the reverse translation 

clr(c) F- clr(c) 
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may represent many permutations of the proof. This can be attributed to the fact that 

the graph only contains edges directly between the producer of a resource (exit of a 

vertex) and its consumer. Notice that we would not add an edge for the case where a 

resource is transmitted through the cut rule untouched. 

Note that this representation is very similar to that used in the linear connection 

method of [Bibel 86]. A comparison between these methods and an equational resolu-

tion method is given in [GroBe et al 96]. 

The main limitation is that the method is restricted to proofs using only the multi- 

plicative conjunction connective, and would be difficult to extend to a larger fragment. 

4.5 Summary 

We have reviewed the linear logic approach to conjunctive planning as described by 

in [Masseron et al 93, Masseron 93]. We have looked at the representation of plan 

operators and plan specifications in intuitionistic linear logic. We have described how 

proofs can be built using an appropriate subset of linear logic deduction rules, and how 

plans can be extracted from the proofs. In Chapter 5, we will introduce an alternative 

representation for plans which allows a larger fragment of the logic to be used in 

representing and solving planning problems. 



Chapter 5 

Linear Logic Planning with Plan 
Terms 

5.1 Introduction 

This chapter introduces the notation for including plans as proof terms. This en-

ables a larger fragment of the linear logic to be used in plan formation than that used 

in [Masseron et al 93]. We can then represent planning problems involving actions 

with uncertain effects and forms of partial ordering and quantification. We then define 

how the plan language is executed and indicate how plans may be partially evalu-

ated. Chapter 6 extends this to include induction rules with extracts corresponding to 

recursive plans. 

5.2 Constructing plan terms 

Previous authors have extracted plans by using a procedure to recover plans from a 

completed proof. Here, we will make the relationship of the proof to the plan more 

concrete by attaching proof terms directly to the deduction rules in the style of type 

theory [Nordstrom et al 90]. This makes the relationship of deduction rules and plan 

formation clearer, and is easier to extend to deal with a larger subset of linear logic. 

A type theory has been defined for linear logic in [Abramsky 931. Proof terms can be 

seen as programs in Linear Lambda Calculus - a functional language in which there 

is a restriction of using each input exactly once. 

46 



CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 47 

We describe such a system below, in which sequents of the form A I- plan: C should 

be interpreted as meaning that plan gets us from a state described by resources A to 

a state described by C. An operational semantics, also from [Abramsky 93], defines 

how the constructs in the Linear Lambda Calculus are executed as plans. 

In general, the inference rules describe how to build a plan for a given sequent out of 

plans for the subgoals associated with inference rule. 

The logic we describe is based on Abramsky's version of Intuitionistic Linear Logic. We 

adapt this by omitting exponentials and additive conjunction, and by allowing a form of 

quantification (Section 5.2.7). We will refer to our version of the logic as Intuitionistic 

Linear Logic for Planning (ILL-P). The rules for ILL-P are given in Sections 5.2.1 - 

5.2.8. 

5.2.1 Transition axioms 

Operator definitions now take the following form: 

I- step: A -o C 

5.2.2 Identity axiom and cut rule 

The identity axiom says that required resource (or state) is available and we simply 

instantiate the label on the goal side to that on the resource side. Note that in linear 

logic, the Ax rule cannot apply if there are spare hypotheses on the left of the sequent. 

x: A F- x: A 
Ax 

The cut rule allows us to attain a goal C via some intermediate state A. The plan for 

reaching A from the current state is u, though x acts as a placeholder for this plan as 

the plan u is formed, which accounts for the transition from the intermediate state to 

the final goal. In the final plan, we replace occurrences of x with t. This substitution 

is represented by the notation u[t/x]. 

FI-t:A F',x:AI-u:C 

r, r,  I-u[t/x] : C 
ut 
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5.2.3 Linear implication 

The formula A —o B corresponds to a single available action that can perform a tran-

sition from A to B. 

The 1 —o rule corresponds to the application of the action to its preconditions. Appli-

cation of f to argument t is written here as f o t. 

FI-t:A x:B,r'F-u:C 
1-0 

r,r',f : A—oBF-u[(fot)/x] : C 

We often wish to use cut and 1 —o together. This enables us to cut in action from a 

(reusable) axiom, then apply the action. We call this combination of rules lcut. 

FI-t:A F',y:BI-u:C 

I- step: A—oB x : A—oB,F,F' I- u[(xot)/y] 

F, F' I- u[(step o t)/y] 

- 1-0 
C 
- cut 

To prove A —o B as a goal, we show that we can get B from A. The plan term Ax.t 

indicates that the plan may be applied to an appropriate value for x. Here, Ax indicates 

standard A-abstraction. 
F,x : A I- t: B 

r -o 

F I- Ax.t: A—oB 

5.2.4 Multiplicative conjunction 

The 0 rule allows a planning problem to be broken down into two independent sub-

problems. Since the sub-problems rely on disjoint sets of resources, the plan term 

consists of two sub-plans which may be executed in parallel. 

F,x:A,y:BI-t:C 	 FF- t:A F'I- u:B ro 
F,z:A®BHlet zbex®y int:C ® 

	
F,F'HtOu:A®B 

5.2.5 Disjunctive effects and conditionals 

In some planning problems, it is desirable to represent plans with indeterminate out- 

comes. These can be represented by actions with disjunctive effects. Here it is ap- 

propriate to use the additive disjunction operator . A formula A ED B should be 
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interpreted as saying that either resource A or resource B is available, and in a plan, 

we must cope with both possibilities. 

[Masseron et al 93] gives an example of a problem in which socks are blindly taken 

from a drawer. This action is represented by a transition in which a hidden sock (hs) 

becomes either a black sock (bs) or a white sock (ws). 

F- pick: hs —o(bs(D ws) 

In resolving these disjunctions during the planning process, there are two possibilities: 

the agent which will execute the plan may or may not be capable of performing a test 

to resolve the disjunction at runtime. 

If the agent can perform a test at runtime, it can select between two different plans, 

i.e. we can build a conditional structure which may contain different actions in the 

different branches. 

F,x:AI-u:C F,y:BF- v : C 
F,z : AEBH case z of inl(x) then u,inr(y) then v: C 

This is equivalent to forms used in [Bruning et al 93]. 

The different approaches correspond to contingent and conformant planning, as dis-

cussed in Section 2.5. We discuss our restricted handling of conformant planning in 

Section 8.7. 

For a disjunction of goals, we must simply prove one goal or the other: 

I' I- t:A 
ED 

F I-inl(t):AEBB 
n 

 

FF-u:B 	r2® 
F I- irir(u) : A e B 

5.2.6 Special values 

T (top) is used to avoid the need to fully specify a goal state. It consumes all resources 

present. 
rT 

F I- erase: T 
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In the example proof fragment below (shown without proof terms), the goal is to 

achieve on(a, b), and we do not wish to specify what other resources are present. By 

including T in the goal specification, we can allow the goal state to match with any 

context that includes the goal condition. The rT rule allows the remaining resources 

to be consumed. 

on(a,b) I- on(a,b) 
Ax 

dear(a),on(b,table),clear(c),on(c, table) _FT 
-91 

	

on(a, b),dear(a) , on(b, table), ci ear(c) , on(c, table) I- o'n(a, b) ® T 
	'a 

The value 0 is used to denote impossible situations. Thus any resource is allowed to 

be derived. 

r,o F abort: A 10 

5.2.7 Quantifiers 

To make recursive plans or schematic plans, we will need to be able to handle quan-

tification in some form. We will consider quantification over unrestricted types only, 

not over linear types in the sense of [Pfenning 98]. 

The quantifier rules for linear logic are the same as a version of the standard ones. 

However, the meaning of V is for any rather than for every - a distinction which is 

not meaningful in constructive or classical logic. 

A universally quantified resource is one for which exactly one instance can be used, 

and we choose the instance. 

The resultant plan is parameterised, and will provide a plan for a specific instance when 

supplied with a value for the parameter. We assume 0-reduction is used to compute 

the plan instances. Thus the rules are: 

r,y:A[t/x]Fc:C 	 FI-z:A[a/x] 

F, z : Vx :r . A F c[(z o t)/y] : C 
N 	

F F Aa.z : Vs : r . A 
rV 

where a is not free in F. 

r is the type of the quantified variable (we omit typing constraints on terms t which 

are implicit). 

An existentially quantified resource is one where we are assured that some instance is 

a resource, but we do not know which one. 
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F,t:A[a/x]Hc:C 	FI-c:C[t/x] 
IF, t:x:r.AHc:C 13 	FFc:Bx:r.0 

where a is not free in F, C. 

5.2.8 Equality 

We also sometimes need to reason about equality. Equality can be represented as a 

resource a = h. Such equations may appear on the left hand side of sequents with 

dummy labels (i.e. these labels can never appear in plan terms). To allow substitution 

we introduce a new deduction rule: 

F I- C: C[b/a] 
subs titute(a=b) 

F,(a=b) 1-c:C 

We suppose a standard background equality theory. 

This concludes the rules for ILL-P. 

5.2.9 Relationship to features of planning problems 

The following table describes how the various connectives and special values described 

in this chapter realate to features of planning problems. Note that the sequent symbol, 

I-, corresponds to linear implication, —o. Simple actions and plan specifications can be 

written without using -°, as in [Masseron et al 931. 

Connective Problem features 
This is the only connective used in simple conjunctive STRIPS in 
the style of [Jacopin 93]. 

—o Used in goal position, allows problem specification to be stated as a 
sequent with an empty LHS. This is the required form for extracting 
a plan term. 
Used in resource position, —o allows an available action to be treated 
as a resource. 
Planning problems involving disjunction in goals or effects. 
Disjunction of resources in an action effect is used to specify actions 
with uncertain outcomes. 

V Universal quantifier around plan specification allows for synthesis of 
schematic plans. 
In goal position, can be used to specify required value. 
In effect position, stands for an unspecified value. 

/T  L; 

I 
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Connective Problem features 
T Used in problems with partially-specified goal. 

0 Used to denote impossible situations. Axioms with 0 in effects can 
be used as a way to allow the closing of branches of the proof which 
describe impossible situations. 

5.2.10 Partial specification of initial state 

The initial state must include all of the resources that are needed as action precondi-

tions and goals. Some degree of flexibility is possible in describing the initial states as 

follows: 

Uncertain initial states may be described using a disjunction of resources. If it is 

necessary that certain combinations of disjuncts need not be considered, this can 

be specified by inclusion of axioms that match those situations and produce 0 as 

an effect. This marks the situation as impossible and allows the proof branch to 

be closed. 

Quantifiers may be used instead of giving explicit values. 

5.3 Plan execution 

To describe the order of execution of the plan language, we need an operational Se-

mantics. Abramsky provides a semantics for the Linear Lambda Calculus. This can 

be used to ensure that our primitive steps are executed in a correct order. 

In the following, the letters t and u are used to represent arbitrary terms of the lan-

guage, whereas c and d represent terms which have been evaluated to a canonical form. 

The relation t JL c says that t evaluates to a canonical form c. The canonical forms are 

given by: 

c ® d Ax.t inl(c) inr(d) 

The operational semantics rules define how the evaluation of a terms of the plan lan- 

guage is found from the evaluation its subterms. The canonical forms evaluate to 

themselves. 
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To use these rules to execute a plan, we must find a rule for which the term below 

matches the program, and for which evaluation of corresponding terms above the line 

also match. 

In most of the operational semantics rules, a left to right order of evaluation of the 

terms above the line is enforced by dependencies between symbols on the top line. 

E.g. in the rule below that we require the derivation of canonical forms c and d before 

substitution into u. 

tcød u[c/x,d/y]c 
let the x ® y in u .IJ.  c 

A notable exception to this is the rule for executing t ® u. Here the terms above the 

line are completely independent of each other, so the rules are not deterministic about 

execution order. This corresponds to two plans t and u which may be executed in 

parallel. The linear logic proof guarantees that there is no interaction between the two 

plans, by ensuring that no resource appears in both plans (see Sec. 5.5.1). 

t.JL.c ud 

tØu1J-c®d 

The rules for handling lambda-terms and their application are: 

tJJ -Ax.v  uc v[c/x]d 

	

A.tJJ.A.t 	 touJI -d 

The rules below give handling for conditionals. 

	

t 
	

t  

inl(t) JL. inl(c) 
	

inr(t) inr(c) 

t JJ. inl(c) u[c/x] JL d 
case t of inl(x) then u, inr(y) then v 4 d 

t 4 inr(c) u[c/y] JJ d 
case t of inl(x) then u, inr(y) then v 4 d 

5.4 Partial evaluation 

In this section we define partial evaluation on plan terms by giving rewrite rules for 

Linear Lambda Calculus. Exhaustive application of these rewrite rules on a plan term 
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with respect to an input initial situation results in the elimination of some of the control 

structures. 

If some of the input data is available before execution, then application of the rewrite 

rules results in a partial evaluation of the plan — i.e. we specialise with respect to the 

available input situation. 

One case of partial evaluation we are interested in is where a plan Vx(I(x) —o G(x)) is 

evaluated for an instance 1(t) —o G(t). Here we apply rewrite rules to piano t, resulting 

in a new plan, plan', which is specialised for instance t. 

We define a one-step partial evaluation relation as a rewriting relation based on the 

following four rules: 

let c®dbex®y inn —+ u[c/x,d/y] 	 (5.1) 

	

(Ax.t) o u —* t[u/x] 	 (5.2) 

	

case inl(c) of inl(x) then u, ... —* u[c/x] 	 (5.3) 

	

case inr(c) of..., inr(y) then v —* v[c/y] 	 (5.4) 

The relation —p thus allows rewriting at arbitrary subexpressions of a plan term. 

Our rewriting respects the binding associated with A-abstraction — it is sometimes 

necessary to rename variables in lambda-terms to prevent capture of free variables 

due to an accidental correspondence of variable names. This is a form of higher-order 

rewriting (see [Baader & Nipkow 98] for details). 

5.4.1 Correctness of partial evaluation 

Definition 2 We say a relation B is correct with respect to a type system if the 

following holds: 

if a Ba' and I- a : C is a provable sequent, then I- a' : C is also a provable sequent. 

We state here but do not prove: 

Claim 1 the relation —* is correct w. r. t. the system ILL-P. 
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It follows that the relation _** (the reflexive transitive closure of —+) is also correct 

w.r.t. ILL-P. One way to show the correctness of the rewrite rules is to carry out 

transformations on the proofs corresponding to the transformations on the plan terms, 

by induction over the structure of proofs. 

5.4.2 The relationship between —+ and 

The relationship between transformations by partial evaluation rules (—+) and by 

operational semantics rules (JJ.) is as follows. We require, but do not prove that: 

Claim 2 

1. IfFP:Vx.Z  and  P o t_+*PI 

then I- F' : Z and Vr[(P o t 4 r) if (P' JJ. r)]. 

. IfIP : A— o B and a: A and  P oa +*P1  

then I- F' : B and Vr.[(P o a 4 r) if (P' JL. r)]. 

3. IIHP 0 D10  ... 0 Dn T and  P0Dj0  ... 0Dn _4*E 

then E: T and Vr [(P o D1  o ... o Dn 4  r) if (E JJ. r)]. 

In each case, the claim is that the plan term resulting from partial evaluation is correctly 

typed, and that execution of the partially evaluated term yields the same result as 

execution of the original plan. Cases 2.1 and 2.2 cover the applications of single lambda-

terms arising from universal quantifiers and from linear implication in goal position. 

Case 2.3 covers the nesting of lambda terms and their applications. 

The typing claims of 2.1 and 2.2 can be obtained from Claim 1 and type inference for 

application terms. 2.3 can be proved by induction over the definitions of JJ.  and 

Where there is a computational advantage, we may choose to work with a partially 

evaluated plan term and avoid some run-time cost. This may, however, result in larger 

use of space resource, as the plan term may grow larger on partial evaluation. 

5.5 Correspondence of Linear Lambda Calculus programs 
to plans 

Programs in Linear Lambda Calculus have the appearance of functional programs. 

However, they have the special feature that each linear argument is only used once, a 
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property which is guaranteed by the corresponding linear logic proof. Use of linear im-

plication, which represents state change, corresponds to function application in Linear 

Lambda Calculus. A plan in our formalism is a program which accepts as arguments 

the resources defining an initial state, and returns the goal state. 

In the following example, we look at a plan to solve the goal: 

I- empty ® clr(b) 0 on(b, c) ® clr(a) -o empty ® clr(b) 0 on(b, a) 0 clr(c) 

with the transition axioms: 

I- take: empty 0 dr(X) 0 on(X, Y) -o hold(X) 0 dr(Y) 

F- stack: hold(X) 0 clr(Y) -o empty 0 clr(X) 0 om(X, Y) 

The plan to solve this problem is: 

let take ohl*h2*h3 be h6*h7 in 
let stackoh4*h6 be h9*h10 in 
let hlO be h11*h12 in 

h9*hl 1*h12*h7 

It is found by building a proof using rules above, and then computing the resultant 

extract term. 

The h values are labels for the hypotheses which appear in the linear logic proof. 

hi: empty 
 clr(b) 
 on(b,c) 
 clr(a) 
 hold(b) 0 dr(c) 
 hold(b) 
 dr(c) 
 empty 0 dr(b) 0 on (b, a) 
 empty 

hlO: clr(b)®on(b,a) 
hil : dr(b) 
h12 : on(b,a) 

To understand the program, we need to consider the values which are passed in and 

out of action steps. Fig. 5.1 shows the relationship between actions and values in the 
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plan. Arrows entering a box represent arguments and arrows leaving a box represent 

returned results. The splitting and joining of lines simply corresponds to the book-

keeping operations of constructing and dismantling (multiplicative) conjunctions, and 

these operations are interleaved with the actions. 

hi 

h2 

B 

Figure 5.1: Example program/plan 

5.5.1 Partially-ordered plans in Linear Lambda Calculus 

Here we give an example of a simple plan in which the steps are partially ordered, 

and show how this is represented in both STRIPS and in Linear Lambda Calculus. 

The problem is one of opening a door which has two locks. The partial-order aspect 

is present because the two locks may be unlocked in either order. The STRIPS rep-

resentation of the of the problem is given below, and graphical representation of the 

solution plan is given in Fig. 5.2. 

operator: 	unlock(L) 
preconditions: locked(L) 
deletelist: 	locked(L) 
addlist: 	unlocked(L) 

operator: 
preconditions: 

deletelist: 
addlist: 

open-door 
unlocked(lockl) 
unlocked(lock2) 
door-closed 
door-closed 
door-open 

initial: locked(lockl) 
locked(lock2) 
door-closed 

goal: 	unlocked(lockl) 
unlocked ( lock2) 
door-open 
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unlock(lockl) 

unlock(lock2) 

Figure 5.2: Example partially-ordered plan in STRIPS 

In linear logic, the actions are represented by the following axioms: 

	

I- unlock(].) : 	 locked(1) -o unlocked(l) 

unlocked(lockl) 	 unlocked(tockl) 

0 	 0 
I- 

 

	

open-door : 	unlocked(lock2) 	-o 	unlocked(lock2) 

0 	 0 
door-closed 	 door open 

The problem specification is given by: 

F- locked(lockl) 0 locked(lock2) 0 door-closed -o unlocked(lockl) 0 unlocked(lock2) 0 door .open 

The plan is given below. Notice that open-door action is applied to a conjunction of 

resources, and it is in obtaining each conjunct that the execution order is not forced 

(Section 5.3). The applications of the unlock actions are within this conjunction, 

and hence may executed in any order (or in parallel). Fig. 5.3 gives a graphical 

representation of the plan. 

Ahi. 
let hi be h2*h3 in 

let h3 be h4*h5 in 
open_door o 

h5* 
(unlock o h2) * 
(unlock o h4) 

The labels have the following types: 

hi: locked(lockl) ® locked(lock2) ® door-closed 
h2: locked(locki) 
U : locked(lock2) ® door-closed 

locked(lock2) 
door-closed 
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Figure 5.3: Example graphical representation of partially-ordered plan in Linear 
Lambda Calculus 

5.5.2 Execution of primitive steps 

The parts of the program which arise from the application of transition axioms have a 

special meaning. These are applications of actions, which bring about state changes. 

They may represent the actions performed by a robot to transform the state of the 

external world. Hence, these steps cannot be removed by partial evaluation, and it is 

very important that they are executed in a correct order. An order is enforced where 

necessary by the operational semantics. 

5.6 Sources 

This section is largely based on [Abramsky 93], though we omit rules for additive con-

junction, exponentials, and the special value 1 given there, as they have not appeared 

useful in the planning problems. We have added the quantifier rules, which are given, 

without proof terms, in [Masseron et at 93]. The rules for rT and 10, also omitted by 

Abramsky, are based on those in [Masseron et at 931 and [Pfenning 98]. The partial 

evaluation rules are similar to forms used in [Pfenning 98]. The handling of equality is 

our own, though this has not been fully developed. 

5.7 Summary 

We have explained the extraction of plans from proofs of linear logic specifications. 

The plans are built up as terms, whose construction is guided by the deduction rules 

of linear logic. Additionally, this chapter has described the partial evaluation and 
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execution of such plans. 



Chapter 6 

Induction and Formation of 
Recursive Plans 

6.1 Introduction 

In a traditional formulation of a planning problem, we have a set of primitive operators 

which must be used to form a plan to get from fully specified initial state to a goal 

state. The solution of a planning problem is a partially ordered sequence of fully 

ground operator applications. 

A frequently used example of a planning problem is the blocks world. A hand-crafted 

procedure for solving blocks world problems can guarantee to always solve the problem 

in a time linear in the number of blocks [Slaney & Thiebaux 96]. Little attention has 

been given to the problem synthesising such procedures automatically, though limited 

recursive problems in the blocks-world have been addressed [Ghassem-Sani & Steel 91]. 

We believe that recursive structure is often present in conventional planning problems, 

but is usually hidden by the way that the domain is defined. 

In fact, the inherent structure may allow a single abstract procedure to solve classes of 

problems in the domain once and for all. This is expected to be much more efficient in 

the case of large but structured problems, and also provides a solution to the problem 

of incomplete knowledge - we can guarantee a solution without knowing everything 

about the world. 

In this chapter, we show how the superior expressiveness of linear logic over conven- 

61 
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tional planning approaches enables recursive plans to be formed. By treating the 

planning process as a proof problem, we exploit the simple relationship between proof 

by induction and recursive procedures. 

This chapter introduces induction, and relates induction in linear logic to the forma-

tion of recursive plans. induction on lists, natural numbers and trees are considered. 

We give induction rules, partial evaluation rules and operational semantics for these 

datatypes. The logic which we form by extending ILL-P to enable handling of recursive 

problems will be referred to as ILL-PR. 

We deal with issues which arise in representing the planing problems, such as how to 

represent the problem specification so as to avoid fully specifying the goal state. 

6.2 Induction 

We choose to perform induction via inductively defined datatypes. For example, lists 

of untyped elements can be defined as follows: 

list ::= (term :: list) I nil 

The usual definition for structural induction on lists is: 

r F- P(nil) I' F- P(P) -* P(h' :: 1') 
F F- Vl : list.P(l) 

Such inductive definitions are associated with a well-founded order - see [Luo 94] for 

details. 

6.2.1 Special considerations for induction in Linear Logic 

In linear logic, we can write a similar rule, but we must be careful about the treatment 

of r. Since it denotes linear resources which are to be used exactly once, it would be 

incorrect to allow its use in the step case of the proof. This would lead to a plan in 

which the same resources are consumed on each successive recursive call. Exponentials, 

which are tagged formulas that can be used any number of times, are permissible in F, 

but we omit them in our treatment. 
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However, if the form of the induction rule is such that the base case can only be 

reached once, this corresponds to a part of the plan that is only executed once, and it 

is therefore permissible to allow the F to be consumed in the base case. 

F F- P(nil) P(P) I- P(h' :: 1') 
F F- Vt : list.P(l) 

In the rest of this thesis, for consistency, we prefer to omit the F in our definitions of 

induction rules. This is not as restrictive as it may appear, since P(l) itself is often of 

the form 1(1) -o G(l). In this case the 1(1) plays a role similar to the F, but this form 

of the induction rule demands that 1(1) should be replenished if used. 

In the example given below, we will consider manipulating towers, which are repre-

sented as lists of blocks. 

6.3 Formation of recursive plans 

6.3.1 Inductive datatype and corresponding induction rule 

Here we illustrate induction using lists to represent towers of blocks. 

We define a datatype for towers: 

tower ::= (block :: tower) I empty 

In the inductive proof, the handling of plan terms presents special difficulties. The 

syntax for plans is extended by adding the notion of recursive plan, based on the 

treatment of recursion in type theory [Nordstrom et at 90]. 

The inference rule that relates induction on towers to the formation of recursive plans 

is as follows: 	
F- bp : F(empty) r: F(t') F- sp: F(b' :: t') 

F- At.twr.rec(t, bp, Ar.At'.Ab'.sp) : Vt.F(t) 

In general, the F(t) will be a plan specification of the form 1(t) -o G(t). The term 

r attached to the induction hypothesis will behave as an available action, and its 

appearance in the plan for the step case signifies the application of the recursive call. 

Linear logic enforces that it must be used exactly once in the step case plan. 
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Other induction rules are possible, which correspond to different uses of resources - 

e.g. for natural numbers, two forms nat...ind and nat_ind2 are given in Section 6.3.2. 

Execution and partial evaluation of twr_rec is considered in Sections 6.3.4 and 6.3.5. 

6.3.2 Other inductively defined datatypes 

Natural numbers 

The Peano formulation of natural numbers is given by the inductive datatype: 

nat ::= s(nat) I zero 

An induction rule for the datatype is: 

F- bp : F(zero) r: F(n') F- sp : F(s(n')) 
nat_md 

I- An.nat -re c(n, bp, Ar.An'.sp) : Vn: nat. F(n) 

An alternative form of induction gives steps of 2: 

F- bpo  : F(zero) bp i  : F(s(zero)) r: F(n') F- sp : F(s(s(n'))) 
nat_ind2 

F- .Xn.nat.rec(n,bp o ,bpi , Ar.An'.sp) : Wi : nat.F(n) 

Trees 

The tree datastructure in this example is a binary tree with values at the branching 

nodes, but not at the leaves. 

tree ::= node (tree, tree, value) I empty 

We can then write an induction rule for t of type tree: 

F- P(empty) P(l),P(r) F- P(node(l,r,v)) 
tree-id 

F- Vt : tree.P(t) 

where 1 and r represent the left and right subtrees. 

Note that we have any empty context on the left of the sequent. We cannot even use 

a context in the base case, since it may be executed more than once. 

Adding plan terms, we have: 
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F- bp :P(empty) red :P(1),recr :P(r) I- sp :P(node(l,r,v)) 

I- At.treerec(t, bp, Arec1.)recr.A1.Ar.Av.sp) : Vt: tree.P(t) 
tree-id 

where bp and sp are the plans for base and step cases, and rec is the recursive procedure 

call. 

6.3.3 Recursion versus iteration 

We have chosen to use recursion to represent all forms of looping behaviour in our 

plan language. In some circumstances, it is beneficial to synthesise plans that use the 

more restrictive form of simple iteration. One reason to do this is that such plans can 

be executed by a simpler mechanism, with lower space requirements. Generally, when 

• recursive call is made, it is necessary to store the state of the calling function on 

• stack so that it can be resumed when the recursive call returns. Hence the space 

requirement for the computation increases with the number of nested calls. 

However, in the case of recursive computation where the result of the recursive call 

will be also be returned as the result of the calling function, there is no need to store 

the state of the calling function. This is known as a tail recursive call. 

A function which is tail recursive is equivalent to iteration. In the following, we describe 

restrictions that can be imposed on the form of our proofs to restrict synthesised plans 

to be in the tail-recursive form. 

Tail recursion 

Tail recursive plans can be found by restricting the form of the step cases in the 

induction. 

For example, for natural numbers, if we are generating the proof for a plan specification 

of the form 

Vn.pre(n) — o eff(n) 

then we can use an induction rule of the form: 

F- pre(zero) —o eff(zero) pre(n') —o eff(n') F- pre(s(n')) —o eff(s(n')) 

F- Vn.pre(n) — o eff(n) 
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The step case can be proved if the following two goals can be proved: 

	

pre(s(n')) I- pre(n') 	 (6.1) 

eff(n') I- eff(s(n')) 	 (6.2) 

This can be shown by the following partial proof of the induction rule step case, in 

which 6.1 and 6.2 form the open sequents: 

pre(s(n')) I- pre(n') eff(n') I- eff(s(n')) 

pre(n') —o eff(n'),pre(s(n')) I- eff(s(n')) 

pre(n') -.o eff(n') I- pre(s(n')) —o eff(s(n')) 

If we read the induction hypothesis, pre(n') —o effin') as the specification of a recursive 

function, then the plan corresponding to the sequent 6.1 is the plan to be executed 

before the recursive call is made, meeting the preconditions of the recursive call. 

The plan corresponding to the sequent 6.2 is the plan to be executed after the recursive 

call is made. The criterion for making our plan tail-recursive is that the result of the 

recursive call is also the result of the calling procedure - i.e. this part of the plan is 

empty. 

This happens when 

eff(ri') = eff(s(n')) 

i.e. proof above this point does not contain any applications of actions. 

In summary we can write the tailored form of the induction rule as follows: 

No actions in this proof 

	

I- pre (zero) —o eff(zero) pre(s(n')) I- pre(n') 	eff(n') H effls(n')) 

I- Vn.pre(m) —o eff(m) 

An example of a plan which corresponds to the tail-recursive form (for towers) is given 

in Section 6.4.1. 

6.3.4 Operational semantics of recursive plans 

Section 5.3 described an operational semantics defining the execution of recursive plans, 

which is a subset of that described in [Abramsky 93]. In this section, we describe our 
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extensions to describe execution of recursive plans of the forms described in Sections 

6.3.1 and 6.3.2. 

In the following bp, sp, c, d and e are canonical. 

Towers 

First, we will give a solution for the case of towers. The general form of a plan for 

recursion over towers is: 

At.twr..zec(t, bp, )x.Ay.Az.sp) 

where t is a tower, 

bp is the base case of the recursive plan, 

sp is the step case of the recursive plan taking the following parameters: 

x is the recursive plan, 

y is the top block, 

z is the rest of the tower. 

When we apply this rule to a specific tower in place of t, we know from the definition 

of the datatype that t is either empty or is of the form b' :: t'. Hence, in reducing the 

plan term, we have two different cases to deal with: 

If t evaluates to empty, then execute bp: 

tJJ.empty bpiJ.c 
twr..zec(t, bp, sp) .JJ.c 

Otherwise, evaluate the step case plan, sp. 

tc::d spotwrrec(t,bp,sp)ocodJJ.e 

tur.zec(t, bp, sp) JJ.e 

Note that the second (step case) rule must pass the entire recursive plan as an argument 

to the step case plan. 
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Natural numbers 

The selection of the appropriate rule for execution of natural number depends on the 

evaluation of t 

tJJ.zero bpc 
natrec(t, bp, sp) .JJ. c 

t JL. s(n) sp o nat.zec(n, bp, sp) o n JL c 

natrec(t, bp, SP) 4 c 

Trees 

For trees, the operational semantics rules must handle two instances of recursive call 

- one for each subtree. 

tJJempty bp -kc 
treerec(t, bp, sp) JJ. c 

t node (1, r, v) sp o tree.xec(l, bp, sp) o treerec(r, bp, sp) o 1 o r o v J,I. c 

tree.rec(t, bp, sp) 4 c 

6.3.5 Partial evaluation of recursive plans 

We must also define how plans are partially evaluated in the case of recursive plans. 

To do this, we define an extended partial evaluation relation ==. 

Towers 

twr.rec(empty, bp, sp) == bp 	 (6.3) 

twrrec(b :: t, bp, sp) == sp o twr.rec(t, bp, sp) o b o t 	(6.4) 

Natural numbers 

Similarly, for natural numbers, we can give the partial evaluation rules as: 

nat.rec(zero,bp,sp) == bp 	 (6.5) 

natrec(s(n), bp, sp) == sp o natzec(n, bp, sp) o n 	(6.6) 
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Trees 

In the case of binary trees, we must pass two instances of the recursive call one for 

each subtree. 

tree.rec(empty, bp, sp) == bp 
	

(6.7) 

tree-re c (node (1, r, v), bp, sp) == sp otree_rec(l,bp,sp) 
o tree...rec(r, bp, sp) 

olor o 
	

(6.8) 

Correctness of partial evaluation 

in Section 5.4 we claimed correctness of the partial evaluation relation —* w.r.t. the 

system ILL-P. For the extended logic ILL-PR and the extended relation =, used in 

rules (6.4 - 6.8), we require, but do not prove: 

Claim 3 = is correct (del. 2) w.r.t. the system ILL-PR. 

It follows that the relation ===>*(the reflexive transitive closure of ==) is also correct 

w.r.t. ILL-PR. 

6.3.6 The relationship between ==> and 

Here, we repeat the claim of Section 5.4.2 for the extended relation 	, that the result 

of executing the partially evaluated plan is the same as executing the original plan. 

Claim 4 

IfI- P:Vx.Z and P o t*P 

then F- P' : Z and Vr[(P o t .iL r) if (P' 4 r)]. 

IfI- P:A —oB and a:A and P oa ==*P! 

then I- P' : B and Vr.[(P o a JJ- r) if (P' JJ- r)j 

3.IfHP0Dl0 ... 0DnT  and  P0Dl0  ... 0 1)n *F2 

then E: T and Vr [(P o D1  a ... o Dn  4 r) if (E 4 r)]. 
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6.4 Examples 

6.4.1 Example using towers 

The following example shows a solution to the problem of inverting a tower of blocks. 

The specification of the problem itself requires the use of a recursively defined func-

tion. This cannot be be executed itself as a plan, but simply states properties of the 

specification language. 

As we shall see in the example below, our proof procedure requires both the application 

of deduction rules, contributing to the instantiation of a plan term, and the application 

of rewrite rules, to transform equivalent expressions into the same syntactic form. 

For this example, we wish to solve a problem of the form: 

F- plan : Vt. [twr(t) -o twr(rev(t))J 

which means that a tower t can reversed by execution of plan. rev is a reverse function, 

used in defining relationship between initial and goal states. 

The following will be used as plan operators. 

I- pick(b:: t): twr(b :: t) ® hn -o twr(t) ® hold(b) 
I- put (b, t) : 	twr(t) 0 hold(b) -o twr(b:: t) 0 hn 

where hn stands for "holding nothing". Since we are going to need to pass through 

intermediate steps in the plan where we have two separate towers, it is necessary 

to include a reference to a second tower throughout. The problem of finding this 

generalisation of the original specification is discussed in Section 3.5.6. The generalised 

plan specification is given below, and this is what we must prove in order to sythesise 

the plan: 

Vt, a.twr(t) 0 twr(a) 0 hn -o twr(empty) 0 twr(app(rev(t), a)) 0 hn 

The definitions of rev and app are given by: 

rev(empty) = empty 	 (6.9) 
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rev(b:: t) = app(rev(t), b:: empty) 	 (6.10) 

app(empty,u) = u 	 (6.11) 

app(b:: t,u) = b:: app(t,u) 	 (6.12) 

From this we can prove the associativity of app. 

app(app(a, b), c) = app(a, app(b, c)) 	 (6.13) 

Now we use the induction rule (for clarity, we will omit plan terms). 

(base) (step) 
tor_nd(t) 

F Vt.Va.twr(t) ® twr(a) ® hn —otwr(empty) ® twr(app(rev(t),a)) ® hn 

Base case: 

twr(empty) ® twr(ai) ® hn F twr(empty) ® twr(ai) 0 hn 
Ax  

rrevjrtr (ppl) 

twr(empty) ® twr(ai) ® hn F twr(empty) 0 twr(app(empty,ai)) ® hn 
rrewr.te(revl) 

twr(empty) ® twr(ai) ® hn F- twr(empty) 0 twr(app(rev(empty),ai)) 0 hn 

F twr(empty) ® twr(ai) ® hn—otwr(empty) 0 twr(app(rev(empty),ai)) 0 hn 

F Va.twr(empty) ® twr(a) ® hn —o twr(empty) ® twr(app(rev(empty), a)) 0 hn vv  

(base) 

Step case: 

In searching for such a proof, we allow meta-variables (A in this proof) so as to delay 

the choice of witness term t in the use of the rule 1V. 

The step case involves applications of the pick and put actions, and the application of 

the recursive call represented by the induction hypothesis. 
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(1) 	(2) 

twr(tj) ® twr(A) 0 hn 
twr(empty) 0 twr(app(rev(ti), A)) 0  hn, 

twr(ti), I- twr(empty) ® twr(app(rev(bi :: ti), a2)) 0 hn 
twr(bj 	02), 

hn 
I® 

twr(ti) 0 twr(A) 0 hn —o 

twr(empty) 0 twr(app(rev(ti), A)) 0 hn, 
F twr(empty) 0 twr(app(rev(bi ti), 02)) 0 hn 

twr(ti), 
twr(bi :: a2) 0 hn 

twr(tj) 0 twr(A)  0  hn —o 

twr(empty) 0 twr(app(rev(ti), A)) 0  hn, 
twr(a2), F twr(empty) 0 twr(app(rev(bj :: ti), a2)) 0 hn 
twr(ti), 
hold(bi) 

twr(ti) ® twr(A) 0  hn 
twr(empty) 0 twr(app(rev(ti),A)) 0 hn, 

F twr(empty) 0 twr(app(rev(bi :: ti), a2)) 0 hn 
twr(a2), 

twr(ti) 0 hold(bi) 
lcut(pick) 

twr(ti) 0 twr(A) 0 hn 
twr(empty) 0 twr(app(rev (ti), A)) 0 hn, 

twr(bi :: ti), 	 F twr(empty)Otwr(app(rev(bi :: ti),a2))Ohn 
twr(a2), 

hn 

twr(ti) 0 twr(A)  0  hn —o 

twr(empty)0 twr(app(rev(ti),A))® hn, F twr(empty)0 twr(app(rev(bi :: tj),a2))Ohn 
twr(bi ti) 0 twr(a2) 0 hn 

	

twr(ti) 0 twr(A)  0  hn —o 	
F 	

twr(bj :: ti) 0 twr(a2) 0 hn—o 
twr(empty) 0 twr(app(rev(ti), A)) 0 hn 	twr(empty) 0 twr(app(rev(bi :: ti), a2)) 0 hn 

rV,IV 

I 	twr(ti) 0 twr(a) 0 hn —° 	1 F- 	
twr(bi ii) 0 twr(a) 0 hn 

0. twr(empty) 0 twr(app(rev(ti),a)) 0 hn j 	a. twr(empty) 0 twr(app(rev(bj ti),a)) 0 hn 

(step) 

The subproof (1) deals with satisfying the preconditions of the recursive call. In doing 

so, the meta-variable A is instantiated to b1  :: a2 . 

twr(A) F- twr(bi :: 	
Ax,Arrb1::o2 

a2) 	 hn F- hn 
Ax 

	

twr(ti) I- twr(ti) 
Ax 	

twr(A), hn I- twr(bi :: a2) 0 hn 
r® 

	,. 

twr(ti), twr(A), hn F- twr(ti) 0 twr(bi a2) ® hn 

(1) 

The subproof (2) takes us from the postconditions of the recursive call to the post-

conditions of the step case. In this case, this part involves no applications of actions, 

which results in a tail-recursive plan. In this case, this was not achieved by forcing 

such a restriction, as described in Section 6.3.3, though that approach could have been 

used if it was specifically required that the plan must be tail recursive. 
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Ax 

twr(empty) ® twr(app(rev(ti), b1 :: a2)) ® hn 
I- 

twr(empty) ® twr(app(rev(ti), b 1  a2)) ® hn 
rrewrite(appl) 

twr(empty) ® twr(app(rev(ti), b1 :: a2)) ® hn 
I- 

twr(empty) 0 twr(app(rev (ti), b1 :: app(empty, a2))) 0 hn 
- 	

- 	 rrewrite(app2) 
twr(empty) 0 twr(app(rev(ti), b1 :: a2)) 0 hn 

I- 
twr(empty) 0 twr(app(rev (t1), app(b :: empty, a2))) ® hn 

rrewrite(appas8oc) 
twr(empty) 0 twr(app(rev(ti), b1 a2)) 0 hn 

I- 
twr(empty) 0 twr(app(app(rev(ti), b1 :: empty), a2)) 0 hn 

rrcwrite(rev2) 
twr(empty) 0 twr(app(rev (ti), b1 a2)) 0 hn 

I- 
twr(empty) 0 twr(app(rev(bi ti), a2)) 0 hn 

(2) 

The plan can now be given as (after application of some simplification rules): 

At-2. 
twr_rec (t_2, 

Aa_2.Xh3. 
let h3 be h6*h7 in 

let hi be hlO*hll in h6*hlO*hll, 

Ahi .Ab_1 .At_1 .Aa_8.Ah60. 
let h60 be h63*h64 in 

let h64 be h67*h68 in 
let pickoh63oh68 be h75*h76 in 

let put oh67oh76 be h92*h93 in 
let hlob_1.::a_8oh75*h92*h93 be h97*h98 in 

let h98 be h101*h102 in h97*hl0l*h102) 

Plans like this one can be produced automatically by the Lino system (Chapter 8). 

6.4.2 Example partial evaluation 

Now we can show how this general plan can be partially evaluated to create a specific 

plan for a given initial state. In this example, the bi: :b2: :b3: :empty represents a 

three-block tower, and p*q*r represent the labels of a conjunction of literals in the 

initial state. 

Planobi: :b2: :b3: :emptyoemptyop*q*r 
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When evaluated with the data available, the plan reduces to a form that can be exe-

cuted a simple sequence of actions: 

let pickopor be h107*h108 in 
let putoqoh108 be h109*h110 in 

let pickohlO7ohllO be h123*h124 in 
let putoh109oh124 be h125*h126 in 

let pickoh123ohl26 be h139*h140 in 
h139*put o h125 o h140 

6.4.3 Example with sets represented as lists 

It is useful in describing many planning problems to handle finite sets. Unfortunately 

the axioms stating that order and duplication in sets are irrelevant cause some trouble. 

With in as the set constructor, these axioms can be stated for elements d and e in a 

set s as follows: 

in(d, (in(d, s))) = in(d, s) 

in(d, in(e, s)) = in(e, in(d, s)) 

To properly handle finite sets, it would be necessary to show that proofs are valid 

with respect to these axioms. Here we will do without these axioms and only simulate 

sets by the use of lists. This simply means that we impose an arbitrary order on the 

elements. 

The following example makes use of lists of towers, which are themselves lists of blocks. 

The problem is to dismantle a tower to form a list of towers, each containing only a 

single block. To define this example, we define a a function flatten, which is used to 

the state the relation between the tower initially present, and its final state as a list of 

towers of blocks. 

flatten can be defined as: 

flatten(h :: t) = (h :: empty) :: flatten(t) 	 (6.14) 

flatten(empty) = nil 	 (6.15) 

The problem specification is: 

Vt. [twr(t) ® lst(nil) —o twr(empty) ® lst(flatten(t))] 
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The following actions will be used: 

I— lop(h) : 	 twr(h:: t) -o twr(t) ® twr(h:: empty) 
H gather(t, 1): twr(t) 0 lst(l) -o lst(t :: 1) 

Where lop is an action which creates a new tower from a block removed from the top 

of t. gather adds a tower into a list of towers. 

We need to be able to create and to destroy empty towers. There are several ways that 

we could go about doing this. 

The approach we will take here is to add the necessary twr(empty) resources to the 

specification. 

Base case: 	
A 

twr(empty) ® lst(nil) F twr(empty) ® lst(nil) 

	

I- twr(empty) 0 lst(nil) -o twr(empty) 0 lst(nil) 	
6.15 

F twr(empty) 0 lst(nil) -o twr(empty) 0 lst(flatten(empty)) 

Step case: 

twr(empty) 0 lst(flatten(h t)) F twr(empty) 0 lst(flatten(h :: t)) 
Az 

6.14 

twr(empty) 0 lst((h :: empty) :: flatten(t)) F twr(empty) 0 lst(flatten(h :: t)) 
ict(gather) 

twr(empty) 0 lst(flatten(t)), twr(h :: empty) F twr(empty) 0 lst(flatten(h:: t)) 
l-0 

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)), F twr(empty) 0 lst(flatten(h :: t)) 
I® 

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)), 
F twr(empty) 0 18t(flatten(h t)) 

twr(t) ®twr(h empty), lst(nil) 
ic,t(lop) 

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)), I- twr(empty) 0 lst(flatten(h :: t)) 
twr(h t), lst(nil) 

I® 

twr(t) 0 lst(nil) —o twr(empty) 0 lst(flatten(t)), 
F twr(empty) ® lst(flatten(h :: t)) 

twr(h :: t) 0 lst(nil) 
r -ø 

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)) 
F 

twr(h t) 0 lst(nil) -o twr(empty) 0 lst(flatten(h :: t)) 

The recursive plan extracted is: 

At-2. 
twr_rec (t_2, 

.Xh2 . h2, 
Ah1.Ab_1.At_1.)h3. 

let h3 be h4*h5 in 
let lop oh4 be h7*h8 in 
let hloh7*h5 be hlO*hll in hlO* (gather oh8*hll)) 
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6.4.4 Example using trees 

In this section we give an example of induction on a binary tree datastructure. Suppose 

we have available actions goright and goleft to progress down either branch of the 

tree, and a test which allows us to expand the recursive definition of intree determine 

which branch to proceed down. 

I- goleft : 	 tree(node(l, r, v)) 
I- goright: 	tree(node(1, r, v)) 
I- testtreel: 	intree(b, empty) 
I- testtree2: intree(b, node (l,r,v)) 

—0 tree(l) 
—o tree(r) 
—00 

—o (b = v) intree(b, 1) ED intree(b, r) 

The testtreel axiom specifies that intree(b, empty) can never occur. If a matching 

term appears in a proof, the rule allows 0 to be derived, which signals an absurd state 

from which anything can be derived (see Section 5.2.6). 

We can then create a proof and extract a plan which navigates the tree. The assumption 

that we can resolve the is effectively an assumption that when the plan is executed, 

we we will always know which subtree to follow at each step. 

We attempt to the prove the goal: 

Vt.Va.tree(t) ® intree(a, t) o(x.y. tree (node (x, y, a))) 0 T 

First we apply the tree induction rule on t. 
(base) (step) 

tree_*nd(t) 

I- Vt.Va.tree(t) ® zntree(a,t) —o(3x.ay.tree (node (x,y,a))) ® T 

Base case 

We deal with the base case showing that it assumes an absurdity - i.e. that a is in 

the empty tree. We can use the action testtreel to introduce the 0, which allows us 

to prove anything. From the point of view of the proof, this corresponds to showing 

that the situation will not occur. The corresponding plan term fails to execute. 

tree(empty), 0 F- (z.y.tree(node(x, y, al))) ® T 
10  

lcut(teatt,eel) 

tree(empty),intree(ai, empty) F- (3x.3y.tree(node(x,y,ai))) 0 T 

tree(empty) 0 intree(ai, empty) I- (3x.2y.tree (node (x, y, ai))) ® T 

F- tree(empty) 0 intree(a i ,empty) —o(2x.Ry.tree (node (x, y, ai ))) 0 T 

I- Va.tree(empty) 0 intree(a, empty) —o(3x.3y.tree(node(z, y, a)))(& T 

(base) 
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Step case 

The proof for the step case proceeds by expanding the definition of intree and doing 

a case split into three possibilities: (1) the current node has value a, (2) the value a is 

in the left subtree, or (3) the value is in the right subtree. 

(2) (3) 

(1) H1, H2, tree(node(li, Ti, Vi)), intree(ai,li) intree(a, Ti) F (2x.3y.tree(node(z,y,a2))) ® T 

(a2 =vi) 
E) 

H1,H2,tree(node(li,ri,vi)), 	intree(a2,11) 	F (x.y.tree(node(x,y,a2)))® T 
E) 

intree(a2, ri) 
lcut(teattee2) 

H1, H2, tree(node(li, ri, vi)), zntree(a2, node(li, Ti, Vi)) F (x.3y.tree(node(x,y, a2))) ® T 

Hi,H2, tree (node(li,ri,vi)) ®intree(a2, node (1i,rl,vi)) F (x.y.tree (node (x,y,a2)))®T 

H1, H2 F tree(node(li,ri,vi)) ®intree(a2,node(1i,rl,vi))—o(3x.3y.tree(node(x,y,a2)))0T 

H1, H2 F- Va.tree(node(li, ri,vi)) ® intree(a, node(li, ri,vi)) —o(3x.3y.tree(node(x, y, a))) ® T 

(step) 

Where H1  and H2 are the two induction hypotheses: 

H1  Va.tree(l i ) ® intree(a, Ii) —(x.y.tree(node(x, y, a))) ® T 
H2 Va.tree(ri ) ® intree(a, ri ) —o(x.2y. tree (node (x, y, a))) ® T 

In case (1) the equality allows us to make a substitution and we need only show that 

the value has been found. The presence of T allows us to dispose of the unwanted 

hypotheses. 

tree(node(li,ri,vi)) F tree(node(li,ri,vi)) 

tree(node(li, rj,Vi)) F- 3y.tree(node(li, y, Vi)) 

tree(node(li, Ti, Vi)) F ax.y.tree(node(x,y, vi)) 
	

Hi,H2FT 
 rT 

H1, H2, tree(node(li, Ti, Vi)) F (3x. 3y.tree (node (x, y, Vi))) ® T 	
aubatitute 

H1, H2, tree(node(li, Ti, Vi)), a2 = Vj F (x.y.tree(node(x, y, a2))) ® T 

(1) 

In case (2), we have assumed that the value lies in the left subtree, so we can apply an 

action goleft to move down the left subtree. We can then use the I —o rule to apply 

one of the induction hypotheses (i.e. make the recursive call) to reach the goal. Proof 

of (3) is omitted, since it is similar to (2), using the right subtree instead of the left. 



tree(lj) F 	
Ax 

tree(li) 	intree(a2,11) I- intree(a,11) 
Ax 

intree(a2,11),tree(li) I- tree(h) ® intree(a2,11)  

x.y.tree (node (x,y,az)) F 2z.2y.tree(node(x,y,a2)) 
Ax 

H2,T FT 

H2, 3x.2y.tree(node(x, y, a2)), T F (3x.3y.tree(node(x, y, a2))) 0 T 

F (2x.3y.tree(node(x, y, a2))) 0 T 

H2,(x.y.tree(node(x,y,a2))) ® T F (3x.y.tree(node(x,y,a2))) ® T 
I-0 

tree(li) ® intree(a2, Ii) —o(x.3y.tree(node(x, y, a2))) ® T, 
H2, 

intree(a2, Li), 
tree(li) 

'v'a.tree(li) 0 intree(a,li) —o(Bx.y.tree(node(x,y,a))) 0 T, 
H2, 	

F (x.y.tree(node(x,y,a 2 )))0T 
intree(a2, li ), 

tree(li) 

Va.tree(L i ) ® intree(a,1i )—o(2x.y.tree(node(z,y,a))) 0 T, 
112, 

tree(node(li,rj, vi)), 	
F (3x.Jy.tree(node(x,y,a2))) 0 T 

intree(a2, Li) 

(2) 

IV 

cut(goift) 

OM 

0 

I 
Ci 

00 
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The plan 

From the proof we can extract the plan: 

At. 
tree_rec (t_2, 

Aa_1.Ah3. 
let h3 be h4*h5 in abort(apply(testtreel,h5)), 

Ah1.Ah2.Al_1 .Ar_1.Aa_2.Ah7. 
let h7 be h8*h9 in 

case testtree2oh9 of 
inl(hll) then h8*erase 
inr(h12) then 

case h12 of 
inl(h13) then 

let hi oa_2oapply(goleft,h8)*h13 
be h18*h19 
in h18*erase 

inr(h14) then 
let h2 o a_2 o apply (goright,h8)*h14 
be h23*h24 
in h23*erase) 

6.4.5 Example: Nim 

Here we consider the game of Nim. This is a two-player game for which a winning 

strategy exists for one of the players. We show that a proof can be built of the winning 

strategy in the linear logic framework. The example involves the use of recursion and 

of actions with uncertain effects. 

The rules 

There are various forms of the game of Nim. Here we consider a simple version. At 

the start of the game there is a row of 21 counters. Players take turns to remove 1, 2 

or 3 counters from the row. The aim of the game is to avoid taking the last counter. 

The winning strategy 

Either player can find themselves in one of only 21 possible states. It is fairly easy to 

categorise the states into winning and losing positions. 
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We can see our goal state as leaving the opponent with only a single counter. Reasoning 

backwards from the goal state, it is clear that this state is accessible if there are 2, 3 or 

4 counters remaining at our turn. Furthermore, we can guarantee to reach this state 

if the opponent was left with 5 counters at the previous turn. 

Similarly, every fourth position from 1 is also a losing position. In the 21-counters 

version of the game, the player to take the first move will always be the loser if the 

opponent plays perfectly. The winning and losing positions for 21 down to 0 counters 

are shown below. 

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

L W W W L W W W L W W W L W W W L W W W L W 

Solution to a fixed-size problem 

For the problem with fixed size, the solution branches on the possible choices of move 

from the opponent. At our turn, we always play so as to leave the opponent in state 

where the number of remaining counters is 4n + 1, for some n. So after branching on 

the opponent's move, our move brings us back to the same state in each branch. Hence 

the proof tree contains repeated subtrees (below nodes 7, 20 and 32). 

In the 9-counter problem below, we attempt to prove: 

I- them 0 s(s(s(s(s(s(s(s(s(zero))))))))) -o them 0 s(zero) 

Fig. 6.1 gives the structure of a proof of the above specification. 
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Figure 6.1: Proof tree for 9-counter Nim game. 

This leads to a long plan which branches on every possible move by the opponent. 

Inductive solution 

Here we consider the solution for a more general problem. The winning strategy only 

works for problems with 4n + 1 counters, for any n. We can write this goal in linear 

logic as: 

I- Vn.t hem ® s(mult(n, s(s(s(s(zero)))))) -o them ® s(zero) 

In order to solve this problem, our prover needs to know about multiplication and 
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addition. These appear as the rewrite rules for mult and plus. 

Figure 6.2: Proof tree for Nim game with 4n + 1 counters. 
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This gives the following plan: 

An-2. 
nat_rec (n_2, 
AM. 

let h3 be h6*h7 in h6*h7, 
Xh1.An_1.Ah57. 

let h57 be h60*h61 in 
let theytakeoh60oh6l be h66*h67 in 

case h67 of 
inl(h70) then 
let vetake3oh66oh7O be h97*h98 in 

let hloh97*h98 be h102*h103 in h102*h103 

inr(h71) then 
case h71 of 

inl(h106) then 
let wetake2oh66oh106 be h118*h119 in 

let h1oh118*h119 be h123*h124 in h123*h124 

inr(h107) then 
let wetakeloh66ohlO7 be h129*h130 in 

let h1oh129*h130 be h134*h135 in h134*h135) 

Note that this plan is much shorter than that generated specifically for the 9-counter 

game. It is also more general, as it applies to games for any choice of n. If we applied 

the partial evaluation rules to the recursive plan with the value n = s(s(0)), we would 

generate the same plan as for the 9-counter case. 

6.5 Summary 

This chapter has shown how inductive proofs can be used to synthesise recursive plans. 

We looked at the inductive datatypes of towers, natural numbers and binary trees and 

gave induction rules for each of these, defining also the formation of plan terms. 

We have also defined how to partially evaluate and execute these recursive plans. 

We have given various example planning problems specified using inductive datatypes, 

and shown solution as proofs and corresponding extracted plans. 

Our examples have also demonstrated how to use function symbols in specifying plan-

ning problems and how to avoid giving a complete specification of a goal state. 



Chapter 7 

Automated Proof Search 

7.1 Introduction 

So far, we have considered the formalism for representing planning problems and their 

solutions (proofs). We have not said anything about how to find such proofs automat-

ically. Here we consider previous approaches to proof search in linear logic. We then 

consider the issue of forward versus backward chaining when constructing proofs in 

ILL to solve planning problems, and find that forward chaining has advantages. 

We then present a forward-chaining strategy which is complete for the fragment in-

volving only the connectives -a, ® and ED. However, this fragment does not include all 

the connectives that we need in order to handle all the planning problems which we 

want to be able to handle. 

We then present a strategy which allows a carefully defined larger fragment of the logic 

to be used, but which is not complete. 

Finally, the strategy for the application of rewrite rules in proof search is considered. 

7.2 Search in linear logic 

In this section we consider three approaches to proof search in linear logic - Jacopin's 

CSLL algorithm, connection-based approaches, and linear logic programming. 

These approaches differ strongly in the following ways: 

84 
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The fragment of linear logic tackled, e.g. multiplicatives, additives, exponentials, 

quantifiers. 

The approach to context splitting and redundancy in proofs caused by per-

mutability of rules. 

. Whether emphasis is on representation of proof or automation of search. 

. Applicability to planning problems. 

7.2.1 Jacopin's CSLL algorithm 

Jacopin's approach is a search algorithm to realise Masseron's proof system for con-

structing proofs of plans (called formal actions by Masseron) in linear logic. 

Jacopin restricts proof search to use only the decidable fragment involving the rules, 

ax, l®, r® and cut. The application of cut is restricted its use in applications of the 

transition axioms on the left side. The left side of the transition axioms (i.e. the action 

preconditions) is matched within the left side of open sequent in the proof (i.e. the 

current state). This effectively makes the search equivalent to a total-order planner 

using forward state-space search. 

Plan extraction then uses a method which is based on Masseron's geometric approach. 

The full algorithm from [Jacopin 93] is given below. The algorithm uses the following 

arguments: 

. Axioms - set of axioms describing available transitions. 

. E2 , E1 - Antecedent and Succedent of sequent, describing initial and final states. 

. P - Proof constructed by CSLL. 

E denotes multiset inclusion. 

U denotes multiset union. 

(A, C) denotes a sequent A F- C 
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CSLL(Axioms,E2 ,E1 ,P) 
If Ej  H E1 is the identity Then 

return P 
Else 

Choose (A as , Gas) from Axioms such that A as  Ei 
If (Ei  = A as) A (Ej = Gas) Then 

return P 
Else 

(A,,,, C.,,) = (r, B) 
(E,E1) = (IF uF',C) 

I Fl-B F',BF-C 
F,F'HC 	

cut  

(A 1 , C1) - (F' U {B}) 
While (A1, C1) = (VU {B' 0 B"}, C) Do 

F',B',B"I-C 

PPu r',B'®B"HC1® I 
(A 1 , C1) +— (F'U{B',B"},C) 

End While 

C2) +- (Ai, C1) 
While (A2, C2) = (CU &C'®C") Do 

Choose non-deterministically: 
I C'l- C' iHC" rO l.Ppul 

CI , HC'®C" 

(A2, C2) - (z,C") 
2. Exit While 

End While 

C3) - (A2, C2) 
CSLL(Axioms,A3,C3,P) 

End If 
End If 

The algorithm applies rules with the following priority: 

Identity axiom, Ax. 

Exact match with a transition axiom. 

Cut of a transition axiom (forward application of action), 

and do the following to the resulting sequent: 

• Exhaustively apply I®. 

• Nondeterministically choose whether to apply rO. 

Recursively call CSLL on resulting sequent. 
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Non-deterministic application of r® rule often causes redundant search. This problem 

has been addressed in our work by deferring application of rø until late in the proof, 

and adopting a lazy context splitting mechanism. 

Jacopin's conclusions on linear logic are mainly pessimistic. One reason for this could 

be because the fragment used is very restrictive, yet the search algorithm has an 

unnecessary choice point into the search at the point of context splitting. Hence there 

is no advantage over a conventional planner in expressiveness or performance. In 

Jacopin's formulation it is necessary to fully specify the goal state of planning problems. 

However, we have already seen that the T operator this problem. 

7.2.2 Connection-based methods 

In this section we do not discuss a specific algorithm, but a family of algorithms which 

are based on a similar representation. Connection-based proof search has been used in 

planning problems since it was introduced by Bibel [Bibel 86]. This approach was not 

designed as a linear logic theorem proving method (it predates linear logic) but derived 

from a FOPC prover by engineering resource sensitivity into the representation used 

in proof search. 

We take a brief look at Bibel's representation, and consider subsequent work that has 

used similar representations for linear logic theorem provers. The main advantage is 

the elimination of redundancies in the proof search space caused by permutabilities 

of sequent deduction rules. The method is based on making connections between 

positive and negative instances of formulae in the proof. In the planning problem, 

these correspond to effects and to preconditions and goals. The resource-sensitivity is 

enforced by imposing the restriction that each formula is connected at most once. 

Bibel's LCM 

We give a brief sketch example from Bibel's original paper on the Linear Connection 

Method (LCM) [Bibel 86]. Note that Bibel does not formalise a resource sensitive logic, 

but only adds a resource-sensitivity into an existing representation used in constructing 

proofs [Bibel 83]. Note also that Bibel's claim was that making a minor change to an 
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existing proof method (i.e. adding resource-sensitivity) allowed planning problems to 

be solved without changing the logic or adding frame axioms. 

Initial situation: 

ontable(a) A on(b, a) A dear(b) A handempty 

Coal situation: 

ontable(a) A dear(a) A hold(b) 

Description of action pick: 

antecedent: clear(x) A on(x, y) A handempty 

consequent: hold(x) A clear(y) 

We adhere to Bibel's notation as follows: 

T for ontable 
0 for on 
C for clear 
E for handempty 
H hold 

The problem is written in the logic as follows: 

TaAObaACbAEAVXy(CXAOXyAE—*HXA Cy) +TaACaAHb 

It is then converted into AND/OR form: 

-'Ta V Oba V -'Gb V -iE V xy(Cx A Oxy A E A (-'Hx V -iCy)) V Ta A Ca A Hb 

Universal variables are skolemised and existential variables are replaced by free van-

ables. 

-iTa V -'Oba V -iCb V -iE V (Cx A Oxy A E A (-'Hz V -'Cy)) V Ta A Ca A Hb 

The problem is laid out as a matrix with the disjunctions laid out horizontally and the 

conjunctions laid out vertically. 
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Cx 	 Ta 

Oxy 	 Ca 

E 	 Hb 

-'Ta 	-'Oba 	-'Gb 	-'E 	 -'Fix 	-'Cy 

The proof is then constructed making connections between matching facts and goals. 

Cx 	 Ta 

-'Ta 	-'Obi 

Completing the proof involves finding appropriate connections in the matrix, and also 

determining appropriate substitutions. The linearity restriction requires that each 

literal may be connected with at most one other literal. 

The original paper does not give an algorithm, but Bibel used an adaptation of a proof 

search without the linearity assumption. Later publications refer to a goal-driven linear 

backward-chaining (LBC) algorithm, and to LIP algorithm [Fronhöfer 97], which is 

a close relative of partial-order causal link planning. 

Connection proofs and linear logic 

The resource-sensitive nature of Bibel's method makes it sensible to relate it to linear 

logic. The equivalence to linear logic, at least for simple conjunctive problems has 

been shown by [Grol3e et al 96]. This relates both approaches (and also another one 

based on equational resolution) to a common semantics. It is worth noting that since 

sequents are not handled directly, the context-splitting issue does not arise. 

[Kreitz et at 961 presents a connection-based prover for multiplicative and exponential 

fragment of classical linear logic. This is based on the linear connection idea, and on 
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connection-matrix formulations for other logics [Wallen 90]. This formulation removes 

certain redundancies from the proof search space. There is also a strong relationship to 

Girard's notion of representing linear logic proofs as proof nets [Girard 95]. Proof nets 

behave very well for the multiplicative fragment, but need awkward extensions to deal 

with exponentials and additives. Even simple conjunctive planning problems cannot 

be handled by (multiplicative) proof nets, as we would need to know in advance how 

many times each action transition would be used. 

[Bruning et al 93] presents an adaptation of a connection method which effectively 

adds handling for additive disjunction. 

[Fronhöfer 97] provides a survey of research descendents of the linear connection 

method. 

7.2.3 Linear logic programming 

In logic programming, proof search itself is seen as a form of computation. Hence, logic 

programming languages perform systematic proof search, and that is why they are of 

interest to us. 

Several formulations of Prolog-like languages for linear logic have been devised. Two 

which have given rise to practical implementations are Lolli [Hodas & Miller 94] and 

Lygon [Harland et al 96]. Here, we shall give an account of the principles behind Lolli, 

which is a summary of [Hodas & Miller 94]. 

Logic programming can be characterised as a declarative proof system that can be 

given an executable semantics in the style of [Miller et al 91]. 

Hodas and Miller also require that proofs should be goal directed, which is given a 

formal definition using the notion of uniform proofs. In a uniform proof, the right-

introduction rules are applied to break down goals to atomic formulas before any 

left-introduction rules are applied. Since, in this setting, the left side of the sequent 

represents program and data, this means that goals are processed uniformly and inde-

pendently from the program. 
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Lolli 

The logic behind Lolli is derived by the following steps: 

Define a fragment of intuitionistic linear logic for which uniform proofs are pos-

sible (L). 

Replace all the left-introduction rules with a single backchaining rule, giving C. 

Extend the fragment by allowing missing connectives to appear in goals only 

(C'). 

Additionally, Hodas and Miller describe an approach to resource management which 

lazily handles the choice of how to split the context when applying rules such as r®. 

Proof system £ 

In this section, we will consider a fragment of intuitionistic linear logic using only 

T, &, ®, !, -o, and V. In fact, even ® and ! cause some difficulties, because uniform 

proofs involving these connectives may not be possible. For example a 0 b F- b 0 a 

and !a I-!a®!a have proofs, but not uniform proofs, since both require a left rule to be 

applied before a right rule. We will ignore! and 0 rules for the time being, though 

is handled in a limited way by the form of sequents that we use. 

Consider sequents of the form: F; A I- B where B is a formula, F is set of formulas 

and A is a multiset of formulas. Such sequents have their context divided into an 

unbounded part F (a set) and a bounded part A, which is a multiset corresponding to 

left-hand side of sequents of the purely linear fragment. 

The sequent 

B 1 , ..., B; C1, ..., Cm H B 

is equivalent to the linear logic sequent 

!Bi,...,!B n ,Ci,...,Cm F-B 

It is now natural to make a second modification to linear logic by introducing a second 



CHAPTER 7. AUTOMATED PROOF SEARCH 
	

92 

kind of implication. We will use intuitionistic implication B 	C, which is directly 

equivalent to !B -o C. 

The system £, with these restrictions, is defined by the following proof rules: 

F,B;,B H C 
F,B;i FC absorb 

identity 	 rT 
F;AI- A 	 H F;LT 

r; A, Bi I- C 
F;z,B1&B2I-C 

F;z 1 HB F;z 2 ,CHE 1  
IF; Al, 2 ,B—oCHE 

F;iHB F;LHC 
IF; HB&C 

IF; z,B I- C 
r r; A I- B—CC 

r;OHB F;i,CHE 	 F,B;A+C 
F;i,B=CHE l 	 F;HB=C 

F; L, B[t/x] H C 	 F; A I- B[y/x] 

F; L, VxB I- C IV 	 F; Z I- VxB rV 
Provided that y is not free in the lower sequent. 

The proof system C 

The various left-introduction rules can now be combined into a single backchaining 

rule. This is done by decomposing a linear formula B to define a set JIBIJ of triples 

(I', i, B') as follows: 

(ø,ø,B) E IIBiI, 

if (F,i.,B 1 &B2) E IIBII then both (I',i.,B 1 ) E IIBII and (F,i.,B2) E IIBI 

if (F.z,Vx,B') E IIBiI, then for all closed terms t, (F,,B'[t/x]) E IIBII, 

if (F, i, B1  = B2 ) E IIBII then (F U {B}, L, B2) E IIBII and 
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5. if (F, z, B 1  -o B2) E JIBIJ then (F, 1.w{B 1 }, B 2 ) E JIBIJ, where W denotes multiset 

union. 

This is now used to define the backchaining rule: 

F;OI-B1  ... F;OHB 	FAiF-Ci...F;L m HCm 
BC 

F;1i,...,L m ,BHA 

provided n, m > 0, A is atomic, and ({B 1 ,. .. , Bn }, {C1,. . . , Cm}, A) E IIB1I 

Hodas and Miller call this proof system C. 

The proof system C' 

The connectives ® and ! were omitted because of their bad behaviour when appearing 

on the left of the sequent. However, we have the possibility of allowing some connectives 

to appear in goals only. Hodas and Miller define C' using R-formulas (resource formu-

las), which can appear on either side of the sequent, and G-formulas (goal formulas), 

which can only appear only on the right of sequents. 

R:= T I Al R 1 &R2 I G—oRI G=RIVxR 

G:=TIAIG1&G2IR_0GIRGIVxGIGlG2I1IG1®G 2 l!GlXG 

Now we can introduce rules for the missing forms 1, , ®,!, and 3. 

F;ØH1 rl 

F;OH B 
F;OH!B 

r; A HB 2  
r(i = 1,2) 

I- 13i  ED B2 

r; A I-B[x/t] 
F;AI-x.B 

F;Z 1 HBi F;L 2 HB2 
r® 

I- B 1  0 B2 
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Resource management 

An extra problem that the proof system for linear logic faces is that some of the proof 

rules, e.g. for ® require that the bounded context should be split in a non-deterministic 

way. The r® rule is one example. 

IF; z 1 HG 1  F;z 2 HG2  
r; A I-G 1  ®G2 

When applying this rule in a bottom-up way, we need to decide how to partition L 

into A, and z2. If L has cardinality n then there are 2" possible partitions of A. 

Fortunately, it is possible to perform this context splitting lazily. We first attempt 

a proof of Gi with all of the resources in L available. Then we can determine that 

zi comprises those resources actually used, and the remainder constitute Using 

this basic idea, Hodas and Miller formalise the notion by defining a 3-place relation 

of the form I{G}O, meaning that goal G can be proved from resources in I, with the 

resources 0 remaining. Using this representation it is possible to define the behaviour 

of the connectives using the following form: 

I{G i }M M{G2}0 
I{Gi ® G2}0 

Lolli for planning 

Since the use of the ® connective in resource formulas is forbidden in this language, we 

cannot model a planning action with multiple effects by a clause with a conjunction 

in its head. For this reason, planning problems cannot be directly presented to the 

Lolli interpreter. It is, however, possible to represent and solve planning problems 

by defining a very simple meta-interpreter, which uses forward reasoning instead of 

backward reasoning. 

We give a minimal Lolli planner below, in which the clause succeeds Plan Goal is 

satisfied if Plan can be instantiated to a list of actions satisfying Goal. The operator 

-o represents linear implication, and attempting a goal of the form The goal erase 

stands for the constant T, which is allowed to consume any resources left over after 

proving Goal. 
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succeeds nil Goal :-
Goal, 
erase. 

succeeds (Step :: Plan) Goal:-
operator Step Pre Eff, 
Pre, 
Eff -o succeeds Plan Goal. 

This program can be run to form a plan to get from Initial to Goal using the following 

query: 

Initial -o succeeds Plan Goal. 

With the in-built depth-first search strategy of Lolli, this program tends to loop, but 

by extending slightly to include a depth bound so we can do iterative-deepening search, 

we get a working but inefficient planner. 

7.2.4 Summary 

Jacopin's CSLL is a search algorithm for a very limited fragment of linear logic, suf-

ficient to solve conjunctive planning problems using a forward-chaining strategy,  

The is no attempt to deal efficiently with non-determinism caused by context-

splitting. 

Connection-based methods are a family of methods in which redundancies in the 

proof search space (including context-splitting) are removed by considering di-

rect relationships between facts and goals in the proof. So far, these methods 

have been extended to the fragment of linear logic including multiplicatives and 

exponentials, and to multiplicatives and additive disjunction. 

linear logic programming in Lolli tackles proof search in a large fragment of linear 

logic, restricted in such a way that proofs are uniform. The fragment is made as 

large as possible by allowing some connectives to be used in goals only. A lazy 

context splitting mechanism deals efficiently with context splits. 
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7.3 Forward chaining versus backward chaining in ILL 
proof search 

Before describing our own strategies for proof search in ILL, we consider the issue of 

forward versus backward chaining when constructing proofs to solve planning problems. 

Proofs may be constructed in the direction forwards from the initial state or backwards 

from the goal. We show that backwards search is problematic if T is used to avoid 

completely describing the goal state. 

In this section, we use Pre I- Eff representation for actions, which are applied by the 

cut rule. 

7.3.1 Forward chaining without T 

For a proof in which actions are applied forwards, action preconditions are matched 

against current state. This is achieved by applying the cut rule so as to cut in action 

instances on the left. This form of cut application we call fcut. We then get proofs 

which have the following general shape: 

Action2 	F- G 
fcut 

Action 1  ... I- G 
feut 

Note that the goal is preserved in righthand sequents. 

7.3.2 Forward chaining with T 

If we wish to avoid fully specifying the goal, T may be used as a conjunct in the goal 

G. Application of the rT rule (Section 5.2.6) accounts for the disposal of any unused 

resources. The rT rule does not need be applied until after all the actions have been 

applied and goal conditions have been met. 
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_ . rT 

rm 

Action 2  
fcut 

L- 	,O 

Action 1 	... I- G'®T 
fClLt 

7.3.3 Backward chaining without I 

Backward chaining involves checking the goal to see if it contains effects of a possible 

action. We can define a backward chaining (bcut) rule below, which is a specialisation 

of the standard cut rule. Here we assume matching on goal terms has built-in handling 

of associativity and commutativity of ®. 

FI- Pre®Z PreI- Eff 
bcut 

FE-Eff®Z 

Note that we use a meta-variable Z to represent the part of the goal formula not 

achieved by the current action. The backward-chaining proof has the following shape: 

Action1 
bcut 

IF-... 

I H... 	Action2 
bcut 

IF-... 

Note that the initial state is preserved on each application of bcut. If T does not 

appear in the goal, the meta-variable in bcut is always immediately instantiated. 

7.3.4 Backward chaining with T 

If we apply the rT rule to dispose of resources after the last action is applied, this 

corresponds to applying the rT near the root sequent of the proof. We must apply 

the rT rule before we know what resources it is to dispose of. In combination with 
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the bcut rule, this means we must allow an uninstantiated meta-variable into the goal. 

This is a problem, because the meta-variable allows the effects of any action to match 

the goal. Consider the following example: 

Suppose we have a domain with resources a and b which are mutually exclusive. We 

encode this by including a single instance of resource a or b in the initial state, and 

making sure our action preserves the constraint that we have either one copy of a or 

one copy of b. 

Suppose we have only one action 

a®c—ob®c 	 (7.1) 

Suppose we start from a specification 

mit F- bøc®T 	 (7.2) 

where mit is a context representing the initial state. 

Cutting in a meta-variable Z in place of T, we get: 

initF- b®c®Z 	 (7.3) 

Applying backward-chaining bcut rule for the action, we get: 

initF- a®c®Z 	 (7.4) 

Applying bent rule again, we get: 

initl- aøa®c®Z' 	 (7.5) 

where Z = b 0 Z'. Note that this instantiation means that the previous goal in 7.4 

contains both a and b, which are intended to be mutually exclusive. 

Applying bent rule again, we get: 

mit F- a®a®a®c®Z" 	 (7.6) 

where Z' = b 0 Z". 
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Since linear logic allows us to have multiple copies of the same resource, and since we 

have a meta-variable in the goal, the goal may grow infinitely in the backward-chaining 

proof. This does not mean that an incorrect proof will ever be found, only that we 

expend a large amount of time searching a space that has no meaningful interpretation 

in the planning problem. 

To get around this problem, we would need to impose some check, external to the logic, 

on whether the current goal is meaningful as a partial description of a state. 

7.4 A complete proof search strategy for a fragment of 
ILL 

In this section, we give a complete proof search strategy for a fragment of ILL using 

only ®, and -o. This is sufficient for describing simple planning problems involving 

conjunction and disjunction. 

We draw on two of the approaches to proof search in ILL mentioned earlier - Jacopin's 

CSLL algorithm [Jacopin 93] and linear logic programming systems, especially Lolli 

[Hodas & Miller 94]. 

We have forward chaining application of reusable transition axioms (in common with 

Jacopin's CSLL), handling for more of the connectives of ILL, and lazy context splitting 

in the style of [Harland & Pym 97]. 

7.4.1 Complete search 

Since we forbid the use of exponentials, each of the allowed deduction rule, when 

applied bottom-up, results in smaller subgoals. We therefore have only a finite search 

space and the problem is decidable. 

This search space exhibits some redundancy, as some orderings of rule applications are 

equivalent to others. We remove some of the redundancy be eagerly applying the 'safe' 

deduction rules. 

We will then show how this generalises to the case where actions are reusable, by 

imposing a depth limit on the number of applications of the 1 - rule. 
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In Section 7.5.2 we describe the proof search strategy actually implemented. This 

further generalises the strategy described to use more connectives, i.e. quantifiers, 

constants T, and 0, arbitrary applications of rewrite rules. 

7.4.2 Invertible rules 

Invertible rules are those for which the upper sequent is necessarily provable if the 

lower sequent is provable. Hence application of an invertible rule cannot be a mistake. 

One such rule is the l® rule. 

IF, A,B I-C 
F,A®BHC 

We can show that this is invertible by showing that we can derive the upper sequent 

if we assume the lower sequent. 

Al-A BF-B 
A,BI-A®B 

rø 
 F,A®Bl-C 

F,A,Bl- C 	
CU 

See Appendix A for invertibility of other rules. Note about the use of cut: Since we 

used cut in these proofs, they are not necessarily valid in a proof search where we do not 

use cut. However, since we have a cut-elimination theorem for the logic, we know that 

an equivalent proof could be found (shown by transforming proofs). This argument 

does not remain valid for inductive proofs, as cut elimination no longer holds. Our 

search procedure does not encompass selection and application of induction rules. 

By contrast, the r® rule is not invertible. 

Fl-A 
F,r' I- A®B 

This rule relies on an appropriate splitting of the linear context into F and F'. In some 

cases an appropriate division is not possible, e.g.: 

aØbI- a cI-b®c 
a®b,cH a®(b®c) 

In this case it is mistake to apply the rø rule without first applying I® to break the 

formula a 0 b on the left. 
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The invertible rules in the current fragment are: l®, l, r -o: 

Since application of these rules is always safe, it does not represent a real choice point in 

the search. It is sensible to apply these rules eagerly - i.e. always apply an invertible 

rule where possible. If more than one invertible rule is applicable, we can choose the 

order based on an arbitrary order. For our set of rules, we chose to apply le with the 

lowest priority. This rule causes branching in the proof, so we prefer to apply it later. 

7.4.3 Non-invertible rules 

If there are no invertible rules to apply, we can attempt to apply the non-invertible 

rules r, r®, 1 -o •  If any of these are applicable, then we have a nondeterministic choice 

of which to apply and how to apply them. Choices are: 

. Which of the possible rules to apply. 

How to split the context in the r -o and r® rules. 

. Which of the two possible rED rules to select - i.e. which goal to satisfy. 

For rED and r®, there can never be a choice over which to apply, since we have only a 

single formula on the right. 

The application of the 1 -o rule is more problematic, since this is where the choice of 

action occurs when reasoning about planning problems. There may be a choice of -o 

formulae, corresponding to different available actions. 

7.4.4 Strategy 

The strategy is to apply eagerly the invertible rules l®, r -°, lED, and nondetermin-

istically apply the other rules r®, 1 -a, rED This is the general strategy used by e.g. 

[Galmiche & Boudinet 94]. 

7.4.5 Unbounded actions 

In the discussion above, we considered only the use of bounded actions of the form 

A -o B. In the planning problems, we need to model actions that can be used any 
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number of times. Previously, we modelled this by the of the cut rule together with 

actions described by axioms. We can also describe unbounded actions by formulas of 

the form !(A -o B). The exponential excuses the reuse, or non-use, of the formula in 

the proof. 

With unbounded actions, we lose the termination property of our proof procedure. 

However, we can keep control by performing a search by iterative deepening. The 

problem of finding a proof with a specific number of action applications is equivalent 

to the bounded-actions case considered above, and is decidable. Here, we repeat the 

search, increasing the depth bound on each iteration. 

7.4.6 Summary 

We gave a complete strategy for applying sequent rules of ILL to solve planning prob-

lems. In Section 7.5, we present a search strategy for a wider fragment of ILL. That 

algorithm is not, however, complete. 

7.5 Search strategy for a larger fragment 

In this section we extend the search strategy described in Section 7.4. Here we will 

handle a larger fragment, at the expense of completeness. Previously, we only consid-

ered ®, ED, -o. The proof search procedure is defined here for a fragment using most of 

ILL, but we limit the use of cut, and omit explicit use of exponentials. However, the 

transition axioms representing planning operators are reusable, and so are a form of 

exponential formulas. 

In the following, we consider actions to be represented by the -o connective only. In 

the implementation we use an lcut rule to perform actions. The difference is that 

icut allows actions to be treated as re-usable. Since our search algorithm contains the 

problem by bounding the number of times icut can be applied, we can treat them 

equivalently here. 

In Section 7.5.1 we analyse the invertibility or otherwise of the proof rules for this 

enlarged fragment of ILL. This analysis motivates the search strategy presented in 
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Section 7.5.2. 

7.5.1 Categorisation of rules 

Certain of the proof rules have the property of invertibility, meaning that the premises 

are derivable whenever the conclusion is derivable. It is possible to commit to the 

application of these rules without the danger of losing a proof. We now analyse the 

rules to determine a good strategy. 

10, r -o These (invertible) rules cause the context to increase. These rules should be 

applied with the highest priority, as they should be performed before any context 

splitting rules. 

12, rV These rules are invertible. However, they introduce an eigenvariable and the 

side condition requiring that it does not appear elsewhere in the sequent. 

1V, r2 These are not invertible, because they can interact with the side conditions of 

the 12 and rV rules. For this reason, it is sensible to eagerly apply the invertible 

quantifier rules, and defer the application of IV and rB 

10, rT If either of these rules can be applied, then the current branch of the proof 

is closed. There is an interaction with the context-splitting mechanism here, as 

we may have a delayed choice as to which resources in the context are actually 

present in this branch of the proof. It is never a mistake to apply these rules. 

l This rule is invertible, but has the unfortunate effect of causing the proof to break 

into two branches. Most of the effort after that is therefore going to be duplicated, 

so we are not keen to apply this early. 

nED, r2ED Here we have a nondeterministic choice point, since we need to apply one 

rule out of the pair. From an efficiency point of view, it would be preferable to 

defer these rules as long as possible. 

rO splits the goal and the context. This can be a mistake, as some required splittings 

of the context may not be possible until context-increasing rules have been fully 
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applied. We therefore do not want to apply it until the context is fully decom-

posed. In fact, it is usually only useful when we are testing to see if we have 

achieved the goal. 

l -o Also causes a context split. In planning problems, its use corresponds to the 

application of an action which must be used exactly once - usually the induction 

hypothesis. Its use is potentially a mistake, if it splits the context too soon or if 

it is applied to the wrong resources. 

We summarise this analysis in the following table. 

Context increasing: l® 	r -o 

Quantifiers: 13 	 rV Side conditions 
lv 	r3 No side conditions 

Decompose: 10 	 rT Close branch 
Causes branching 

ri 	r2@ Nondeterministic choice 

Context splitting:  
1 -o Actions 

Ax Close branch 

7.5.2 Search algorithm 

The general strategy is to fully decompose formulas in the context before applying 

any context splitting rule. Note that this is unlike the strategy employed in e.g. Lolli 

(Section 7.2.3), where right rules are always applied ahead of left rules. 

The only context splitting rules that we have are 1 -o, and r®. 

We define our strategy using three procedures: 

Decompose 

Apply rules to remove connectives. This comprises application of the context-

increasing, quantifier, and decompose rules, but not context-splitting rules from 

above table. Decompose contains no choice points - we commit to the selected 

rule. 

TestGoal 

TestGoal is to check whether the goal has been reached already, without further 

actions. TestGoal is always applied after Decompose, and it is allowed to use all 
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the rules except 1 -o. Usually it will only need r® and Ax, which are applied with 

the lowest priority. TestGoal always terminates, with either success or failure. 

3. Act 

Act attempts to select and apply an action using 1 -o, either failing or returning 

a new open sequent. 

The strategy is to first apply Decompose, then apply TestGoal to each result. If 

TestGoal fails then apply Act and recurse on the result. 

There are nondeterministic choices present which represent opportunities for making a 

mistake in the proof. These become choice points in a backtracking search. Notice that 

for the 7S rules, the choice is only which of the two rules to apply. It is safe, however 

to commit to the order in which the rules are applied. Below, we give pseudo-code 

for our procedure, in which choose indicates a choice point to which execution may 

backtrack, and select indicates a choice to which we immediately commit. The try 

else try ... end try construct attempts each procedure in turn until one of them 

succeeds. 

procedure LinoSolve( I F- G): 

{ 

try 
call Decompose( I I- G) 

else try 
call TestGoal( I I- G) 

else try 
call Act( I F- G) 

end try 
ti 
U 

procedure Decompose( I F- G): 

{ 

select first applicable rule from the order: 
I®, r -o, to, 8, rV, rT,1, IV, rR 

Apply rule to derive a set of unsatisfied sequents S 
for each sequent I' I- G' in S do 

call LinoSolve( I' F- G') 

} 

procedure TestGoal( I I- G): 

{ 
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try 

{ 

select first applicable rule from: 
l®,r—o,lO,l2,rV,rT,lE, IV, r2 

Apply rule to derive a set of unsatisfied sequents S 
for each sequent I' I- G' in S do 

call TestGoal( I' H G' ) 

} 

else try 
if dominant connective in G is 0 
then 

{ 

Apply r® to derive a set of unsatisfied sequents S 
for each sequent I' F- C' in S do 

call Test Goal( I' I- G' ) 
} 

else fail 
endif 

else try 
if dominant connective in G is e 
then 

choose either r1 or r2 to get I' I- G' 
call TestGoal( I' F- C') ) 

else fail 
endif 

else try 
choose any possible application of ax and apply it 

end try 

0 
procedure Act( I F- G) 

{ 

choose any formula in the context of the form a -o b 
Apply 1 -o to derive open sequents Si and 82 
call TestGoal(si) /* check action preconditions */ 
call LinoSolve(82) /* continue planning from modified state */ 

} 

The use of lazy context-splitting means that there is no choice point for how to split a 

context at the point where a context-splitting rule is applied, e.g. by rO rule. However, 

there is a choice point wherever the commitment is made on how to split the context. 

This is done by ax and I -o rules. Other left rules are forced to be applied before any 

context-splitting rules. 
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7.5.3 Reduced Fragment 

Although we do not have complete proof search for the current fragment, we can 

identify some forms of failure of the proof search with some features of the sequent 

which we are attempting to prove. Here we define a restricted fragment of the logic for 

which these specific problems will not occur. This leaves us with a fragment which still 

allows all the connectives to be used in the form in which they most naturally appear 

in planning problems. 

Some proofs will not be possible due to the restriction which we have placed on TestGoal 

- i.e. that we do not consider the application of actions during the TestGoal. For 

example, consider the following incomplete proof attempt for a I- a® (b—oc). When 

we apply TestGoal here, we get: 

___ 
Ax 

bI- c 
r-o 

al- a 	F-b--cc 
a F- aØ(b—oc) 

A proof of the open goal b H c may be possible by the application of transition axioms, 

but this specifically forbidden within TestGoal, so it will not be found. 

We can prevent this situation from occurring by banning the use of -o within a goal 

expression dominated by ®. The following grammar captures this idea by defining G0 

for goal expressions outside the scope of ®, and G1 for goal expressions inside its scope. 

We will generally prove sequents restricted to be of the form R I- G0 

R:=R®R G0—oR I RR  I Vx.R I 3x.R IT 10 
G0 :=G1®Gi IR—oG0I G 0 G0 IVx.Go  I 3x.Go  1T1 0  

G1 :=G1®Gi I G 1 G1 IVx.Gi I 3x.Gi IT 10 

None of our example planning problem specifications needed to be changed to conform 

to this reduced fragment. 

7.5.4 Depth bound 

An iterative-deepening strategy is used to control the proof search. The depth bound 

counts the number of applications of action axioms, (see Section 7.4.5). 
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7.6 Rewriting strategy 

7.6.1 Introduction 

We have previously described a proof strategy for a large fragment of intuitionistic 

linear logic. This fragment has been chosen to allow the handling of planning problems 

in an expressive language. 

However, in order to deal with examples involving recursion, we make of use of auxiliary 

functions such as reverse in the problem specification. Such functions are specified 

recursively using equations. 

This section considers the problems of controlling the application of these equations in 

testing equality between expressions. 

7.6.2 Functions specified as rewrites 

It would have been pleasing if the rippling strategy (Section 3.5.4) was successful in 

this case, but the interleaving with planning steps usually involves skeleton disruption, 

and cannot be handled by rippling. We have separately accounted for the application 

of actions during the proof search, and what we need is a strategy to use the rewrite 

rules in a cheap test of equality. 

Since the equations represent function definitions, there is usually a natural orientation 

of the rule which corresponds to evaluation of the function. Such definitions usually 

yield rewrite rules which always terminate with a unique result. In such a case, to 

decide equality of ground terms, we need only apply the rules exhaustively. 

In the presence of free variables, matters are unfortunately not so straightforward. 

7.6.3 Summary 

The inclusion of rewrite rules in planning domains introduces search problems for which 

there is no general, complete solution. However, a strategy of exhaustive rewriting is 

very often successful, so this approach is adopted. 
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7.7 Conclusion 

We looked at three existing approaches to proof search in linear logic. For the re-

quirements of the planning problems we wish to deal with, we introduced a complete 

algorithm, which combines forward search (as CSLL), with a large set of connectives 

extended to include -o, l and lazy context splitting (as Lolli). 

We then introduced an algorithm for a larger set of connectives, which is not shown 

to be complete, but for which we can define a restriction on logic which is relatively 

harmless in our applications, but which eliminates an important source of incomplete-

ness 

We also described our approach to the problem of applying rewrite rules. 



Chapter 8 

The Lino Implementation 

8.1 Introduction 

In this chapter, we introduce the Lino system, and discuss its key features, particularly 

the lazy context splitting mechanism and proof search procedure. 

8.2 Overview 

In this section, we give an overview of the Lino system implementation. The Lino 

system comprises: 

A proof checker, using standard proof rules of ILL, plus extended proof rules for 

recursion on lists, natural numbers and binary trees, and the application of term 

rewriting rules. 

Lazy context splitting is integrated and makes use of the CLP(FD) solver of 

SICStus Prolog {Carlsson et al 971. Our implementation of lazy context-splitting 

is described in Section 8.3. Output of completed proofs is available formatted 

with WIX and as proof trees drawn using the dot package [Gansner & North 

00]. 

An automated search procedure. The search procedure is implemented as a 

control layer on top of the prover. We discuss the procedure and its properties 

in Section 7.5. 

110 
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Extraction of Abramsky (Linear Lambda Calculus) proof terms, as described in 

Chapter 5. 

Partial evaluation of proof terms (Section 5.4). 

Execution of proof terms (Section 5.3). 

Notation 

Some examples from the Lino system are given in this chapter. The following notation 

for linear logic symbols is used in Lino. 

Girard Lino 
H ==> 

-0 

* 
& & 

+ 
T top 
o o 

Vx:r.P all (xP) 
x:r.P exists(x,P) 

The Lino versions of the quantifiers lack type restrictions. This is an omission in the 

current version of Lino, which potentially allows application of inappropriate induction 

rules. This flaw will be rectified in future versions. 

8.3 Lazy context splitting 

Any theorem prover for linear logic needs to deal with the choice arising from the need 

to split the context when applying multiplicative rules (Section 7.2.3). 

The Lolli system uses an input-output model of resources. In splitting the context 

between two branches of the proof, first one branch is attempted, with all resources 

being made available to it, then the unused resources are passed to the second branch. 

This is adequate some of the time, but extra complications may arise. Suppose the 

first branch attempted contains an occurrence of T in the goal position. The behaviour 

of the rT rule is such that it may consume as many or as few of the resources as we 
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wish. So when we attempt the right branch of the proof, we still have not fixed which 

resources are available. 

A more general approach was given by [Harland & Pym 97]. A boolean variable is 

attached to each resource to indicate whether it is available in a given branch of the 

proof. Constraints are then established between these boolean variables. 

By using the boolean constraints model, we do not make any assumptions about what 

order will be used for tackling branches, or what proof strategy is employed. 

Below we give the r rule, annotated for lazy context splitting. The variables in square 

brackets represent boolean values indicating whether the resource is available. 

For example, the resource a must be present on the left side of exactly one of the upper 

sequents. Its occurrence in the first sequent is determined by a boolean value xi, and 

its occurrence in the second sequent is indicated by the opposite value :ffj. 

a[xi],b[x2] I- a a[ffi],b[ff2] F-b 

a,b I- a®b 

In proving the left branch we need to set Xl = true and x2 = false, and this auto-

matically resolves the resources present in the right branch. This leads to the proof we 

want: 

al-a bF-b 
a,bF-a®b 

When Lino is used interactively, a hypothesis under the control of the constraint solver 

is flagged with an © symbol. The meaning is that the resource may optionally be used 

in the current branch of the proof. 

In the following example, we illustrate the lazy context splitting by showing an inter-

active proof of a, b I- a 0 b. Input from the user is in the form of rule names (the r 

input applies any possible right rule). 

Welcome to Lino, version 1.4 

hi: a 
h2: b 
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==> a*b 

I: r. 
Applied r(*) 

0 hi: a 
@ h2: b 

==> a 

I:ax. 
Applied ax 

h2: b 

==> b 

I:ax. 
Applied ax 

*** Completed subproof *** 

*** QED *** 

In the second example, we consider the behaviour of the rT rule. In this example, the 

use of the rT rule in one branch of the proof does not resolve the context split, and 

the hypotheses hi and h2 remain under the control of the constraint solver until the 

second branch of the proof is completed. 

Welcome to Lino, version 1.4 

hi: a 
h2: b 

==> top*b 

I: r. 
Applied r(*) 

@ hi: a 
@ h2: b 

==> top 
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i: r. 
Applied r(top) 

@ hi: a 
@ h2: b 

==> b 

I:ax. 
Applied ax 

*** Completed subproof *** 

*** QED *** 

8.4 Problem specification 

A problem specification consists of definitions of rewrite rules, axioms and goal theo-

rem 

These are simply described using Prolog facts, e.g., the specification for the problem 

of reversing a tower of blocks described in Section 6.4.1. 

probnanie (revblocks). 

rr(revl, C], 	rev(empty) => empty ). 

rr(rev2, [b,t], rev(b::t) => app(rev(t),b::empty) ). 

rr(appi, [n], 	app(empty,u) => u ). 

rr(app2, [b,t,u], app(b::t,u) => b::app(t,u) ). 

rr(appassoc, [a,b,c], app(app(a,b),c) => app(a,app(b,c))). 

axiom( pick(b::t), [b,t], [twr(b::t),hn] 	==> twr(t)*hold(b) ). 

axiom( put(b,t), 	[b,t], [twr(t),hold(b)] ==> twr(b::t)*hn ). 

goal( 

[1 ==> 
all (t, 

all (a, 
twr(t)*twr(a)*hn -<> twr(empty)*twr (app (rev (t) ,a))*hn )) 

). 
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8.5 Proof scripts 

A scripting facility is implemented. Scripts are stored in the form of Prolog lists 

specifying a sequence of rules to be used by Lino. An interactive Lino session generates 

a script by logging rule applications. 

Generally, the steps that can be used in the script are invocations of primitive proof 

rules. However, the search algorithm of Section 7.5, which functions as a proof tactic, 

can be invoked in the same way at any point in a scripted or interactive proof. 

8.6 Output from Lino 

In Lino, two styles of output for proofs are supported: 

• Proof trees in LA'IX, formatted using the package proof . sty. This is conven-

tional presentation of sequent proofs, but is suitable only for small proofs. 

• Proof trees presented graphically with cross-referencing to FTEX-formatted - 

quents at individual proof steps. Graphical trees are generated using the dot 

package [Gansner & North 00]. 

Extracted plans in the form of Linear Lambda Calculus terms are output. These terms 

are also output to a file which be can be read directly into the partial evaluation and 

plan execution module. 

8.7 Conformant plans 

We considered conformant and contingent plans in Section 2.5. Actions with uncertain 

effects are modelled using a disjunction of possible effects. In our framework, we resolve 

this disjunction in the proof using the ie rule, branching the proof for each possible 

outcome. This results in a plan which conditionally branches on the disjunction. This 

is a contingent plan. 

In the case of conformant planning, it is deemed to be impossible to perform a test a 

run-time to resolve the disjunction, and conditional branches should not appear. 
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We must resolve the disjunction in order to complete the proof. To ensure that this 

does not lead to a conditional branch in the resulting plan, we need to do one of two 

things: 

Ensure that exactly the same plan is used in both branches, hence the case 

split exists in the proof but is redundant in the plan. This brings in issues about 

deciding equality of plan terms, which we would prefer to avoid. This is discussed 

further in Section 10.3.3. 

Ensure that no actions at all are used in the branches for each disjunct. The 

conditional branches then only select between different ways of demonstrating 

that the goal has been reached, but do not effect actions to be performed by the 

executing agent. 

In Lino, we take the second approach. We model the non-testable form of e using an 

alternative connective, (1E. Thus we can solve problems such as the socks problem 

[Bibel 86]. 

The restriction for conformant plans is a restriction of the proof search only, not of the 

underlying logic. The proof rules for the new connective are the same as those for , 

though we modify the extract terms. 

The proof search relegates the application of the 1ED@ rule into the TestGoal phase 

of the proof search. In this phase of the proof search, no applications of actions are 

allowed. Hence we enforce that both plans for both disjuncts can be formed with no 

further applications of actions. 

This is a somewhat restricted form of conformant planning which means that the 

disjuncts must form the goal directly, and cannot be used to form preconditions to 

further actions. 

When dealing with problems involving 	, we must be more careful about the form 

of the plan term constructed. The restriction on the proof guarantees that the same 

actions will work regardless of which disjunct holds, however the substitution operation 

used in building the plan terms allows the action invocation to be substituted inside' 

the conditional branches. We can use the following alternative form, which fixes the 
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evaluation of the action outside the scope of the conditional. 

FF-t:A x:B,F'I-u:C 
F,F',f : AB H let fot be x in U: C 

Since the conditional branches have no significance with regard to action execution, 

we do not wish them to appear in the plan at all. 

The form of the IEB rule is given by: 

F,x:AHu:C F,y:BI-v:C 	 IED 
F, z : A B F- case z of inl(x) then u, inr(y) then v: C 

For the 1ED@ rule, we use a form which simply says that an appropriate type will be 

returned: 	
F,x:AE-:C F,y:BH : C 
F,z: AEBB H yields(C) : C 

We need to extend our operational semantics with appropriate rules defining how these 

new forms are executed. 

The full socks example appears in Section B.9. 

8.8 Partial evaluation and plan execution 

Partial evaluation is a direct implementation of the partial evaluation rewrite rules 

given in Section 5.4 and Section 6.3.5. The notion of substitution requires some care, 

as in the presence of A-terms, we must avoid the capture of free variables. 

The rules are applied exhaustively, starting with leftmost outermost applications.inwards. 

Plan execution is a direct implementation of the operational semantics described in 

Sections 5.3 and 6.3.4. 

8.9 Code Size 

The table below gives a breakdown of the size of the code in the Lino system. The 

figures give the number of lines of Prolog code, excluding comments and blank lines. 
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We consider that this a relatively small program, given that it provides proof checking, 

a degree of automation, and the handling of plan terms. 

Module Lines 
Theorem-proving shell and deduction rules 620 
Plan extraction 234 
Partial evaluation and execution 522 

Search 81 
Output formatting 437 

Total 1894 

8.10 Conclusions 

In this chapter, we have described the Lino system, which is an implementation of the 

ideas introduced in Chapters 5, 6, and 7. 

Lino is a proof checker for ILL, enhanced with induction rules and term rewriting 

rules. Lino handles interactive, scripted or automatic approaches for performing proofs. 

Unlike general-purpose proof checkers, Lino provides built-in handling for lazy splitting 

of linear contexts. It also provides extraction, partial evaluation and execution of plan 

terms. Automated proof search mixes application of left and right sequent rules to 

provide a forward-chaining search implemented by a strategy which eliminates much 

of the possible redundancy in handling application of proof rules. In summary, Lino is 

designed specifically to handle the various requirements of deductive planning in ILL. 



Chapter 9 

Evaluation 

9.1 Introduction 

In this chapter we consider the capabilities and performance of our planning technique 

in comparison to: 

. Methods for planning or proof search in linear logic. 

. Recursive planning methods introduced in Chapter 3, i.e. those of [Manna & 

Waldinger 87], [Ghassem-Sani 92], and [Stephan & Biundo 95] 

9.2 Comparison with linear logic systems 

The linear logic planning system and theorem provers vary in the logic they deploy, i.e. 

classical or intuitionistic and the fragment they handle, and the proof search technique 

they use. 

9.2.1 Jacopin 

Jacopin uses a very restricted fragment of intuitionistic linear logic. Our planning 

algorithm would behave like Jacopin's on any problems defined with that restricted 

fragment, except that our more careful application of the context-splitting rule r® 

would be expected to give us a performance advantage. One of Jacopin's key criticisms 

of the use of linear logic, i.e. the necessity of fully specifying the goal state, can be 

119 
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overcome simply by the inclusion of T in the goal state. Jacopin prefers to use only 

the very limited fragment of the logic to avoid moving into a higher complexity class. 

In fact, simply adding the T to Jacopin's minimal fragment makes almost no difference 

to the forward-chaining search procedure. 

The example which Jacopin gives to back up this argument is that of swapping two 

registers, given an action for assignment. Here, the resource cont(x, a) is used to 

represent that register x contains value a, and the problem is to exchange the values of 

registers x and y, with an extra register z available. In Jacopin's restricted fragment, 

the problem is represented as follows: 

cont(x, a), cont(y, b), cont(z, zero) I- cont(x, b) ® cont(y, a) ® cont(z, b) 

The problem that Jacopin points out is that the goal state must include a specification 

of the final state of the spare register, z, which is not so much part of the goal as a 

consequence of the solution. 

In our framework, we would avoid this problem by using T as mentioned. 

comt(x, a), cont(y, b), cont(z, zero) F- cont(x, b) 0 cont(y, a) 0 T 

An alternative is to use an existential quantifier to describe the value of the intermediate 

register. 

cont(x, a), cont(y, b), cont(z, zero) I- cont(x, b) 0 cont(y, a) 0 Bval.cont(z, val) 

Jacopin's other criticism is the inability of linear logic to represent a situation where 

a single effect satisfies a precondition of two different actions, with both actions pre-

serving the condition. In linear logic, any such an action must consume then replace 

the condition, so it would not be possible for them to exist in parallel plans. 

9.2.2 Lolli 

We have covered Lolli in some detail in Chapter 7. 

Our proof search algorithm has been inspired by Lolli, but adopts a different set of 

restrictions placed on the fragment and a different strategy. The choice of strategy 

made in Lolli make it unsuitable for direct use as a planner. 
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In particular, our strategy is not goal driven, and allows the interleaving of the appli-

cation of left and right rules. This has allowed the adoption of a set of connectives 

which is more appropriate for planning problems. 

9.2.3 Lygon 

Lygon documentation [Harland et al 961 devotes a little attention to its application to 

planning problems. Lygon is based on classical linear logic, and it is an interesting 

question whether this is suitable as a logic for plan formation. In fact, the problem 

which they give as an example involves deriving the final state resulting from executing 

a set of actions (without a specified order). 

9.2.4 Hölldobler et al. 

The work of Hölldobler's group has the following aspects: The basic approach has been 

to describe a system based on equational reasoning. 

The correspondence was established between their approach and those of Bibel and 

Masseron. In a later paper by Brüning and others [Bruning et al 93], they have extended 

the method to deal with disjunction. This informs an adaptation of Bibel's linear 

connection method to solve disjunctive problems. They identify the 1EI rule with 

formation of conditional branches in the plan, and this is equivalent to the formulation 

that we have used. However, their notion of plan extraction does not allow for the 

formation of conformant plans in which uncertainty is handled without the use of 

conditional branches. 

Some consideration has also been given to extending the method to recursive plans 

[Hölldobler & Störr 98]. This paper considers only the correctness of given recursive 

plans with respect to given initial states. Nevertheless, it is interesting because it 

defines a syntax and semantics for a recursive plan language. 
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9.3 Comparison with other recursive planners 

The approaches of [Manna & Waldinger 87], [Ghassem-Sani 92] and [Stephan & Biundo 

951 were described in Chapter 3. 

9.3.1 Basis for comparison 

There is some difficulty making a useful comparison between the behaviours of the 

various systems. We must rely only on published accounts of the systems, which only 

give us an overview, with limited examples. Each system uses a different representation 

for problems, with brings its own restrictions on what problems can be expressed. 

We consider the following aspects of representation style to be important: 

The logic on which the system is based, e.g. situation calculus, modal logic, 

linear logic. 

The approach adopted to handling the frame problem. 

. The use of auxiliary functions and/or predicates in defining problems, such as 

our use of a reverse function defined using rewrite rules. 

. The use of inductively defined datatypes versus the use of induction over well-

founded relations. 

. The use of a fixed set of induction rules versus the dynamic creation of induction 

rules on demand. 

Strategies and Implementations: 

. If the systems were implemented at all, how much of the process was automatic? 

The problem solving strategy adopted by the planner - for example searching 

forwards from the initial state or backwards from the goal state. 

. Automatic generalisation. 
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9.3.2 Manna and Waldinger 

The approach of Manna and Waldinger is based on first order situation calculus. This 

is very expressive for representing problems, but correspondingly difficult to reason 

with. 

Their logic is not constructive, so could be used to produce plans which are not ex-

ecutable. Manna and Waldinger guard against this by separately filtering out non-

executable plans during plan construction in an ad hoc way. 

No solution to the frame problem is given. Explicit frame axioms are required, and 

explicit inference steps are required to handle them. The problem is discussed in 

[Manna & Waldinger 87], pages 364-365. 

Their plan theory, unlike our formalism, allows functions and identifiers to have differ-

ent interpretations between states. This introduces extra complications in reasoning. 

In their "how to clear a block" example, the only example they present, they do not 

make use of auxiliary functions to define the relationships between states. 

Because of redundancy in the representation, which refers to entities with or without a 

state argument, the approach requires a form equational unification. This equational 

unification is troublesome, because it may yield an infinite number of unifiers. Although 

the example given in [Manna & Waldinger 871 does not make use of any auxiliary 

functions, in rewrite rules defining these functions could be built into the equational 

unifier. 

The proof method is based on a deductive tableau system. There is no claim that the 

proof process can be automated, and there is no report of an implemented system. 

Their example demonstrates the plan being constructed backwards from the goal, but 

the representation is capable is of building the plans in either direction. Plans them-

selves are represented as terms constructed during proof. 

Induction is performed on the basis of well-founded relations. The selection and gen- 

eralisation of induction rules are identified as difficult problems which are not solved 

automatically. 
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They use a general form of induction over relations. This must be customised for 

particular theories by hand. It part of the process of theory development to show that 

relations are well-founded. This results in a fixed set of well-founded relations that can 

be used in a generic induction rule. 

In general, we believe that Manna and Waldinger's representation is more flexible than 

ours, but much more complex and not so amenable to automation. 

9.3.3 Ghassem-Sani and Steel 

Ghassem-Sani and Steel's RNP planner is based on a restricted form of Manna and 

Waldinger's plan theory. Explicit reference to state is avoided completely by the use 

of STRIPS operators. The STRIPS assumption is used to avoid the frame problem. 

Plans are represented as partially-ordered networks of plan steps, in the style of plan-

ners such as Nonlin. This representation is augmented with special types of nodes to 

allow the representation of conditional and recursive plans. 

The proof process is fully automatic, and is goal driven in the manner of conventional 

partial-order planners. The occurrence of a subgoal related to the final goal by a well-

founded relation motivates a case analysis for the introduction of recursive constructs. 

Typically, the guard conditions of partially-defined destructor functions form the basis 

of the case analysis. Thus RNP has a principled approach to introducing induction into 

the proof and to forming an appropriate induction rule. A limited form of automatic 

generalisation is also performed by the planner. 

In comparison to our system, we find that RNP has a more compelling solution to 

the problems of search control. However, this is achieved at a cost of restricting the 

language to the point where some of the more interesting problems cannot be expressed. 

There is no equivalent in RNP of using auxiliary functions to express the relationship 

between initial and goal states using rewrite rules. In their example of reversing a list, 

they use plan operators to fulfill the role that is taken by rewrite rules in our system 

- i.e. defining equivalences instead of state transformations. Since they have no other 

way to define the relationship between initial and goal state, it seems impossible to 

specify a problem like our reversing a list example, in which the relationship between 
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initial and final list is defined using rewrite rules. 

9.3.4 Stephan and Biundo 

In the approach of Stephan and Biundo, a dynamic temporal logic is used. This is an 

expressive framework, but inference in this framework is a complicated process, with 

multiple proof steps required to handle frame conditions. 

A tactical theorem prover is used to control reasoning. Plans are represented as terms 

which exist in the logic at the same level as terms describing world state. 

Induction can be performed on the basis of inductively-defined datatypes. This is an 

interactive process in which a user must make key decisions. Having done this, the 

recursively defined procedures may be used in an automatic system. 

In comparison with our system, the emphasis is somewhat differently placed. They 

provide a sophisticated environment for the modelling of planning domains, where work 

is done up front by a domain modeller. The end result is a system which can work 

automatically in that specific domain. 

The process of synthesising the recursive plans themselves is not automatic, nor is 

generation of generalisations in induction. 

9.3.5 Lino 

Our approach makes use of a fragment of intuitionistic linear logic, which is carefully 

chosen to be expressive enough to handle interesting planning problems, but restrictive 

enough to enable a useful search procedure to be defined. 

For expressing recursive planning problems, we allow the use of inductively-defined 

datatypes. We use predefined induction rules, making use of constructors only. Selec-

tion of the induction rule must be done manually, as must rule generalisation. 

We do not allow functions and symbols to change their interpretations between states, 

and this makes it simple to define a relationship between initial and goal states using 

a recursively defined function. 
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The linear logic approach has a very tidy handling of the frame problem, and a very 

clear and direct relationship between proof steps and constructs in the plan language. 

We can represent partially-ordered, conditional plans and recursive plans. The logi-

cal system is considerably simpler than the other deductive approaches of [Manna & 

Waldinger 87] and [Stephan & Biundo 951. 

9.4 Example problems 

In this section we consider the planner with respect to various problems existing in 

the literature. Due to the small number of publications on recursive planners, there 

is no established corpus of problems. The greatest number of examples comes from 

Ghassem-Sani's thesis [Ghassem-Sani 92]. Below we consider the suitability of our 

planner on these problems. We also give a number of further problems devised as test 

cases for our planner. 

9.4.1 Examples from Ghassem-Sani 

The examples from Ghassem-Sani are as follows: 

Factorial function 

Division function 

Fibonacci function 

Ackermann function 

Reversing a list 

Clearing the base of a tower 

Building a tower 

Hammering a nail into a plank 

Examples 1-5 need not be modelled as planning problems at all. They are proofs of 

mathematical theorems for which no notion of state change is necessary. In Ghassem- 

Sani's representation, there is no separate notion of a rewrite rule. The RNP plans in 
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these cases are effectively proofs that exhaustive application of these rules would lead 

to a solution of the problem. 

The Ghassem-Sani representations tend to make use of destructor functions. This is 

the most natural representation to use in conjunction with goal-driven plan search 

process. 

Our tower reverse is similar to Ghassem-Sani's list reverse, but our formulation does 

have a state-changing aspect. 

We cannot model the example of hammering a nail into a plank. In Ghassem-Sani's 

modelling of the problem, the outcome of each hammer action is that the nail is either 

flush or not flush. 

We cannot use the modelling in our framework, because there is no corresponding 

inductively defined datastructure, which we require to model recursion in our frame-

work. Furthermore, we should not be able to synthesise this plan in our system as its 

termination cannot be proved. 

9.4.2 Example problems for Lino 

These problems have all been solved interactively, and most of them are solved suc-

cessfully solved by automated search. However, in all cases the selection of induction 

rules and the generalisation of the theorem was done by hand. 
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Problem Requires Solution Time/ms Comments 
Gener- found 
alisa- by 
tion auto- 

mated 
search 

revblocks Yes Yes 70  
flatten No Yes 50 Uses list-of-lists formulation. 

division No No - Formulation 	uses 	exponen- 

____________ tials. 

factorial No Yes 67  
fibonacci No Yes 27  
gripper Yes Yes 1261 Finds inefficient plan. 

gripper2 Yes Yes 22702 Finds efficient plan for same 
problem, by the use of a cus- 
tomised induction rule. 

ants Yes No - Fails due to rewrite strategy 
preconditions. 

boat Yes No - Search space too large. 

nim9 No Yes 154 9 counter problem - no induc- 
tion. 

nim No Yes 105 Problem 	specified 	for 	all 
winnable games 

tree No No - Search 	requires 	equality 
substitution not handled by 
search procedure. 

socks No Yes 126 Contingent version. 

conformant socks No Yes 626 Conformant version. 
omelette-lemma Yes Yes 138 

omelette3 Yes Yes 116  
omelette Yes No - 

Generally, the modelling of the problem in a suitable form in linear logic was found to 

be a difficult process. Although this is true to some extent of all planning problems, 

there are many established test domains for STRIPS and ADL planning. The diffi-

culty involved in constructing reasonable formulations for the domains cannot easily 

be separated from the difficulty of solving them. 

Timings were obtained on a PC with a 550MHz Pentium III processor, running Linux. 

The code bytcode compiled using SICStus Prolog 3.7.1. 

The times are generally low, but the problems are small in size. The poor time for the 

gripper2 problem shows that the times scale badly as the length of the required step 

case plan increases. It is likely that this could be improved with simple modificatons 
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to the search code, as little attention has been given to optimising it for speed. 

9.5 Discussion 

Since there is no established corpus of linear logic planning problems, it is not possible 

to make a clear comparison of our system with others. 

However, we have shown that our representation is expressive enough to give a clean 

formalisation of some existing problems, and many new ones. Automated proof search 

is often successful, and where it is not, this can often be related to specific features of 

the problem formulation. 

We can tackle some problems which are adapted from standard STRIPS and ADL 

planning problems. This illustrates the notion that by making use of the inherent 

recursive structure in the problem, a solution can be found relatively easily, which will 

deal with problems of any size. 



Chapter 10 

Conclusions and Further Work 

10.1 Introduction 

In this chapter we report the main conclusions of the work and consider directions for 

further work. 

10.2 Conclusions 

10.2.1 Contributions 

Recursive plans in linear logic 

We have extended the use of linear logic in planning to deal with problems involving 

recursion. 

We have demonstrated that intuitionistic linear logic, with an appropriate induction 

principle, can be used to represent and solve a range of recursive planning problems. 

The linear logic formalism avoids the need for frame axioms and gives a clear rela-

tionship between proofs and plans. Plans are represented as terms of Linear Lambda 

Calculus, which are extracted directly from the proof of a plan specification. In this 

formalism, it is possible to synthesise general recursive plans which can handle a family 

of instances of planning problems. 

We can also describe problems involving action steps with uncertain outcomes which 

may or may not be observable. Our plan language can express: 

130 
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• parallel branches, 

• conditional branches, 

• recursion. 

Schematic plans can be specialised with respect to information about a problem in- 

stance by means of partial evaluation rules. We also describe how to execute the plan 

directly on a problem instance, according to the operational semantics for the language. 

The correctness of the plans rests on the correctness of the underlying proof rules 

with respect to the extraction and evaluation mechanism. This differs from the typical 

situation with conventional planners, for which it is necessary to prove the correctness 

of the planning search algorithm. In our approach, planning is done by theorem proving 

in our chosen logic. The correctness of plans is independent of the search mechanism 

used to prove the planning goal. 

For RNP [Ghassem-Sani & Steel 91], correctness of plans depends in part on correctness 

of conflict detection, which in some cases involves testing conditions inside a recursive 

plan with parallel steps outside the recursive plan. This is a non-trivial problem. 

Search procedure 

We have given a search strategy for a defined fragment of the logic, and shown that 

it is complete. This fragment has been chosen carefully to enable interesting planning 

problems to be expressed. The fragment comprises only the following: 0, -o, E1. In 

the implementation the algorithm is extended to deal with the use of V, 3, T, 0, with 

some restrictions. 

For problems involving only conjunction, this corresponds to forward-chaining in the 

style of [Jacopin 93]. However, we are are able to use a much larger fragment of the 

logic, and adopt efficient solutions to the problem of splitting the linear context. 

Implementation 

The above ideas have been implemented in Prolog as a system, Lino, which demon- 

strates the feasibility of the approach. It is a semi-automatic linear logic proof checker, 
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which uses a set of rules including induction rules and rewrite rules. Lazy context 

splitting is implemented using constraints in a CLP(FD) solver. Lino may be used for: 

. interactive proof checking, 

. automated proof search, which is complete under restrictions defined in Section 

7.4.1. In the implementation, the proof search strategy is extended to deal with 

a larger fragment of the logic, for which completeness of the strategy has not 

been shown. A simple strategy for application of rewrite rules is also employed. 

Lino also encompasses the following: 

. automatic extraction of plans from completed proofs, 

partial evaluation of plans, 

. execution of plans. 

Results 

Our system allows a range of problems to represented. The degree to which automatic 

solution is possible varies. See Appendix B for a summary of problem examples. We 

believe that it has a wider coverage of problems than the RNP planner of [Ghassem-

Sani & Steel 91], whilst being more amenable to automation than the approaches 

of [Manna & Waldinger 87] and [Stephan & Biundo 95]. 

10.3 Further Work 

The area of automatic recursive plan formation is a challenging one. In this section we 

consider the opportunities for extending the current work. 

10.3.1 Proofs of correctness 

In Chapters 5 and 6 we made the following claims in relation to partial evaluation and 

execution of plans. 
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Claim 1 Correctness of partial evaluation w.r.t. ILL-P (Section 5.4.1). 

Claim 2 The relationship between -p and JI. (Section 5.4.2). 

Claim 3 Correctness of partial evaluation w.r.t. ILL-PR (Section). 

Claim 4 The relationship between 	and .JJ.  (Section 6.3.6). 

We have given no proofs of these claims, so it is important further work to produce 

such proofs. 

10.3.2 Equality of values 

We have made use of limited reasoning about equality in our system, without fully 

developing a theory of equality (Section 5.2.8). Important further work would be to 

develop this theory and demonstrate correct deduction rules. 

Note that we distinguish in our system between equality of values (e.g. blocks, towers) 

which do not have linear types and the treatment of plan terms, which do. 

10.3.3 Equality of plan terms and conformant planning 

Our treatment of conformant planning (Section 8.7) is compromised because we are 

limited to plans in which the outcomes of plan steps with uncertain effects are never 

used as preconditions to further plan steps. This means that many problems in con-

formant planning cannot be solved by our approach. 

In order to solve the more general problem, we must allow the proof to branch on the 

disjunction, and allow each branch to contain further actions. However, since we cannot 

form a conditional test in the plan, we must enforce that the two branches contain 

equivalent plans. We need to define what we mean by the notion of equality of plans 

in this context to study how we can enforce this equality. The work of Barber [Barber 

97] may be of some relevance here. 

The conformant plans that we can synthesise require altered forms of plan terms. 

An extension of the operational semantics was not given for these new forms, and is 

required as further work. 
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10.3.4 Formulation of problems in linear logic 

Since there is no existing corpus of recursive planning problems, our example problems 

have been hand-coded into linear logic specifications, such that inductively defined 

types were present in the specification given to the theorem prover. An important 

question is whether it would be possible to work from conventional plan specifications, 

such as the corpus of planning problems available in the PDDL language [McDermott 

et al 98]. 

This requires the generation of recursive plans from an input in which there is no 

explicit use of inductive datatypes. In Fig. 1.1, this corresponds to performing the 

steps labelled problem translation and problem generalisation. This route could be 

beneficial in cases where we are presented with a large problem instance that has a 

recursive structure. We would therefore expect solution of the abstract plan to be 

cheap compared to the large problem instance. 

Once the abstract problem is solved, we can cheaply generate a specific plan by taking 

the evaluation and plan translation route. We will discuss these how the processes of 

problem translation and problem generalisation may be realised. 

Problem translation 

We would need a system capable of recognising the presence of a an inductively defined 

type in a planning domain. The domain description would be supplied in e.g. STRIPS 

or PDDL. Translation would be done relative to a library of standard inductively 

defined datatypes. Domain analysis, such as that used in the TIM system [Fox & Long 

98], could identify the signature of encodings of inductive types. An example is the on 

relation in blocks world problems, which effectively behaves as a list constructor. 

It therefore seems plausible that the concept of a tower could be automatically derived 

from a planning domain description. If a system is able to automatically bring into 

play the notion of lists in a domain in which they are only implicit, it can also recognise 

that a library of list-related concepts may be useful - e.g. member, append. 
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Generalisation of ground problems 

In our recursive planning examples, we have made use of recursively defined functions 

to specify the required relationship between structures appearing in initial and goal 

states. To automatically derive such a problem specification, it would be necessary to 

speculate the general relationship between initial and final state. This would need to 

be done on the basis of a library of predefined relations (e.g. flatten, reverse). 

This approach is potentially useful in solving problems which are very large, but with 

uniformly structured problem instances. 

This is similar to problems that have been considered in the machine learning literature, 

particularly in the area of Inductive Logic Programming (ILP), e.g. [Muggleton 911. 

10.3.5 Search control in Lino 

Although the step cases of recursive plans can often be very short, the undirected 

forward-chaining search strategy of Lino is not efficient compared to modern STRIPS 

planners. Here we suggest some improvements. 

Generalisation of ground plans 

Small, ground problem instances can be generated from the domain definition. A 

fast STRIPS planner could then be used to generate possible solutions to the ground 

problem. These solutions could then be analysed w.r.t. recursive structure and used 

to guide the choice of actions during recursive plan generation. A similar form of 

generalisation is considered in [Baker 94]. In Fig. 1.1, this corresponds to a route from 

abstract problem to abstract plan via ground problem and ground plan. 

This may also be used to inform choice of induction rule and generalised theorem. 

We could envisage an architecture which solves a large problem by extracting a general 

recursive structure in the problem, then generates and solves one or more ground 

problem instances. Such solutions may then be generalised to lead to a provably 

correct general solution. This general solution can then be evaluated to solve a given 

large problem, or executed directly. 
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10.3.6 Induction rule choice 

The work described in this thesis has not addressed the important problems of selection 

of induction rules, but instead has relied on pre-selection of induction rules from a 

limited set. The literature on inductive theorem-proving contains a number of more 

sophisticated approaches which allow an induction rule to be synthesised or selected 

on the basis of a partially complete step case proof. Important recent approaches to 

this problem are: 

• In [Kraan 94, Kraan et al 96] induction rules are chosen from a pre-stored set, 

but the choice is deferred until a step case proof has been attempted. The step 

case proof is performed with meta-variables in place of induction terms. Rippling 

is used to control the instantiation of the meta-variables, and the resulting step 

case is used to select a matching induction rule. 

• In [Protzen 95] induction rules are not stored, but synthesised from scratch. The 

method can only deal with destructor-style induction, and generates appropriate 

restrictions on hypotheses such that the induction rule is sound. 

• Gow [Gow 00] first finds a step case proof using a representation with meta-

variables (as Kra.an did). The other cases of the induction rule are then generated 

and proved automatically. Gow's approach allows rules to be synthesised from 

scratch without Protzen's restriction to destructor-style inductions. 

10.3.7 Generalisation of specification 

The use of the induction hypothesis often fails due to the absence of a matching re-

source. For example, in the cases where we consider towers of blocks, we usually require 

to move the blocks to a tower which may not be mentioned in the specification. 

In this case, the solution is to build the proof for a strengthened specification with 

extra resources. This is the same class of problem which has been tackled successfully 

in [Hesketh et at 92, Ireland & Bundy 96] (see Section 3.5.6). In that work, the problem 

is solved by adding accumulator arguments to the specifications. In the planning case, 

failure to prove should suggest missing resource and generalise the initial final states 



CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 137 

of the planning problem specification. 

10.3.8 Complete search 

In Section 7.4 we considered a complete search strategy for a fragment of ILL including 

only the connectives ®, , -o. 

The fragment of the logic which we use in representing our planning problems is often 

larger than the fragment for which proof search is shown to be complete. 

Further work is required to define an extended fragment for which proof search can be 

proved to be complete. 

10.4 Summary 

We have demonstrated that linear logic provides a suitable formalism for the expression 

of planning problems involving inductive types, which has enabled us to realise our aims 

of making a planner that can form plans involving conditional constructs and recursion. 

Whilst our work has some limitations, we believe that the approach is very promising, 

and there are interesting opportunities to overcome these limitations. 

We believe that this is a promising approach which opens several interesting possible 

areas for future research. 



Appendix A 

Invertible Rules in Intuitionistic 
Linear Logic 

Original rule 
	 Proof of inversion 

Al- A 	BI- B 
F,AHB FHA —oB 	A,AoBHBl0 

FE-A—oB °  F,AE- B 

Al-A 	BE-B r® 
F,A,BI- C A,BI-A®B 	F,A®BI- C 

F,A®BF- C 1®  
cut 

F,A,BE- C 

Al- A 	
1 

AHAeB 	r,AEIBI- C 
F,AE- C 	F,BE -C F,AE-  C 	

cut 

r,ABl- C 
BE- B 	r2ED  

BF- AEBB 	F,AeBI -  C 
IT,Bl- C 	

cut 

A[a/x] I- A[a/x] 

F}-A[a/x] 
N 

Fl- Vx.A 	Vx.AFA[a/x] 

F F- VxA 	
rV r I- A[a/x] 	

cut 

A[a/x] I- A[a/x] 

F, A[a/x] I- C A[a/x] I- BxA 	
r 	

F, 3xA I- C 

F, xA I- C 	
13 cut 

F, A[a/x] I- C 

138 



Appendix B 

Examples 

B.1 Reverse blocks 

This is the example of reversing a tower of blocks. It is solved automatically by the 
prover. 

B.1.1 Problem specification 

twr(t) 
	

twr(empty) 

F- Vt.Va. 	twr(a) 
	

-o 	twr(app(rev(t), a)) 

hn 
	

hn 

B.1.2 Axioms 

I- pick(b t) : twr(b t) 0 hn -o twr(t) 0 hold(b) 

F- put (b, t) : 	twr(t) 0 hold(b) -o twr(b:: t) 0 hn 

B.1.3 Rewrite rules 

rev(empty) 	empty 	 (revl) 

rev (b:: t) -+ app(rev (t), b :: empty) 	 (rev2) 

app(empty,u) -+ u 	 (appl) 

app(b:: t, u) -+ b:: app(t,u) 	 (app2) 

app(app(a,b), c) —* app(a, app(b, c)) 	 (appassoc) 
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B.1.4 Plan 

.Xt_2. 
twr_rec (t_2, 

Aa_2.Ah3. 
let li3 be h6*h7 in 
let h7 be hlO*hul in h6*hlO*hll, 

)thl .Ab_1.At_1.Aa_8.Ah60. 
let h60 be h63*h64 in 
let h64 be h67*h68 in 

let pickoli63*h68 be h75*h76 in 
let put oh67*h76 be h92*h93 in 
let hlob_1::a_8oh75*h92*h93 be h97*h98 in 

let h98 be h101*h102 in h97*hl0l*h102) 
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B.1.5 Proof tree 
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B.2 Flatten 

This problem is to flatten a tower of blocks. The flattened tower is represented by a 
list of single-block towers. 

B.2.1 Problem specification 

F Vt.twr(t) ® lst(nil) —otwr(empty) ® lst(flattened(t)) 

B.2.2 Axioms 

F lop(h) : 	 twr(h:: t) -o twr(t) ® twr(h :: empty) 

F gather(t, 1): twr(t) ® lst(l) -o lst(t :: 1) 

B.2.3 Rewrite rules 

flattened(h :: t) -+ (h:: empty) :: flattened(t) 	(1 latl) 
flattened(empty) -+ nil 	 (flat2) 

B.2.4 Plan 

At-2. 
twr_rec (t_2, 

Ah2.h2, 
.Xhl.Ab_1.At_1.Ah3. 

let h3 be h4*h5 in 
let lop oh4 be h7*h8 in 
let hloh7*h5 be hlO*hll in hlO*gatheroh8*hll 
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B.2.5 Proof tree 
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B.3 Factorial 

B.3.1 Problem specification 

I- Vx.nat(x) —o nat(fac(x)) ® T 

B.3.2 Axioms 

nat(x) 

I-mult(x,y): nat(x)®nat(y) -0 	 nat(y) 

nat(mu(x, y)) 

I- subl(x) : 	nat(s(x)) —o nat(x) 0 nat(s(x)) 

I- addl(x): 	 nat(x) —o nat(x) 0 nat(s(x)) 

B.3.3 Rewrite rules 

nat(fac(zero)) -+ nat(s(zero)) 	 (fad) 
nat(fac(s(x))) 	nat(mu(s(x), fac(x))) 	(fac2) 

B.3.4 Plan 

)x_2. 
nat_rec (x_2, 

Ah3. 
let addloh3 be h7*h8 in h8*erase, 

Ahi .Ax_1 .Ah113. 
let sublohl13 be h118*h119 in 

let h1oh118 be h123*h124 in 
let znultoh119*h123 be h137*h138 in 

let h138 be h141*h142 in h142*erase) 
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B.3.5 Proof tree 
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B.4 Fibonacci 

B.4.1 Problem specification 

F Vx.(3y.fib(z, y)) ® (3z.f ib(s(x), z)) ® T 

B.4.2 Axioms 

F fibO: 	 -o fib(zero, zero) 

F fibi : 	 -o fib(s(zero), s(zero)) 

fib(x,yl) 

F fib2(x,yl,y2) : fib(x,yl) ® fib(s(x),y2) -o 	 fib(s(x),y2) 

fib(s(s(x)), add(yl , y2)) 

B.4.3 Plan 

Ax-2. 
nat_rec (x_2, 

fibO*fibl*erase, 
Ahi .Ax_1. 

let hi be h9*hlO in 
let hlO be h13*h14 in 

let fib2oh9*h13 be h20*h21 in 
let h21 be h24*h25 in h24*h25*erase) 



147 APPENDIX B. EXAMPLES 

B.4.4 Proof tree 
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B.5 Boat 

This is a river crossing problem. There are ii adults and 2 children wishing to cross 
from the west to the east bank of the river. A boat is available, which may only take 
1 adult or 2 children. 

B.5.1 Problem specification 

inboat(nil) 

at(boat, west) 
0 

at(crowd(n), west) 
I-Vn. 

at(crowd(zero), east) 
0 

at(person(child), west) 
0 

at(person(child), west) 

inboat(nil) 
0 

at(boat, east) 
0 

(m.at(crowd(rn), west)) 
-o 	 0 

at(crowd(n), east) 
0 

at(person(child), east) 
0 

at(person(child), east) 
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B.5.2 Axioms 

at(person(adult) , p1) 

F- leavecrowd: at(crowd(s(n)),pl) -o 

at(crowd(n), p1) 

at(person(adult), p1) 

F- joincrowd: -'-o 	at(crowd(s(n)),pl) 
at(crowd(n),pl) 

at(person(pn), p1) 
at(boat,pl) 

F- embark(pn,pl): at(boat,pI) -0 

inboat(person(pn) :: nil) 
inboat(nil) 

at(person(child), p1) at(boat,pl) 
0 0 

I- embark(child, p1): at(boat,pl) -0 	 inboat(person(child):: 
0 person(child) 

inboat(person(child) :: nil) nil) 

at(boat, p1) 
at(boat,pl) 0 

F disembark(pn, p1): 0 -o 	 inboat(rest) 
inboat(person(pn) :: rest) 0 

at(person(pn) , p1) 

at(boat, west) at(boat, east) 
F roweast : 0 -o 	 0 

inboat(person(pn) :: rest) inboat(person(pn) :: rest) 

at(boat, east) at(boat, west) 
F- rowwest: 0 -o 	 0 

inboat(person(pn) :: rest) inboat(person(pn) :: rest) 
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B.5.3 Plan 

An-2. 
nat_rec (n_2, 
)h2. 
let h2 be h3*h4 in 
let h4 be h5*h6 in 
let h6 be h7*h8 in 
let h8 be h9*h1O in 
let hlO be h11*h12 in 
let embark oh3*h5*h12 be h14*h15 in 
let embarkohll*hl.4*h15 be h17*h18 in 
let roweastoh17*h18 be h20*h21 in 
let disembark oh20*h21 be h23*h24 in 
let h24 be h25*h26 in 
let disembark oh23*h25 be h28*h29 in 
let h29 be h30*h31 in h30*h28*h7*h9*h31*h26, 

Ahl.An_1..\h32. 
let h32 be h33*h34 in 
let h34 be h35*h36 in 
let h36 be h37*h38 in 
let h38 be h39*h40 in 
let h40 be h41*h42 in 
let embark oh33*h35*h42 be h44*h45 in 
let embark oh4l*h44*h45 be h47*h48 in 
let roweastoh47*h48 be h50*h51 in 
let disembark oh50*h51 be h53*h54 in 
let h54 be h55*h56 in 
let rowwestoh53*h55 be h58*h59 in 
let leavecrowdoh37 be h61*h62 in 
let disembark oh58*h59 be h64*h65 in 
let h65 be h66*h67 in 
let embark oh6l*h64*h66 be h69*h70 in 
let roweastoh69*h70 be h72*h73 in 
let disembarkoh72*h73 be h75*h76 in 
let h76 be h77*h78 in 
let embark oh56*h75*h77 be h80*h81 in 
let rowwestoh80*h81 be h83*h84 in 
let disembark oh83*h84 be h86*h87 in 
let h87 be h88*h89 in 
let hloh88*h86*h62*h39*h89*h67 be h91*h92 in 
let h92 be h93*h94 in 
let h94 be h95*h96 in 
let h96 be h97*h98 in 
let h98 be h99*hlOO in 
h91*h93*h95*(joincrowdoh78*h97)*hlOO*h99) 
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B.5.4 Proof tree 
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B.6 Gripper 

This is an adaptation of the gripper domain from the AlPS competition corpus. The 
domain features a robot with two grippers. The goal is to transfer a number of balls 
from one room to another. 

We use natural numbers to represent the number of balls at each location, and provide 
an obvious generalisation. Given the simple induction rule for natural numbers, the 
planner is able to find the plan for the balls one-by-one, using only a single a hand. 

B.6.1 Problem specification 

at(n, rooma) 

at (m, roomb) 

I- Yn.Vm. 	atrobby(rooma) 

free(left) 

free(right) 

atlus(n,m),roomb) ® T 

B.6.2 Axioms 

I- move(from, to) : 	atrobby(from) -o atrobby(to) 

at(s(n), r) at(n, r) 
0 

F- pick(n, r, g) : atrobby(r) -o atrobby(r) 
0 0 

I ree(g) holdsbaU(g) 

at(n, r) at(s(n), r) 
0 0 

F- drop(n, r, g) : atrobby(r) -o atrobby(r) 
0 0 

holdsball(g) free(g) 

B.6.3 Rewrite rules 

plus(zero,y) -* y 	 (plusl) 
plus(s(x),y) -+ s(plus(x,y)) 	(plus2) 
plus(x,s(y)) -+ s(plus(x,y)) 	(plus3) 
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B.6.4 Plan 

An-2. 
nat_rec (n_2, 
)m_2.Ah3. 

let h3 be h6*h7 in 
let h7 be hlO*hul in 
let liii be h14*h15 in 
let h15 be h18*h19 in hlO*erase, 

Ahl.An_1.Ain_12.Ah877. 
let h877 be h880*h881 in 
let h881 be h884*h885 in 
let h885 be h888*h889 in 
let h889 be h892*h893 in 
let pickoh88O*h888*h893 be h1411*h1412 in 
let h1412 be h1415*h1416 in 
let drop oh884*h1416*moveohl4l5 be h1575*h1576 in 
let h1576 be h1579*h1580 in 
let hlos(m_12)o 

h1411*h1575*(move oh1579) *h892*h1580))) 

be h1586*h1587 
in h1586*erase) 
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B.6.5 Proof tree 
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B.7 Gripper2 

This version of the problem uses the nat_ind2 induction rule (Section 6.3.2), which 
allows both robot hands to be used. 

B.7.1 Problem specification 

at(n, rooma) 

at(m, roomb) 

F Vn.Vm. 	atrobby(rooma) 

free(left) 

free(right) 

at(plus(n, m), roomb) ® T 

B.7.2 Axioms 

I- move (from, to) : 	atrobby(from) —o atrobby(to) 

at(s(n), r) at(n, r) 

Fpick(n,r,g) : atrobby(r) -0 atrobby(r) 
0 0 

free(g) holdsball(g) 

at(n, r) at(s(n), r) 
0 0 

F drop(n, r, g): atrobby(r) -o atrobby(r) 
0 0 

holdsball(g) free(g) 

B.7.3 Rewrite rules 

plus(zero,y) -* y 	 (plusl) 
plus(s(x),y) - 	s(plus(x,y)) 	(plus2) 
plus(x,s(y)) -* s(plus(x,y)) 	(plus3) 
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B.7.4 Plan 

An-2. 
nat_rec2(n_2, 
Am_2.Ah3. 

let h3 be h6*h7 in 
let hi be hlO*hll in 
let hil be h14*h15 in 
let h15 be h18*h19 in hiO*erase, 

)m_8.Ah134. 
let h134 be h137*h138 in 
let h138 be h141*h142 in 
let h142 be h145*h146 in 
let h146 be h149*h150 in 
let pickohl37*h145*h150 be h210 in 
let h210 be h213*h214 in 
let h214 be h217*h218 in 
let move oh217 be h219 in 
let dropohl4l*h218*h219 be h230 in 
let h230 be h233*h234 in 
let h234 be h237*h238 in h233*erase, 

Ahi . An_i. Ani_22 . Ah14772. 
let h14772 be h14775*h14776 in 
let h14776 be h14779*h14780 in 
let h14780 be h14783*h14784 in 
let h14784 be h14787*h14788 in 
let pick oh14775*h14783*h14788 be h24833 in 
let h24833 be h24836*h24837 in 
let h24837 be h24840*h24841 in 
let pick ohl4i8i*h24836*h24840 be h29167 in 
let h29167 be h29170*h29171 in 
let h29171 be h29174*h29175 in 
let move oh29i74 be h29177 in 
let dropohi4i79*h29i75*h29177 be h30380 in 
let h30380 be h30383*h30384 in 
let h30384 be h30387*h30388 in 
let drop oh24841*h30383*h30387 be h30616 in 
let h30616 be h30619*h30620 in 
let h30620 be h30623*h30624 in 
let moveoh30623 be h30626 in 
let hlos(s(m_22))o 

h29170*h30619*h30626*h30388*h30624 
be h30630*h30631 
in h30630*erase) 
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B.7.5 Proof tree 
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B.8 Socks 

This is the socks problem described in [Bibel 86] and [Masseron et al 93]. Uncertain 
effects are involved, but not recursion. 

Masseron's formulation has specific axioms for disposing of left-over resources (socks) 
when the goal has been acheived. The formulation used here makes of T instead. 

B.8.1 Problem specification 

bs ® b8 0 T 
I- hs®hs®hs ---o ED 

ws 0 ws ® T 

B.8.2 Axioms 

Fpick: hs —o bsws 

B.8.3 Plan 

)h82. 
let h82 be h85*h86 in 

let h86 be h89*h90 in 
case pickoh90 of 

inl(h94) then 
case pickoh89 of 

inl(h99) then inl(h99*h94*erase) 
inr(hlOO) then 
case pickoh85 of 

ml (h104) then ml (h104*h94*erase) 
inr(h105) then inr(h105*hlOO*erase) 

inr(h95) then 
case pickoh89 of 

inl(h109) then 
case pickoh85 of 

inl(h114) then inl(h114*h109*erase) 
inr(h115) then inr(h115*h95*erase) 

inr(hllO) then inr(hllO*h95*erase) 
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B.8.4 Proof tree 
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B.9 Conformant socks 

This is the socks problem in which we use actions with untestable conditional outcomes 
(See Section 8.7). This forces the planner to generate the conformant version of the 
plan. 

B.9.1 Problem specification 

bs ® bs ® T 
F- 

 
hs®hsøhs --° ED 

ws ® ws ® T 

B.9.2 Axioms 

F pick: hs -o bs 	ws 

B.9.3 Plan 

Ah574. 
let h574 be h577*h578 in 

let h578 be h581*h582 in 
let pickoh582 be h583 in 
let pickoh581 be h594 in 
let pickoh577 be h675 in yields(bs*bs*top+ws*ws*top) 
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B.9.4 Proof tree 
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B.10 Omelette problem 

This problem was introduced in [Levesque 96] as follows: 

We begin with a supply of eggs, some of which may be bad, but at least 3 
of which are good. We have a bowl and a saucer, which can be emptied at 
any time. It is possible to break a new egg into the saucer, if it is empty, 
or into the bowl. By smelling a container, it is possible to tell if it contains 
a bad egg. Also, the contents of the saucer can be transferred to the bowl. 
The goal is to get 3 good eggs and no bad ones into the bowl. 

In our representation, we do not separate the action with an uncertain outcome from 
the sensing action. A peano representation of natural numbers is used to count the 
eggs. The representation uses the form eggs(pl ace, n_good, n_total) to mean that there 

are (at least) ngood good eggs out of a total ntotal eggs at place. 

We (manually) separate the problem into the proof of a lemma, and the proof of the 
top level goal using the lemma. The lemma says that if there is at least one good egg 
in the fridge, then we can add it to the eggs in the bowl. 

The detect-impossible action is used to eliminate the impossible situation where 
there are more good eggs than the total number of eggs. 

B.10.1 Problem specification (for 3-egg problem) 

eggs(f ridge, s(8(s(zero))),n_total) 

eggs (saucer, zero, zero) 

eggs(bowl, zero, zero) 

-o 

I- Vniotal. 
(n_remaining.eggs(f ridge, zero, n_remaining)) 

eggs(saucer, zero, zero) 

eggs(bowl, s(s(s(zero))), s(s(s(zero)))) 

T 
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B.10.2 Axioms 

F break_into(cont) 

F saucer-to-bowl 

F saucer..to_bin: 

F detect_impossible 

eggs(fridge,s(nl), s(n2)) 

eggs(cont, n3, n4) 

eggs(fridge, s(nl), n2) 

eggs(cont, n3, s(n4)) 
ED 

eggs (fridge, nl, n2) 
0 

eggs(cont, s(n3), s(n4)) 

eggs(saucer, S (zero), s(zero)) 	 eggs (saucer, nl, n2) 
0 	 -o 	 0 

eggs (bowl, n3, n4) 	 eggs(bowl, s(n3), s(n4)) 

eggs(saucer, nl, n2) -o eggs (saucer, zero, zero) 

eggs (f ridge, s(n),zero) -o 0 

B.10.3 Lemma 

This lemma is proved separately, and used as an axiom in the proof of the main goal. 
The lemma says that if we have at least one good egg in the fridge, we can get it into 
the bowl. 

(2d.eggs(fridge, a, d)) 
eggs (f ridge, s(a), b) 	 0 

0 	 eggs(saucer, zero, zero) 
F lemmal : Va.Vb.Vc. 	eggs(saucer, zero, zero) -o 

0 	 eggs (bowl, s(c), s(c)) 
eggs(bowl,c,c) 

T 
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B.10.4 Plan (for lemma) 

The lemma was found automatically (excluding selection of induction rule). 

Aa_1.)b_2. 
nat_rec (b_2, 

Ac_2.Ah3. 
let h3 be h6*h7 in 

let h7 be hlO*hll in 
abort (detect-impossible oh6), 

)h1.Ab_1.)c_8.Ah1O3. 
let h103 be h106*h107 in 

let h107 be hllO*huil in 
case break_intooh106*h11O of 

inl(h131) then 
let h131 be h135*h136 in 
let 
hi o c_8oh135*saucer_to_binohl36*hill 

be h142*h143 in 
let h143 be hi46*h147 in 

let h147 
be h150*h151 
in h142*hi46*h150*erase 

inr(h132) then 
let h132 be h154*h155 in 
let saucer_to_bowloh111*h155 be h160*h161 in 
h154*h160*hi6i*erase) 
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B.10.5 Proof tree (for lemma) 
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B.10.6 Plan (for 3-egg problem) 

The 3-egg problem was solved automatically, given the lemma as an axiom. 

)iii_total_12 . Ah1914. 
let h1914 be h1917*h1918 in 
let h1918 be h1921*h1922 in 
let leinmal os(s(zero)) on_total_l2o zero ohl9j.7*h1921*h1922 
be h3210*h3211 in 
let h3211 be h3214*h3215 in 
let h3215 be h3218*h3219 in 
let lemmal o s(zero) od_282o s(zero) oh3210*h3214*h3218 
be h3360*h3361 in 
let h3361 be h3364*h3365 in 
let h3365 be h3368*h3369 in 
let lemmal o zero o d_294 o s(s(zero)) oh3360*h3364*h3368 
be h3389*h3390 in 
let h3390 be h3393*h3394 in 
let h3394 be h3397*h3398 in 
h3389*h3393*h3397*erase 
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B.10.7 Proof tree (for 3-egg problem) 
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B.11 Generalised omelette problem 

This problem presents the more general version of the problem: to make an omelette 
from any number of good eggs. The proof relies on the same lemma as the 3-egg version 
of the problem (Section B.10.3). 

This problem can be solved interactively, but the solution does not lie within the search 
space of the Lino search procedure. 

The failure is caused by the interaction of quantifier rules. The Decompose phase of the 
planning algorithm commits too early to removing the universal quantifiers around the 
induction hypothesis. This prevents matching with the constant which is introduced 
by the existentially quantified effects. 

B.11.1 Problem specification 

Initially, the fridge contains a good eggs, out of a total of b eggs, and the bowl contains c 
good eggs. Introducing the variable c instead of using zero is a required generalisation. 

(r 	I 
 

(3d.eggs(fridge, zero, d)) 
eggs(f ridge, a, b)  

F- 	
eggs(saucer, zero, zero) 

Va.Vb.Vc. [ eggs(saiicer, zero, zero) 	

i 
J 	I 	 II eggs(bowl,c,c) 	

eggs (bowl, plus (a, c), plus(a, c)) 
0  
T 

B.11.2 Rewrite rules 

plus (zero,y) -+ y 	 (plusl) 
plus(s(x),y) —* s(plus(x,y)) 	(plus2) 
plus(y,zero) -4 y 	 (p1u83) 
plus(x,s(y)) -+ s(plus(x,y)) 	(p1u84) 
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B.11.3 Plan 

Aa_2. 
nat_rec (a_2, 

Ab_1.Ac_1.Ah2. 
let h2 be h3*h4 in 
let h4 be h5*h6 in h3*h5*h6*erase, 

Ah1.Aa_1 .Ab_2.Ac_2.Ah7. 
let h7 be h8*h9 in 

let h9 be hlO*hli in 
let lemmal o a_i ob_2 o c_2 oh8*hiO*hii 

be h17*h18 in 
let h18 be h19*li20 in 

let h20 be h2i*h22 in 
let hlod_los(c_2) ohi7*hi9*h21 
be h26*h27 in 
let h27 be h28*h29 in 

let h29 be h30*h31 in h26*h28*h30*erase) 
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B.11.4 Proof tree 

38 
1-0 

I I 	44 
—i rr 

41 	45 
ri 

I 	I 	46 
—i rr 

47 
lexists 

49 	I 51 
rexists 	[ 

a 	I52  
axi 

 

	

ax 	r*  

54 
lrewrite (plus4) 

I lrewrite(plus4)  I 

I rrewrite(plus2)  I 

I rrewrite(plus2) I 

laxi 
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