
Deductive Synthesis of Recursive Plans
in Linear Logic

Stephen N. Cresswell

3'Al V

*
b1 N

Ph.D.
University of Edinburgh

2001

(Lu.

Dedicated to the memory
of my father,

Eric Cresswell.

Abstract

Conventionally, the problem of plan formation in Artificial Intelligence deals with the

generation of plans in the form of a sequence of actions.

This thesis describes an approach to extending the expressiveness of plans to include

conditional branches and recursion. This allows problems to be solved at a higher level,

such that a single plan in such a language is capable of solving a class of problems rather

than a single problem instance. A plan of fixed size may solve arbitrarily large problem

instances.

To form such plans, we take a deductive planning approach, in which the formation of

the plan goes hand-in-hand with the construction of the proof that the plan specifica-

tion is realisable.

The formalism used here for specifying and reasoning with planning problems is Gi-

r&d's Intuitionistic Linear Logic (ILL), which is attractive for planning problems be-

cause state change can be expressed directly as linear implication, with no need for

frame axioms. We extract plans by means of the relationship between proofs in ILL

and programs in the style of Abramsky.

We extend the ILL proof rules to account for induction over inductively defined types,

thereby allowing recursive plans to be synthesised. We also adapt Abramsky's frame-

work to partially evaluate and execute the plans in the extended language.

We give a proof search algorithm tailored towards the fragment of the ILL employed

(excluding induction rule selection). A system implementation, Lino, comprises mod-

ules for proof checking, automated proof search, plan extraction and partial evaluation

of plans.

We demonstrate the encodings and solutions in our framework of various planning

domains involving recursion. We compare the capabilities of our approach with the

previous approaches of Manna & Waldinger, Ghassem-Sani & Steel and Stephan &

Biundo. We claim that our approach gives a good balance between coverage of problems

that can be described and the tractability of proof search.

111

Acknowledgements

I would like to thank my supervisors, Dr. Alan Smaill and Dr. Julian Richardson for
being extremely supportive and patient. Thanks also to Dr. Louise Pryor, who was a
supervisor in the earlier stages of the work, and to members of the DReaM group at
Edinburgh.

Dr. Maria Fox and Dr. Derek Long generously made allowances for me to complete
the work whilst working in the Planning Group at Durham University.

I would like to thank my examiners, Dr. Paolo Traverso and Prof. Michael Fourman
for giving valuable constructive feedback.

I would also like to thank my family and friends for all their support and encourage-

ment.

This work was supported by an EPSRC studentship. 	 -

iv

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

Stephen Cresswell
Edinburgh
November 20, 2001

V

Publications

Parts of this thesis have already appeared in print, have been submitted for publication,
or have been made publicly available:

Stephen Cresswell, Alan Smaill, and Julian Richardson. Deductive synthesis of recur-
sive plans in linear logic. In Proceedings of the Fifth European Conference on Planning
ECP-99, pages 252-263, Durham, UK, 1999.

vi

Contents

Abstract 	 iii

Acknowledgements 	 iv

Declaration 	 v

Publications 	 vi

List of Figures 	 xvi

1 Introduction 	 1

	

1.1 	Context 2

	

1.2 	Approach3

	

1.3 	Thesis structure5

2 Background: Planning
	 7

	

2.1 	Situation calculus
	 8

	

2.1.1 Search in the situation calculus 	 10

	

2.2 STRIPS representation
	 11

	

2.3 Plan space planners
	 13

2.3.1 Example - solution of the Sussman anomaly
	 14

	

2.3.2 Development of causal link planners 	 16

	

2.4 	Graphplan 	 16

2.4.1 	Representation 	 17

2.4.2 	Algorithm 	 17

	

2.5 Conformant and contingent planning 	 18

vii

2.5.1 Warplan-C 	 19

2.5.2 CNLP 	 19

2.5.3 	Cassandra20

2.5.4 	Graphplan derivatives20

2.6 	Discussion20

3 Background: Formation of Recursive Plans 22

3.1 Introduction 22

3.2 Manna and Waldinger 23

3.3 Ghassem-Sani and Steel's RNP 26

3.3.1 	RNP - Plan representation 26

3.3.2 	RNP - Induction principle 27

3.4 Stephan and Biundo 29

3.4.1 	Recursive planning in LLP 31

3.5 Inductive theorem provers 32

3.5.1 	Introduction 32

3.5.2 	Boyer and Moore 32

3.5.3 	Proof planning 33

3.5.4 	Rippling 34

3.5.5 	Choice of induction variable and rule 34

3.5.6 	Generalisation 35

3.5.7 	Summary 36

3.6 Conclusion 36

4 Linear Logic 	 38

	

4.1 	Introduction38

	

4.2 	Basics of linear logic38

	

4.2.1 	Exponentials39

	

4.3 	Linear logic for planning40

4.4 Masseron's geometry of conjunctive actions42

	

4.4.1 	Overview 42

viii

4.4.2 Details 	 42

4.4.3 	Example44

4.4.4 	Discussion44

4.5 	Summary 	45

5 Linear Logic Planning with Plan Terms 46

5.1 Introduction 46

5.2 Constructing plan terms 46

5.2.1 	Transition axioms 47

5.2.2 	Identity axiom and cut rule 47

5.2.3 	Linear implication 48

5.2.4 	Multiplicative conjunction 48

5.2.5 	Disjunctive effects and conditionals 48

5.2.6 	Special values 49

5.2.7 	Quantifiers 50

5.2.8 	Equality 51

5.2.9 	Relationship to features of planning problems 51

5.2.10 	Partial specification of initial state 52

5.3 Plan execution 52

5.4 Partial evaluation 53

5.4.1 	Correctness of partial evaluation 54

5.4.2 	The relationship between -4 and 4 55

5.5 Correspondence of Linear Lambda Calculus programs to plans 55

5.5.1 	Partially-ordered plans in Linear Lambda Calculus 57

5.5.2 	Execution of primitive steps 59

5.6 Sources 59

5.7 Summary 59

6 Induction and Formation of Recursive Plans 	 61

	

6.1 	Introduction61

	

6.2 	Induction 62

ix

6.2.1 Special considerations for induction in Linear Logic 62

6.3 	Formation of recursive plans 63

6.3.1 Inductive datatype and corresponding induction rule 63

6.3.2 Other inductively defined datatypes 64

6.3.3 Recursion versus iteration 65

6.3.4 Operational semantics of recursive plans 66

6.3.5 Partial evaluation of recursive plans 68

6.3.6 The relationship between ==* and JL 69

6.4 	Examples 70

6.4.1 Example using towers 70

6.4.2 Example partial evaluation 73

6.4.3 Example with sets represented as lists 74

6.4.4 Example using trees 76

6.4.5 Example: 	Nim 79

6.5 	Summary 83

7 Automated Proof Search 84

7.1 Introduction 84

7.2 Search in linear logic 84

7.2.1 	Jacopin's CSLL algorithm 85

7.2.2 	Connection-based methods 87

7.2.3 	Linear logic programming 90

7.2.4 	Summary 95

7.3 Forward chaining versus backward chaining in ILL proof search 96

7.3.1 	Forward chaining without T 96

7.3.2 	Forward chaining with T 96

7.3.3 	Backward chaining without T 97

7.3.4 	Backward chaining with T 97

7.4 A complete proof search strategy for a fragment of ILL 99

7.4.1 	Complete search 99

7.4.2 	Invertible rules 100

x

7.4.3 	Non-invertible rules 101

7.4.4 	Strategy 101

7.4.5 	Unbounded actions 101

7.4.6 	Summary 102

7.5 	Search strategy for a larger fragment 102

7.5.1 	Categorisation of rules 103

7.5.2 	Search algorithm 104

7.5.3 	Reduced Fragment 107

7.5.4 	Depth bound 107

7.6 	Rewriting strategy 108

7.6.1 	Introduction 108

7.6.2 	Functions specified as rewrites 108

7.6.3 	Summary 108

7.7 	Conclusion 109

8 The Lino Implementation 110

8.1 Introduction 110

8.2 Overview 110

8.3 Lazy context splitting 111

8.4 Problem specification 114

8.5 Proof scripts 115

8.6 Output from Lino 115

8.7 Conformant plans 115

8.8 Partial evaluation and plan execution 117

8.9 Code 	Size 117

8.10 Conclusions 118

9 Evaluation 	 119

9.1 	Introduction119

9.2 Comparison with linear logic systems119

9.2.1 	Jacopin 119

xi

9.2.2 	Lolli • 120

9.2.3 	Lygon 121

9.2.4 	Hölldobler et al 	121

9.3 	Comparison with other recursive planners 122

9.3.1 	Basis for comparison 122

9.3.2 	Manna and Waldinger 123

9.3.3 	Ghassem-Sani and Steel 124

9.3.4 	Stephan and Biundo 125

9.3.5 	Lino 125

9.4 	Example problems 126

9.4.1 	Examples from Ghassem-Sani 126

9.4.2 	Example problems for Lino 127

9.5 	Discussion 129

10 Conclusions and Further Work 130

10.1 Introduction 130

10.2 Conclusions 130

10.2.1 	Contributions 130

10.3 Further Work 132

10.3.1 	Proofs of correctness 132

10.3.2 	Equality of values 133

10.3.3 Equality of plan terms and conformant planning 133

10.3.4 	Formulation of problems in linear logic 134

10.3.5 	Search control in Lino 135

10.3.6 	Induction rule choice 136

10.3.7 	Generalisation of specification 136

10.3.8 	Complete search 137

10.4 Summary 137

A Invertible Rules in Intuitionistic Linear Logic 	 138

B Examples
	 139

xli

B.1 Reverse blocks . 139

B.1.1 	Problem specification 139

B.1.2 	Axioms 139

B.1.3 	Rewrite rules 139

B.1.4 	Plan 140

B.1.5 	Proof tree 141

B.2 Flatten 142

B.2.1 	Problem specification 142

B.2.2 	Axioms 142

B.2.3 	Rewrite rules 142

B.2.4 	Plan 142

B.2.5 	Proof tree 143

B.3 Factorial 144

B.3.1 	Problem specification 144

B.3.2 	Axioms 144

B.3.3 	Rewrite rules 144

B.3.4 	Plan 144

B.3.5 	Proof tree 145

B.4 Fibonacci 146

B.4.1 	Problem specification 146

B.4.2 	Axioms 146

B.4.3 	Plan 146

B.4.4 	Proof tree 147

B.5 Boat 148

B.5.1 	Problem specification 148

B.5.2 	Axioms 149

B.5.3 	Plan 150

B.5.4 	Proof tree 151

B.6 Gripper 153

B.6.1 	Problem specification 153

xiii

B.6.2 	Axioms .
153

B.6.3 	Rewrite rules 153

B.6.4 	Plan 154

B.6.5 	Proof tree 155

B.7 	Gripper2 156

B.7.1 	Problem specification 156

B.7.2 	Axioms 156

B.7.3 	Rewrite rules 156

B.7.4 	Plan 157

B.7.5 	Proof tree 158

B.8 	Socks 160

B.8.1 	Problem specification 160

B.8.2 	Axioms 160

B.8.3 	Plan 160

B.8.4 	Proof tree 161

B.9 	Conformant socks 162

B.9.1 	Problem specification 162

B.9.2 	Axioms 162

B.9.3 	Plan 162

B.9.4 	Proof tree 163

B.10 Omelette problem 164

B.10.1 Problem specification (for 3-egg problem)164

B.10.2 	Axioms 165

B.10.3 	Lemma 165

B.10.4 Plan (for lemma) 166

B.10.5 Proof tree (for lemma) 167

B.10.6 Plan (for 3-egg problem) 168

B.10.7 Proof tree (for 3-egg problem) 169

B.11 Generalised omelette problem 170

B.11.1 	Problem specification 170

xiv

B.11.2 Rewrite rules 	 . 170

B.11.3 Plan171

B.11.4 Proof tree172

Bibliography
	 173

xv

List of Figures

1.1 Problems, plans and processes 	 . 3

4.1 Example pseudo-plan 44

5.1 Example program/plan57

5.2 Example partially-ordered plan in STRIPS58

5.3 Example graphical representation of partially-ordered plan in Linear
Lambda Calculus 59

6.1 Proof tree for 9-counter Nim game . 81

6.2 Proof tree for Nim game with 4n + 1 counters 82

xvi

Chapter 1

Introduction

Planning is concerned with the problem of finding a course of action that will achieve

a given goal. In conventional Al planning, the problem is specified by giving an initial

state, some desired goal conditions and a repertoire of available actions that can be

performed. The solution consists of a set of applications of the actions, together with

a partial or total order for their execution.

This means that:

The planner must laboriously discover the whole plan step-by-step, even when

it has a very simple repetitive structure. The performance of planners generally

scales very badly with problem size.

The planner can only solve the problem if every detail is known about the initial

state of the world.

We are interested in problems in which plans involving repetition are useful. A simple

way to model repetitive plans is by the use of recursion.

Using recursion allows a some kinds of planning problem to be solved at a higher level,

in which we know the structure but not necessarily the details. For instance, we could

form a general plan to invert a tower of blocks without knowing in advance exactly

how many blocks are involved. This tackles issue (1) and also addresses a form of (2).

This thesis describes a recursive planning approach based on linear logic [Girard 87].

Plans are constructed in a language that can express recursion, conditional branching,

1

CHAPTER 1. INTRODUCTION 	 2

and partial ordering of steps. The plan is found by searching for a linear logic proof

that the plan specification is realisable. A system has been implemented which can

solve a range of problems in a semi-automatic way.

1.1 Context

There have been several notable studies of recursive planning. It is natural to approach

the task in the deductive planning framework, in which the formation of plans takes

place as a by-product of forming a proof in some appropriate logic.

Manna and Waldinger [Manna & Waldinger 87] focussed on formulating a deductive

system that was expressive enough to describe state-changing actions. Using a de-

ductive approach based on situation calculus, they demonstrated the formation of

recursive plans by building the corresponding inductive proofs. However, it is difficult

for a search procedure to automatically control inference in their framework. They do

not give an automatic search algorithm for their framework.

Ghassem-Sani and Steel [Ghassem-Sani & Steel 91] use an enhanced STRIPS represen-

tation in a non-linear planner. This gives a good solution to search control, but at the

expense of limiting the representation to the extent that many interesting problems

cannot be tackled.

In general, we have a trade-off between the expressiveness of the representation and

the ease with which proof search can be carried out. Efficient search is easier for less

expressive formalisms which, on the other hand, cannot be used to formulate the sorts

of problems we are interested in.

In this way, previous work on formation of recursive plans has either given a powerful

logical representation to the problem which is not amenable to automation, or has

made search feasible by limiting the logic so much that many problems cannot be

represented.

CHAPTER 1. INTRODUCTION
	

3

Abstract problem 	 Lino
	

Abstract plan

Problem instantiation
	

:EvaIuatdion 	 Plan generalisation

Ground problem
(inductive types)

Ground plan
(inductive types)

Problem translation I 	Problem translation I
	 Plan translation 	I

	
Plan translation

Ground problem I
(propositional) I 	STRIPS planner

Ground plan
(propositional)

Figure 1.1: Problems, plans and processes.

1.2 Approach

One of the difficulties of describing actions in a logical system is that of describing

exactly what changes and what remains the same as the result of performing an action.

This is known as the frame problem.

Linear logic offers a simple built-in solution to this problem, as its own version of im-

plication can be read directly as describing a state change. This makes it a particularly

attractive logic on which to base our deductive planning system.

Linear logic has previously been applied to planning only as a small fragment for

dealing with a limited kind of plans [Masseron et al 93]. We consider that its strength

lies in using a larger fragment of the logic to talk about a more general sort of plan.

We show how plans can be formed in this language by associating terms representing

constructs in the plan language directly with the deduction rules of the logic. This

accounts for a plan language that can describe partial ordering of plan steps, conditional

branches, and actions with uncertain effects. Such a language is given in [Abramsky

93], and we extend this for our purpose.

In order to set our work in the context of STRIPS planning we consider three repre-

CHAPTER 1. INTRODUCTION 	 4

sentations for problems, and their corresponding plan representations.

Planning problems stated in a STRIPS representation - i.e. propositional, with

a finite set of objects in the domain.

Planning problems stated in a linear logic representation allowing inductively

defined datatypes, but with plan specification fully instantiated.

Planning problems stated in a linear logic representation allowing inductively

defined datatypes, in which we seek a general recursive solution.

Here (1) is the representation conventionally used for planning problems. (3) is the

representation we have used, and (2) is an intermediate stage. Fig. 1.1 shows the

methods that may be used to convert between plans and processes in these representa-

tions.The solid ellipses represent processes for which we have an algorithm. The dotted

ellipses represent processes which have not been automated.

This thesis deals mainly with the generation of abstract solutions from abstract ex-

pressions of the problems. By also introducing induction rules into the logic we can

form recursive plans. These ideas form the basis of an interactive proof checker, which

can be used to synthesise plans interactively to meet to a given specification.

We describe a proof search strategy which can solve problems automatically if specified

using a certain fragment of the logic. This fragment is chosen carefully to be just

expressive enough to represent the features required for a good coverage of planning

problems.

Novel aspects are:

. We extend linear logic with induction rules to allow the formation of recursive

plans.

We give a new proof procedure which is adequate for a fragment of intuitionistic

linear logic chosen for expressing planning problems.

. We have a system that is expressive enough to model interesting recursive prob-

lems, but restricted enough for automated solution to be realistic.

CHAPTER 1. INTRODUCTION
	

5

1.3 Thesis structure

Chapter 2 reviews approaches to planning, considering the situation calculus and

STRIPS representations. The compromise between expressiveness and tractability

is considered. Efficient planners based on the STRIPS representation are described.

Extensions to deal with the formation of conditional structures are reviewed.

Chapter 3 reviews previous work on systems for forming recursive plans. Manna and

Waldinger's system is general but has never been automated. Ghassem-Sani and Steel

implemented a more limited automatic system based on STRIPS planning, but no

proof of its correctness. Stephan and Biundo implemented a deductive system in

which interactive proof of recursive plans was a preparatory stage for a fully automatic

planner.

Chapter 4 introduces linear logic, and explains how it was used by Masseron to account

for simple planning problems. Masseron gives a plan extraction procedure which allows

partially-ordered plans to be extracted from proofs.

In Chapter 5, we introduce our scheme for relating plans to linear logic proofs. This

enables a larger fragment of the linear logic to be used in plan formation with a

correspondingly richer plan language. For each construct in the plan language, we

define what it means to execute that construct.

Chapter 6 introduces inductive datatypes, and shows how appropriate induction rules

can be added to the proof system. The corresponding constructs in the plan lan-

guage are defined. Examples are given of recursive planning problems involving various

datatypes and induction rules.

Chapter 7 considers automated proof search in this framework. Techniques from in-

ductive theorem proving such as rippling for controlling rewriting and generalisation

are described. Other techniques from planning and linear logic programming are also

considered. We then give a search algorithm which is specialised for planning problems

expressed in an appropriately chosen fragment of linear logic.

Chapter 8 describes Lino, our implemented system incorporating proof checking, proof

search, and the extraction, partial evaluation and execution of plans.

CHAPTER 1. INTRODUCTION
	

6

Chapter 9 evaluates the planning framework with respect to the range of problems on

which it can be successfully used. Comparisons are made with other systems. Strengths

and weaknesses are considered.

Chapter 10 is the. conclusion. The findings are summarised and put in perspective.

Opportunities for further development are considered.

Chapter 2

Background: Planning

An intelligent agent should be able to reason about its own actions and the changes

that these will bring about in the world. In Artificial Intelligence, planning usually

involves the formation of a sequence of primitive actions in order to change the world

to a required goal state.

This chapter reviews the background of planning in Artificial Intelligence, looking at

both representation and search algorithms.

We will see that there is generally a trade-off between the expressiveness of the rep-

resentation used for the planning problem, and the tractability of search using that

representation.

At one extreme lies situation calculus (Section 2.1), which is very expressive, but for

which the intractability of proof search makes it impractical for planning. At the other

extreme is the STRIPS representation, which is not very expressive, but has allowed

practical search algorithms to be developed. We look at the most successful search

algorithms for the STRIPS representations.

We then look at some of the intermediate stages - planners that extend the STRIPS

representation back in the direction of more expressiveness, and correspondingly adapt

the STRIPS search algorithm. We focus on the treatment of actions with uncertain

outcomes, as this is one of the aspects which will be later treated in the linear logic

framework.

'4

CHAPTER 2. BACKGROUND: PLANNING

2.1 Situation calculus

Situation calculus is a regime for representing and reasoning about changes of state

using first order logic. This was first introduced by [McCarthy & Hayes 69]. We present

its use for reasoning only about state here, but the original work suggested its use for

reasoning about belief, knowledge, etc. Although this work dates from a long time ago,

it was influential in setting up background assumptions that underpin much planning

work since.

We can describe a static world by assuming it can be described only in terms of:

Objects Unique objects in the world can be represented by their names, e.g. we might

have building blocks called a,b, and another object called table, etc.

Relations We need to also represent the relations between objects using relations,

e.g. on(a,b), dear(a).

We could describe a static situation using only a conjunction of such statements, e.g.,

on(a, b) A on(b, table) A clear(a)

r
This is fine for describing a single, unchanging state, but we want to describe changes of

state, so we need to consider also that there are states referred to by an extra argument

in each relation.

So we could describe two situations as follows:

dear(a, Si) A
dear(a,so) A 	 dear(b,si) A
on(a,b,so) A 	 ori(a, table, si) A
on(b, table, so) 	 o'n(b, table, si)

CHAPTER 2. BACKGROUND: PLANNING

a

b

SO

~io 	Fa I Fi
S I

We also want to be able to talk about the relationships between the situations. For in-

stance, Si is the state that results from s o by the execution of a command move(a, table).

We can express this in situation calculus by the use of the result function, which

maps actions and situations to new situations. In this example, we would have

= result(move(a, table), s o).

So now we have representation which is capable of describing situations and the rela-

tionships between situations. We can also describe sequences of actions (i.e. plans), as

they simply correspond to nested applications of the result function.

In order to be able to reason about correct plans using this representation, we will also

need a general way to describe what are the effects of an action when applied in any

state.

We need to express:

. restrictions on when it is possible to perform actions,

a specification saying how to derive the description of the state after the change

from the description of the state before the change.

For instance, suppose we wish to describe the action of placing one block on another,

we could write the description as:

Vx, y, s clear(x, s) A ci ear(y, s) D on(x, y, result(putom(x, y, s))) A
clear (x, result (put on(x, y, s)))

On the left of the implication, we can give preconditions to the execution of an action.

These are the conditions which must be satisfied for the action to be applicable. On

the right, we give properties of the new situation (the effects).

Unfortunately, it is not sufficient to only describe those relations which change in the

CHAPTER 2. BACKGROUND: PLANNING 	 10

new situation, it is also necessary to provide frame axioms, which allow the unchanged

relations to also be deduced for the new state. For instance, if we know that a block

is red, we need to state that it will be still be red after it is moved.

Vx, y, s colour(x, red, s) D colour(x, red, result (puton(x, y)))

The fact that we also need to explicitly specify everything that persists as the result of

an action is a manifestation of the frame problem. Any representation for a planning

problem needs to find some way of coping with the frame problem. If we use situation

calculus with frame axioms like the example above, then even small problems require a

prohibitively large number of frame axioms, and potentially a large amount of inference

is also required. As we will see Chapter 5, linear logic provides a simple way addressing

the frame problem.

2.1.1 Search in the situation calculus

Having given some idea of how the situation calculus may be used to represent and

reason about actions, we must now consider how it could be used to automatically

form plans of action. This requires performing a search. In the simplest case, one

could imagine a planner which searched through a space of possible states derived by

non-deterministically selecting applicable actions, then deriving the properties of the

new state from the axioms defining the actions.

Cordell Green's QA3 system [Green 69] was an ambitious and noteworthy early plan-

ning system based on the situation calculus. This was a resolution theorem prover

which anticipated much of the more recent work on deductive planning. It was capa-

ble of forming plans with conditionals, loops, etc.

This system was not very practical because it had poor of control of inference, and

no particularly good solution of the frame problem. A more interesting flaw was that

references to explicit states could appear in the final plan, and this sometimes meant

that the plan demanded tests on hypothetical states. This problem was subsequently

taken on by Manna and Waldinger (Section 3.2).

CHAPTER 2. BACKGROUND: PLANNING
	

11

2.2 STRIPS representation

The situation calculus is a very expressive representation language, but a consequence

of this expressiveness is that making inference in this logic is computationally expensive.

To counter this problem, The STRIPS planner introduced a more restrictive represen-

tation for plan operators, which allows search to be carried out more efficiently [Fikes

& Nilsson 71].

The following assumptions are made in the treatment of planning work described in

this section.

The STRIPS assumption: Nothing changes except by application of an action.

Atomic time: Execution of an action is indivisible and uninterruptable, so we need

not consider the state of the world while execution is proceeding.

Deterministic effects: The effect of executing any action is a deterministic function

of the action and the state of the world when the action executed.

A STRIPS operator is defined by a list of preconditions, a list of statements that are

added by the action, and a list of literals that are deleted by the action.

operator puton(X,Y)

preconditions: clear(X)
clear(Y)
on (X , Z)

addlist: 	on(X,Y)
clear(Z)

deletelist: 	on(X,Z)
clear(Y)

The STRIPS operators describe purely syntactic manipulations on the world descrip-

tion. The STRIPS world description could be seen as a set of (implicitly conjoined)

formulas. The operator definitions describe what formulas should be added and deleted

from the world description when the actions are carried out.

CHAPTER 2. BACKGROUND: PLANNING 	 12

The STRIPS planner itself worked by goal regression. Starting with the goal conditions,

an operator is selected that achieves an outstanding goal condition.

It is usually more efficient to start the planning process from the goal, and to try to

connect it with the initial state, since the the initial state may contain information not

relevant to the problem, whereas the goal state is typically only a partial specification.

This means that only the important information about the goal state is used in the

search process.

In the original STRIPS planner, the assumption was made that all goals were inde-

pendent, i.e. that one goal could be completely solved before attempting to solve the

next. This lead to incompleteness in the plan search space - some solutions could

simply not be found by STRIPS, since it could not interleave steps required to solve

different goals at the top level. This is sometimes called the linearity assumption.

The classic example of this problem is known as the Sussman anomaly problem [Suss-

man 731. The problem can be solved with a three-step plan, but STRIPS could only

find longer, redundant plans.

The goal state consists of only two statements on(a, b) and on(b, c).

a
c b
a-c

If STRIPS attempts to satisfy the goal on(a, b) first, it succeeds in finding a plan

involving the following sequence of state transitions:

Ri 	 Ri

This makes it impossible to achieve on(b, c) without undoing on(a, b). Subsequent steps

generated by STRIPS would be:

ri 	 Ri
1ri - R1[1[1 - rnri

CHAPTER 2. BACKGROUND: PLANNING
	

13

Similarly, if STRIPS attempted to satisfy the om(b, c) first, it still would find a similar

problem. To get around this problem, it is necessary to use a quite different approach.

2.3 Plan space planners

The existence of this sort of goal-interaction problem motivated another shift in the

approach to planning problems.

Instead of searching through a space of world states, a search is performed through

a space of partially-specified plans. Partially specified plans may contain unsatisfied

goals, unbound variables, and only partial descriptions of step ordering. This allows

a least-commitment approach, in which arbitrary choices in search are deferred until

more information is available.

A partially-specified plan consists of:

a set S of plan steps

a set 0 of ordering constraints on elements of S

a set B of binding constraints on variables

. a set C of causal links. Each causal link names a relation, a producer step (which

adds the statement as effect) and a consumer step (which requires the statement

as a precondition).

The search algorithms for this representation can be considered as a selection of plan

refinement operations, which attempt to fill in more of the plan to resolve possible

conflicts in the current partial plan.

Typically, plan refinement operations are;

. Select a subgoal.

. Choose an operator.

. Resolve threats.

CHAPTER 2. BACKGROUND: PLANNING
	

14

- Threats are steps that might delete (clobber) a protected condition. This

means that the present step ordering could allow the threatening step to

delete some condition which is required as a precondition of another step.

- Threats can be resolved by one one of:

promotion - add an ordering constraint to ensure that the clobbering

action occurs after the consumer of the threatened link.

demotion - add an ordering constraint to ensure that the clobbering ac-

tion occurs before the producer of the threatened link.

Posting equality/ inequality constraints - in the presence of uninstan-

tiated variables, it is possible to add constraints on the binding of van-

ables to ensure that the relation clobbered is not the same as the one

protected.

2.3.1 Example solution of the Sussman anomaly

Here we present a walk-through of such a planner solving the Sussman anomaly prob-

lem. This account is based on Dan Weld's tutorial [Weld 94]. The planning process

starts off from dummy initial and goal nodes. The start node has effects and no pre-

conditions, and the goal has preconditions and no effects. Here the plan steps are

represented by boxes with the name of the step at the top, the preconditions in the

left column, and the effects in right column.

Initial Goal
on(c,a) 	on(a,b)

on(a,table) 	on(b,c)
on(b,table)

clear(b)
clear(c)

Add a step move(b, table, c) to satisfy goal om(b, c)

Goal
on(a,b)
on(b,c)

Initial
on(c,a)

on(a,table)
on(b,table)

clear(b)
clear(c)

move(b,table,c)
on(b,table) on(b,c)

clear(b) -on(c,table) I clear(c) -clear(c)

move(b,table,c)
on(b,table) on(b,c)

clear(b) -on(c,table) I clear(c) -clear(c)

Goal
on(a,b)
on(b,c)

CHAPTER 2. BACKGROUND: PLANNING
	

15

Causal links are shown by blue lines, and step ordering is shown by black lines. Step

ordering is omitted where it is implied by causal links. The '-' before a statement

indicates the effect is a delete effect.

We can add a further causal link to satisfy the goal clear(b). We happen to choose not

to satisfy dear(c) just yet.

Now suppose we next choose to satisfy the goal on(a, b). We could do this by adding

a step move(a, table, b).

move(a,table,b)
on(a,table) on(a,b)

clear(a) -on(a,table)- I clear(b) -clear(b)

move(b,table,c)
on(b,table) on(b,c)

clear(b) I -on(c,table)
clear(c) -clear(c)

Goal
on(a,b)
on(b,c)

But now we find that the link clear(b) is threatened, since the new step could delete

this relation before the execution of move(b, table, c) and which requires dear(b) as a

precondition. Now we have a choice of how to resolve this threat. It turns out that it

can be removed by promoting the threatening action, which means adding an ordering

constraint (shown in black).

move(a,table,b)
.-,I. •.kI..\ I 	'..1,.'

CHAPTER 2. BACKGROUND: PLANNING 	 16

The final plan requires a further step and a further threat resolution, and is shown

below.

move(a,table,b)

2.3.2 Development of causal link planners

Causal link planning was first introduced by Sacerdoti [Sacerdoti 75], then given a

more thorough analysis by Tate [Tate 77].

Chapman gave a more formal treatment, and proved soundness and completeness of

a causal link planner, TWEAK [Chapman 87]. Chapman introduced the notion of

the modal truth criterion, which is a test for determining the consistency of partially

ordered plans, and which can itself be executed as a planner.

Pednault [Pednault 87] went back to situation calculus as a basis for his Action De-

scription Language (ADL), which is between STRIPS and situation calculus in expres-

siveness, and provides a STRIPS-like representation.

A subset of ADL was implemented in the UCPOP [Penberthy & Weld 92] planner,

a provably sound and complete refinement planner which allowed the extensions of

universal quantification in effects and goals, and actions which have effects conditional

on the context in which they are used.

2.4 Graphplan

In recent years, an alternative approach to planning emerged, marking a departure

from the established tradition of causal link planning. Graphplan, [Blum & Furst 95],

despite being a relatively simple idea, gave considerable performance improvements

over the planners previously available. Graphplan makes use of a datastructure called

CHAPTER 2. BACKGROUND: PLANNING
	

17

a planning graph for representing plans and world states, which allows constraints on

the plan to be derived and exploited.

2.4.1 Representation

The philosophy is that the plan/states are not fully described, but we have a projection

which gives us necessary conditions for finding a plan.

In Graphplan, the planning graph consists of alternating levels of proposition nodes

and action nodes. The planning graph has three types of edge:

precondition edges

add-edges

delete-edges

The planner works in two phases:

• In the first phase, the planning graph is constructed by projecting forwards from

the initial state. The planning graph allows certain constraints to be recorded

for later exploitation

• In the second phase the end of the planning graph is matched with the goal state,

and the search is carried out by regression on the planning graph.

2.4.2 Algorithm

The initial phase of graph expansion overlays all actions and propositions which could

be present in the graph at each level, together with constraints in the form of exclusion

relations, recording pairs of nodes which cannot be simultaneously present.

There two types of exclusion relations between actions:

Interference If either of the actions deletes a precondition or add-effect of the other.

Competing needs If there is a precondition of a and a precondition of b which are

marked as mutually exclusive at the previous level.

CHAPTER 2. BACKGROUND: PLANNING 	 18

Additionally, exclusion relations can be added between two propositions if all ways of

achieving one exclude all ways of achieving the other.

The graph is expanded level-by-level until a state is reached wherein the goal conditions

are not excluded, and at this point it is worth attempting the solution extraction phase.

For each goal at time t, Graphplan attempts to find a set of actions compatible with

exclusion constraints at time t - 1 which achieve these goals. The preconditions for

these actions then form a goal set for time t - 1. By recursing backwards using this

process, we have a procedure for finding a plan with t steps.

If no plan of that length can be found then the extraction phase fails and planning

may continue by expanding the planning graph by a further level. Using this process,

we can be assured that we always find the shortest plan (in Graphplan representation)

first. A further criterion concerning the fixpoint of the planning graph allows detection

and termination in cases where no solution can exist.

Note that the Graphplan representation allows for any number of non-interfering ac-

tions to be carried out in parallel in each time step.

2.5 Conformant and contingent planning

This section reviews work in the planning literature on extensions of STRIPS planning

to deal with conformant and contingent planning, which are ways of handling actions

with uncertain effects. This section is included because this is an area that we consider

in our linear logic approach (Section 8.7).

We adopt the term conformant from [Smith & Weld 98], where it is defined to mean

planning in the presence of uncertainty, but without the ability to resolve the uncer-

tainty when the plan is executed - so a single plan (without conditional branches)

must be formed that will work under all possible outcomes of the uncertainty. This type

of problem is also called fail-safe planning in [Pryor & Collins 96]. Examples in this

class include Moore's Bomb in the toilet problem [McDermott 87] and the matching

socks problem [Bibel 86].

Contingent plans aim to take into account the idea that more information will be

CHAPTER 2. BACKGROUND: PLANNING 	 19

available to any executing agent when the plan is being executed than when the plan is

being formed. Contingent planners are able to gather information and choose between

conditional branches of the plan at run time.

Both types of plan can cope with uncertainty about the initial state of the world (e.g.

whether it is raining), and also with uncertainty in the effects of actions (e.g. the result

of tossing a coin).

For our purposes, the most important point to consider is the way that uncertainty,

sensing and decisions are modelled, rather than the problems of integrating this into

partial order planning.

2.5.1 Warplan-C

The first planner that was capable of planning for contingencies was Warplan-C [War-

ren 76]. This system forms totally ordered plans with conditional branches. It is

assumed that all information is available to the planner at runtime, and plans simply

branch at the point at which the distinction needs to be made.

Here, uncertain effects are represented by conditional actions with two possible out-

comes P or -P. It is assumed that the executing agent will know the result of the

action as soon as it is carried out, so explicit sensing action is not required.

The strategy for handling uncertainty is first to assume a particular outcome, then

later to add branches to the plan to account for other possibilities.

2.5.2 CNLP

CNLP [Peot & Smith 92] used a partial-order planning framework. Here the source

of uncertainty is separated from the conditional action, but it is assumed that the

consequences of any action are immediately known - i.e. there is no distinction

between sensing and decision-making. This type of action has different consequences,

depending on the uncertainty. These different consequences can give rise directly to

different contingent sub-plans.

CHAPTER 2. BACKGROUND: PLANNING
	

20

2.5.3 Cassandra

[Pryor 95], [Pryor & Collins 96] emphasised the need to separate the sensing actions

and decision-making actions. Uncertainties are represented in a totally distinct way

from ordinary literals describing the state of the world. Steps are labelled by the

contingencies under which they apply.

The steps which only apply under certain contingencies must be preceded by a decision

step which is able to distinguish those conditions. The decision step allows the agent

executing the plan to deduce the outcome of uncertainties which cannot be perceived

directly. The decision step comprises a set of rules with perceivable conditions as an-

tecedents and contingencies (i.e. possible outcomes of the uncertainty) as conclusions.

During goal-directed planning, the antecedents of the decision rules give rise to knowl-

edge goals. This requires explicit modelling of knowledge via know-if propositions.

These know-if conditions are the effects of sensing actions, whose effects are dependent

on the value of some uncertainty which is not directly perceivable.

2.5.4 Graphplan derivatives

Graphplan has been extended to model conformant plans in the SGP planner [Smith

& Weld 98] and contingent plans in CGP [Weld et al 98]. Both these systems rely

on modelling of possible worlds in a planning graph. Each time an uncertain effect is

introduced, the planning graph is split into a new branch for each outcome. Planning

then handles constraints both within and between possible worlds.

The SGP system, like Cassandra, adopts a representation for reasoning about knowl-

edge. In this case, it takes the form of exclusion relations between worlds. For example

K-'u: v represents a proposition that if an agent is in world w, then it will know that

it is not in world w,.

2.6 Discussion

This chapter reviewed background material on planning representations and algo-

rithms. We considered the very general situation calculus representation, in which

CHAPTER 2. BACKGROUND: PLANNING 	 21

inference is awkward to control and frame axioms are required for action descriptions.

We then considered the STRIPS representation, which pragmatically uses a less ex-

pressive language, but allows for efficient search algorithms. We then described some

extensions to STRIPS planning for handling actions with uncertain effects.

In chapters 4 and 5, we will show that the linear logic framework, like situation calculus,

provides a clear formal description of action. Unlike situation calculus, we can neatly

express state change without the use of frame axioms, and conveniently extract plans

directly from proofs. We will see that linear logic approach represents a different

compromise between expressiveness and tractability than those discussed in the present

chapter.

Chapter 3

Background: Formation of
Recursive Plans

3.1 Introduction

By including control structures in plans, a planner can produce a single general plan

which will deal with a class of situations. For example, in the blocks world, recursive

plans can solve problems involving towers of unspecified size, e.g.

. Inverting a tower.

Putting one tower on top of another.

. Inserting a block at the bottom of a tower.

Clearing a tower from above a certain block - "How to clear a block".

hat(hat(a))

hat(a)

a 	 a

-

fin
This chapter reviews three approaches to the formation of recursive plans.

. by deductive planning with situation calculus (Manna and Waldinger)

. by planning with extended STRIPS operators (Ghassem-Sani and Steel)

22

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	23

• by deductive planning in modal logic (Stephan and Biundo)

These differ in:

• the choice of representation for problems and plans, and consequently the class

of problems which can be represented and solved,

o the degree of automation of the proof process.

3.2 Manna and Waldinger

[Manna & Waldinger 871 viewed planning as being similar to the synthesis of imperative

programs. This is quite similar to the approach used by Green in QA3 system [Green

69].

One particular problem with Green's approach is that, as a consequence of using situ-

ation calculus, the plans formed contained explicit references to states. This can have

some unwanted consequences, since it allows the construction of some forms of plan

which it is not possible to execute.

Manna and Waldinger give the example of the monkey, bomb, bananas problem. This

is a problem in which a monkey must obtain the banana, given the fact that it is in one

of two identical closed boxes, a and b. Whichever box does not contain the bananas

contains a bomb, which will explode if approached.

There should be no solution to this problem, but the QA3 system allows the following

plan:

getbanana(sO) <

if Hasbanana(goto'(sO,a))

then goto'(sO,a)

else goto'(sO,b)

This plan involves the monkey testing whether it gets the banana in the hypothetical

state in which he chooses box a. This plan cannot actually be executed by the monkey.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	24

Manna and Waldinger restrict their deductive system to producing plans which are

executable, by restricting the use of case-splits so as to avoid the problem.

In order to construct usable plans, the plan should avoid explicit references to states,

and this is a motivation behind their modification of the situation calculus. They

propose plan theory, a form of situation calculus including fluents, which have no

reference to states, but are given a state dependent interpretation by attaching a state

variable with a linkage operator. Situational expressions and fluent expressions both

exist in plan theory and they are related by the linkage operators. A fluent expression

e in state s is written as

s : e, S :: e, or s; e

depending on whether e represents an object, a truth value, or a state respectively.

Static expressions refer to a state, e.g.

hat'(s, b), Clear(s, b), put'(s, b, c). where s denotes a state and b,c denote blocks.

Fluent expressions designate elements w.r.t. an implicit state, e.g.

hat(d), clear(d), put(d,e)

They are related by linkage operators, e.g. in state w,

w: hat (u) hat'(w, w: u)

w::clear(u) Clear(w, w:u)

w; put (u,v) put'(w, W: U, W: V)

To construct a plan for achieving a condition Q[so, a, z], where so is the initial situation,

a an input object, and z the final state, Manna and Waldinger prove the theorem:

Vs0 Va 3z, Q[so , a, so; zl]

z 1 is instantiated to a plan fluent term during the proof.

The solution plan for the "how to clear a block" problem is represented as:

makeclear(a) <

if clear(a)

then skip

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	25

else makeclear(hat(a));

put (hat (a)) ,table)

The deductive tableau method is used to form proofs. This combines non-clausal

resolution, well-founded induction, and conditional term rewriting. An equational uni-

fication algorithm is used which has built-in equivalences between static and dynamic

expressions.

In the tableau, each row may have either an assertion or goal, as well as a plan ex-

pression. A tableau is true whenever the following holds: if all instances of each of the

assertions are true, then some instance of at least one of the goals is true.

The deduction rules add new rows to the tableau, such that if the new tableau is valid,

then so is the original one. The tableau is proved valid when true appears as a goal or

false appears as an assertion.

The proof and the plan are constructed side-by-side, with the restriction that static

terms cannot appear inside plan terms.

Manna and Waldinger show how this approach can be used for the formation of condi-

tional expressions and recursive plans. An example of a recursive plan is a general one

which clears the top of particular block, no matter how many other blocks are stacked

on top of it.

Some unresolved issues with their approach are:

A proposal of how the frame problem should be handled is broadly outlined, but

has not been fully developed.

. Their treatment of induction suggests that it has not been very successful in

practice. The main areas which cause problems are the choice of a well-founded

relation, and the difficulties of producing strengthened induction schemes in order

to find an alternative proof choice.

The axioms relating situational and fluent expressions are built into an equational

unification algorithm. The redundancy caused by using two equivalent forms

means that the unifier yields multiple solutions - i.e. there is no unique most

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	26

general unifier.

o They do not address the issue of search control. The scheme was not imple-

mented as a fully automatic system. A related deductive tableau systems was

implemented as an interactive system, in which a user guides the proof.

3.3 Ghassem-Sani and Steel's RNP

Ghassem-Sani and Steel's Recursive Nonlinear Planner (RNP) [Ghassem-Sani & Steel

91, Ghassem-Sani 92] is an extension of a classical partial order planner to generate

recursive plans. This is a less general method than Manna and Waldinger's, but gives

improved control over solution search, to the extent that a fully automatic system was

implemented.

3.3.1 RNP - Plan representation

Plan representations using STRIPS operators cannot express recursive plans. Steel

and Ghassem-Sani extend the plan representation by including three new kinds of plan

step:

CASE nodes - Two (or more) subplans are contained inside one node. Each subplan

has the same postconditions, but different preconditions. The preconditions for

the case node include the disjunction of the preconditions of the components

subplans.

casel

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	27

PROC nodes - These are equivalent to procedure definitions in programming lan-

guages. They are identical to case nodes, but are invoked by call nodes.

CALL nodes - These are equivalent to procedure calls in programming languages,

naming a PROC node to invoke.

3.3.2 RNP - Induction principle

To form a recursive plan, a proof by induction is used. The following form of Boyer and

Moore's induction principle is used. The following form accounts for forming recursive

plans with a single base and step case:

If

P and Q are predicates;

<denotes a well-founded relation

I is a function

x is a variable

P(x) -4 1(x) <x is theorem

then in order to prove that Q(y) is theorem, it is sufficient to prove:

-'P(x) -* Q(x)
	

Base case

(P (x) A Q(f(x))) -4 Q(X)
	

Step case

In forming recursive plans, the planner uses a database of theorems of the form of (e),

defining well-founded relations. P(x) here behaves as a condition which determines

whether the base or step case applies.

The figure below gives the corresponding plan structure.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS
	

28

RNP - Form of recursive plan

procl(x)

	

1 	 2

—P(x) —P(x) 	 Q(x)

	

P(x) 	

:VQ(f(x)) Q

	

I 	 caII:procl(f(x))

—P(f(x))

-- ----- I

RNP - example plan

The plan formation process is an extension of a conventional partial-order causal-link

planner. Recursive constructs are introduced when the planner detects a similarity

between between a subgoal and a top level goal, e.g. a subgoal of the form Q(f(x))

and a goal of the form Q(x). In these circumstances the planner can then check if the

two forms are ordered by a known well-founded relation, such that the subgoal is a

reduced form of the top level goal.

If this test succeeds, then RNP tries to solve the problem by recursion. The next step

is to perform a case analysis, e.g. using the predicate P from (e) above to separate

base and step cases. RNP then tries to find or create a new PROC node with subplans

for the P(x) and P(x) cases.

The plan generated for the "how to clear a block" problem is given below.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	29

procl(a) 	 3

clear(a)

clear(a)

5 	 4

EjJ calI:procl(hat(a)) 	 unstack(hat(a).a) 	
31(

clear(hat(a)) v
on(hat(hat(a)).hat(a))) 	 clear(hat(a)) 	 clear(a)

on(hat(a),a)

on(hat(a).a)

clear(a)von(hat(a),a) I ---------------------- c!ear(a)

A form of generalisation is also possible, where a constant may be replaced by a variable

in order to make the induction work.

The detection of threats in RNP 's plans is complicated due to the presence of recursive

constructs. No equivalent of Chapman's modal truth criterion 2.3.2 was developed to

demonstrate the soundness of the planner.

3.4 Stephan and Biundo

A group at DFKI in Saarbrücken has carried out recent work on deductive planning

[Stephan & Biundo 931, [Stephan & Biundo 95], [Dengler 96], [Koehler 96].

Their approach is characterised by the use of programming logics - particularly an

interval-based temporal logic called logical language for planning (LLP). The intervals

are sequences of states, and the logic has modal operators:

QA — nextA

OA - sometimes A

DA - always A

X ; V - X followed by V

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	30

The operator ; (chop) which expresses the sequential composition of formulae. This

allows plans and actions to be expressed as programming constructs in the logic, which

have semantics defined on intervals.

A planning problem is formulated as a proof of the following formula:

pre A Plan -* Ogoal

where pre represents initial conditions and Plan is a variable which is instantiated

during the proof.

The changes brought about by action are expressed as operations on local variables,

which may change their values between states, and this is extended to handle a

STRIPS-like manipulation of logical relations.

An example definition of an action is given as:

rec unstack(x,y).

if on(x,y) & clear(x)

then add- table(x);

add- clear(y);

delete- on(x,y)

else abort fi.

This syntax translates directly into formulas in the temporal logic. From such a de-

scription, axioms describing action effects and frame conditions can be derived auto-

matically.

This example is taken from [Stephan & Biundo 93], which uses first-order dynamic

logic. This paper shows how frame conditions can be efficiently handled in the logic by

treating them as invariants of the actions or action sequences. The frame problem can

be treated efficiently by generating frame assertions non-deductively. This is part of a

domain modelling process in which action definitions are analysed to produce temporal

logic conditions in a form to be used during planning.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	31

3.4.1 Recursive planning in LLP

The LLP language is capable of expressing recursive constructs, but requires user

interaction to do this. Abstract recursive plans are formed and proved correct as part

of an interactive domain modelling process. After this domain modelling, the planner

can work fully automatically. To automatically solve a concrete planning problem, the

abstract recursive plans are unwound to simple action sequences. This is performed

by a tactical theorem prover, KIV.

[Stephan & Biundo 95] develops the idea of planning as refinement, by which a non-

executable specification is refined step-by-step into an executable plan. Stress is laid

on the idea that the specification and the plan are expressed in the same language.

[Dengler 96] also considers planning as a process of refinement and shows how LLP

can be used to perform non-linear planning. (Koehler 96] uses the framework as a basis

for a system of plan reuse - i.e. stored plans are retrieved and adapted to solve a new

planning problem. Koehler suggests that a powerful language of plan specification and

a system for manipulating plans which guarantee to meet the specification are needed

for a plan reuse system (second principles planner).

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	32

3.5 Inductive theorem provers

3.5.1 Introduction

In this section we consider proof techniques which are specialised for solving the prob-

lems present when constructing inductive proofs. These proofs are crucial to the for-

mation of recursive plans in deductive planning, since recursive constructs in the plan

correspond to the use of induction in the proof. Some particular problems in forming

induction proofs are:

. The choice of the specific induction scheme to use.

. The choice of the induction variable.

• The control of rewriting steps in the induction step case. The special heuristic

technique of rippling has been applied successfully to greatly reduce the amount

of search in rewriting. The technique makes use of the similarity between the in-

duction hypothesis in induction step cases. The notion of rewriting here includes

certain deductive steps which yield to being treated as rewrite rules.

• The need for generalisation. Often the original theorem may be impossible to

prove inductively, but a more general version of the theorem can be proved.

Techniques exist for generating these generalisations automatically.

3.5.2 Boyer and Moore

The Boyer-Moore theorem prover [Boyer & Moore 79] was an early success at auto-

matically generating inductive proofs. They use a first-order logic with a LISP-like

syntax and no explicit quantifiers. Destructor syntax is used for inductive problems.

The prover makes use of a repertoire of separate theorem-proving components and

heuristics.

Symbolic evaluation - simplification of an expression by application of rewrite

rules.

Induction - The selection and application of an induction rule.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	33

Fertilization - The use of the induction hypothesis to prove the induction conclu-

sion.

Generalisation - Generation of generalised theorem, to allow successful induction.

Their system incorporated heuristics for dealing with the problems listed in 3.5.1 above.

For example, the use of induction was attempted only after a failed attempt at a proof

using only symbolic evaluation. The choice of induction variable was motivated by the

manner in which the symbolic evaluation proof failed.

A large contribution towards the success of the Boyer-Moore prover is reasoning about

about the applicability of these separate components and about the relationships be-

tween them.

3.5.3 Proof planning

A rational reconstruction of the Boyer-Moore heuristics led to the concepts of proof

planning [Bundy 88]. In this section we give an overview of proof planning, with

particular reference to its use in controlling inference in inductive proofs using the

technique of rippling.

Proof plans are meta-level plans for guiding the object-level inference in constructing

a proof.

Common strategies for applying object-level proof steps, such as symbolic evaluation,

are expressed as tactics. Tactics are programs for constructing part of the proof at the

object-level.

In order to reason about the application of tactics, meta-level specifications of the

object-level tactics are used. These specifications are known as methods.

A method is described by:

Input Meta-level sequent to which the tactic applies.

Preconditions Conditions which must hold for the method to be applied.

Effects Conditions which will hold after the method has been applied.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	34

Outputs Subgoals generated (list of meta-level sequents).

Tactic The name of the tactic to be applied.

In proof planning, the meta-level plan is constructed using a planning algorithm to

search in a space of method applications. This meta-level search space is typically

much smaller than the corresponding object-level search space.

3.5.4 Rippling

We will briefly discuss the technique of rippling. Although we do not use this in our

work, we will refer to it in our discussion of techniques for generalisation (Section

3.5.6) and for dynamic creation of induction rules (Section 10.3.6). Rippling is a

heuristic technique for controlling the application of rewrite rules in inductive proofs.

In the Clam system, it has been implemented as a method within the proof planning

framework.

In step cases of inductive proofs, there is typically a need to prove a theorem of the

form:

P(x) I- P(f(x))

where f (x) is a constructor function - e.g. for natural numbers it might be the successor

function s (x). Rippling exploits the fact that the presence of the constructor is the only

difference between the induction hypothesis (on the left) and the induction conclusion

(on the right). This difference is called a wavefront. Annotations are added to identify

the presence of the wavefronts.

The proof involves applying a series of rewrite rules such that the wavefront can be

moved out of the way, allowing a match between conclusion and hypothesis. Anno-

tations allow the wavefront to be treated as separate entity, which moves on a fixed

background formula, the skeleton. In the example above, P(x) is the skeleton.

3.5.5 Choice of induction variable and rule

Rippling can also be used to inform the choice of induction variable and induction rule,

so that the choice is made on the basis of what is most likely to work. This process is

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	35

known as ripple analysis

3.5.6 Generalisation

Often a generalisation step is necessary to successfully complete an inductive proof.

As pointed out in [Manna & Waldinger 87], generalisation is also important in forming

recursive plans. Techniques have been developed for automatically determining the

generalisation. Here we sketch the technique used in [Hesketh et al 92].

This generalisation is based on middle-out reasoning. The precise form of the gener-

alised theorem is not determined until midway through the proof. Its value is instan-

tiated so as to make the proof work correctly. After creating the generalised theorem,

and the proof of the generalised theorem, it is also necessary to construct a proof that

the generalised form entails the original theorem.

We give an example from [Hesketh et al 92], in which the problem is to transform

functions into equivalent tail-recursive functions. For example, consider a function for

reversing a list, revs , defined by the following rules:

rev(nil) = nil

rev(h:: t) = append(rev(t),h ::nil)

We start with a specification using the non-tail-recursive version. This will be used as

a specification for the tail-recursive version.

I- Vx.z. z = rev(x)

Tail recursive algorithms can be extracted from proofs of a certain shape. To create a

proof from which we can extract the tail recursive version, we need to generalise this

proof to a version that involves an accumulator variable:

I- Vx.Va.z. z = append(rev(x),a)

The generalisation problem here is to perform this step automatically. How do we

know that append is the correct function to use? The approach is to use a higher-order

meta-variable as a placeholder for the unknown function.

I- Vx.Va.z. z = G(rev(x), a)

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	36

During the inductive proof of this theorem, we then allow G to be instantiated to any-

thing that allows the rippling steps to pass through successfully. The appearance of

append then comes from the application of the rewrite rules defining rev. For the anal-

ogous generalisation in a planning problem, this would correspond to a reformulation

of the plan specification (initial and goal states).

3.5.7 Summary

Control of reasoning in inductive proofs raises some specific problems - i.e. choice of

induction rule, choice of induction variable, control of rewriting, and generalisation.

These can often be tackled by a combination of strategies. Proof planning provides a

coherent framework to handle high-level plans which talk about the application of such

strategies. The specific technique of rippling is an important component in proof plans

for induction, as it allows similarity between induction hypothesis and conclusion to

be exploited to reduce search.

3.6 Conclusion

This chapter reviewed three different approaches to recursive planning problems.

Manna and Waldinger's deductive synthesis approach, based on a modified situation

calculus, has good coverage. However, there is no known strategy for controlling infer-

ence so this has not been implemented as an automatic system.

Ghassem-Sani and Steel's RNP uses a STRIPS-like representation, and is more re-

stricted in expressiveness, but has been implemented as a fully automatic planner.

Stephan and Biundo's deductive planning approach pushes the difficult theorem-proving

tasks into the phase of planning domain modelling, which is done interactively. The re-

suit is a domain-specific planner which works fully automatically in a tactical theorem

prover.

We also considered the problems which arise in inductive proving: choice of induction

rule, choice of induction variable, control of rewriting, and generalisation. We described

approaches to the problems using proof planning and rippling.

CHAPTER 3. BACKGROUND: FORMATION OF RECURSIVE PLANS 	37

Proof planning is not used to guide theorem proving in our system. For larger or more

complex problems than those considered, proof planning would provide a powerful and

flexible framework for further development.

Chapter 4

Linear Logic

4.1 Introduction

In this chapter, we give an introduction to a fragment of linear logic and demonstrate

its use in simple planning problems. See [Girard 951 for a full exposition of linear logic,

and [Masseron et al 93] for a thorough treatment of its use in conjunctive planning

problems.

4.2 Basics of linear logic

Linear logic is resource-sensitive. This gives us the ability to model change of state

directly using the linear version of implication, written as -o. The usual example here

is that we can model the scenario that we can buy a drink for a pound as follows:

have-pound -o have-drink.

The notion of implication here is that if we have a pound, we can have a drink, but

(unlike conventional implication) we won't still have the pound. The resource on the

left of the implication is used up in producing the resource on the right.

For simple planning problems we will need the multiplicative conjunction connective,

written 0. The formula A ® B means that resources A and B are simultaneously

present. The rules for 0 are given in the next section.

These rules can only be seen as transitions if the logic itself restricts the copying and

discarding of resources.

CHAPTER 4. LINEAR LOGIC 	 39

Now if we consider resource-limited versions of familiar connectives such as conjunction,

we find that there are two different versions possible, differing in the way the resources

are handled.

The multiplicative conjunction A® B means that resources are simultaneously present.

This is the form of conjunction which we use in STRIPS-like planning problems.

The second form additive conjunction means that both resources are available, but

they are exclusive. Only one or the other may be used and the choice is ours.

have-pound -o have-tea & have-coffee

Although this looks somewhat more like a disjunction, we regard it as a conjunction,

since it would be equivalent to the conventional conjunction if weakening and contrac-

tion were allowed, i.e. the discarding and copying of resources.

This may be can contrasted with the additive disjunction, El?.

have-pound -o have-tea have-coffee

This would correspond to using an erratic drinks machine, which will deliver either tea

or coffee, but we cannot choose which.

4.2.1 Exponentials

An important feature of linear logic the exponential operator!. This provides a means

to mark out formulas to which weakening and contraction rules can be applied - so that

they can be used as many or as few times as necessary in a proof. This is particularly

important because it allows an embedding of intuitionistic logic into intuitionistic linear

logic, e.g.

!a —ob

is equivalent to:

a —*b

However, we shall not use exponentials for the rest of this chapter.

CHAPTER 4. LINEAR LOGIC
	

40

4.3 Linear logic for planning

A planning problem can be represented as a sequent of the form I I- G where I

represents initial conditions and G represents goal conditions. In this intuitionistic

version, I is a multiset of formulae (implicitly joined by ®). The H behaves as linear

implication, so we can read this as meaning that the resources I should be consumed

in deriving G. Similarly, we use transition axioms of the form P F- E to represent

operators. These axioms can be reused as many times as necessary in the proof,

each use corresponding to an action. For instance, we could represent an operator

stack(X, Y) for placing a block as follows:

hold(X), clr(Y) F- empty ® dr(X) ® on(X, Y)

To see the correspondence with STRIPS operators, consider the STRIPS version of

stack(X, Y). This can be written as:

operator: 	stack(X,Y)

preconditions: hold(X)
clr(Y)

deletelist: 	hold(X)
clr(Y)

addlist: 	clr(X)
on (X , Y)
empty

Note that the main difference between the two renditions is that there is no equivalent

of the delete list in the linear logic description. This is not needed because anything

used as a precondition will automatically be consumed by the linear logic version of

implication. This can simply represent problems from the STRIPS notation, since any

preconditions which are required but not consumed by an action can simply be added

back onto the right hand side of the H in the action definition.

Another significant difference is that in linear logic, multiple instances of the same

entity are regarded as distinct. For example, we could represent the situation of having

two pounds as have-pound 0 have-pound.

CHAPTER 4. LINEAR LOGIC 	 41

We can create proofs for solving simple STRIPS-like planning problems using only the

® connective, and rules Ax, cut, l®,r®.

Al-A Ax

Fl-A F',Al-C

r,r' I- C
cut

F,A,Bl - C 	 Fl- A F'l-B
F, A®BFC 1 ®

The cut rule is crucial here, as it can now be seen as a rule which allows the transition

between two states to be made via some intermediate state, and this accounts for the

composition of a plan by combining two subplans in sequence.

An example of the use of the cut rule is given below. This shows the transition from

a state described by empty, clr(c), on(c, a), clr(b), ontable(b) by the application of a

remove action to a state described by hold(c), clr(a), clr(b), ontable(b).

remove (c, a)

empty, dr(c), on(c, a) I- hold(c) 0 clr(a) hold(c) 0 clr(a), dr(b), ontable(b) I- Goal

empty, clr(c), on(c, a), clr(b), ontable(b) F- Goal
cut

If the cut rule is always applied to sequents in which the hypothesis list is a superset

of the formulae on the left of a transition axiom, the proof corresponds to a plan built

forwards from the initial state.

So we can build a proof tree with a statement of the planning problem at its root, and

with instances of transition axioms and Ax at its leaves. If we can build such a proof,

we can be satisfied that there is a plan that solves the problem, where applications of

the transition axioms correspond to simple actions in the plan. However, some work is

still needed to extract the plan from the proof tree. One way to do this is by analysis

of the proof, as proposed in [Masseron 93]. An alternative approach is described in

Chapter 5.

CHAPTER 4. LINEAR LOGIC 	 42

4.4 Masseron's geometry of conjunctive actions

[Masseron et al 931 explains how planning problems using conjunction only can be

represented and solved in linear logic. The linear logic proof does not directly provide

us with a plan, although it does contain all the information needed to extract the plan.

The companion paper [Masseron 93] completes this picture by explaining the mapping

between proofs in a restricted form of linear logic and plans expressed as directed

graphs. The account below is a summary of this second paper.

4.4.1 Overview

This approach is restricted to a certain fragment of intuitionistic linear logic, using

only the 0 connective and the rules 10, r®, Ax and cut, plus the transition axioms

which are part of a planning domain description. Now we can sketch the relationship

between the proof rules and plans as follows:

• identity axiom corresponds to the empty plan.

• A transition axiom represents the performance of an action, and is associated

with a plan containing only that action.

• The r® rule combines two independent plans. The plans are independent in

the sense that they affect disjoint multisets of resources, there is therefore no

dependency between the plans and they can be executed in parallel.

• The cut rule combines two plans in series, introducing dependency between the

postconditions of one, and the preconditions of the other.

4.4.2 Details

Now we will make this more concrete by defining a representation for plans.

Definition 1 A pseudo-plan is defined as a finite graph composed of vertices and

oriented edges, where:

CHAPTER 4. LINEAR LOGIC
	

43

. Each vertex is labelled by the name of a transition axiom. An axiom of the form

trans: A 1 ,... ,A m H B 1 ®... 0 B r

is represented with a vertex with entries iA 1 ,.. . , iA and the exits xB1,.. . ,xB,.

• Each edge has an exit at its origin and an entry of the same type at its end.

Edges represent linear resources used in the proof and are labelled as such.

• Entries of a pseudo-plan are entries of its component vertices which are not

connected to the end of an edge.

• Exits of a pseudo-plan are exits of its component vertices which are not connected

to the start of an edge.

A pseudo-plan D can be derived from a proof V by induction over proofs as follows

(we use uppercase letters D, E, F to stand for proofs and corresponding curly letters

V, S, .F to stand for their associated pseudo-plans):

• If V is a proper axiom, D is a vertex, labelled by an occurrence of the name of

the axiom. The vertex has entries and exits corresponding to either side of the

axiom.

• If D is any other kind of axiom (e.g. identity axiom, Ax), V is empty.

• If D is obtained from E by an application of the 10 rule, V is identical to 6.

• if D is obtained from E and F by an application of the r® rule, V is the union

of 6 and F.

• If D is obtained from E and F by an application of the cut rule on the formula

B 1 ®... ® B, V is obtained from the union of 6 and F, with edges added from

xBj to iB2 for each j such that xBj is an exit of 6 and iB3 is an entry of F.

CHAPTER 4. LINEAR LOGIC
	

44

The edges of the pseudo-plan can be used to define an ordering relation < over the set

of entries and exits of vertices:

iA < xB if iA and xB are attached to the same vertex, and

xA < iA if there exists an edge between xA and iA.

This also defines an ordering over the vertices. Vertices can be regarded as minimal

pseudo-plans, and we can define a relation <<over pseudo-plans and F as follows:

E <<J if there exists xA E,6 and iB E .F such that xA <iB.

4.4.3 Example

Given the blocks world proof below, the conversion would give the pseudo-plan illus-

trated in fig. 4.1.

take(b) 	 stack(b, a)

empty, clr(b), ontable(b) F- hold(b) hold(b), clr(a) F- empty ® clr(b) ® on(b, a)

empty, clr(b), ontable(b, clr(a) F- empty clr(b) 0 on(b, a) 	
CU

r
empty, clr(C), clr(b), ontable(b) , clr(a) F- empty (9 Clr(b) 0 on(b, a) 0 dr(e)

empty

take)
empty

clear(a) __:i stack(b,a) 	
clear(b)

on(b,a)

Figure 4.1: Example pseudo-plan

4.4.4 Discussion

This technique allows a pseudo-plan, represented as a directed graph, to be extracted

from a linear logic proof. 1 The graph notation is less redundant in that a single graph

The paper also considers the reverse translation

clr(c) F- clr(c)

CHAPTER 4. LINEAR LOGIC 	 45

may represent many permutations of the proof. This can be attributed to the fact that

the graph only contains edges directly between the producer of a resource (exit of a

vertex) and its consumer. Notice that we would not add an edge for the case where a

resource is transmitted through the cut rule untouched.

Note that this representation is very similar to that used in the linear connection

method of [Bibel 86]. A comparison between these methods and an equational resolu-

tion method is given in [GroBe et al 96].

The main limitation is that the method is restricted to proofs using only the multi-

plicative conjunction connective, and would be difficult to extend to a larger fragment.

4.5 Summary

We have reviewed the linear logic approach to conjunctive planning as described by

in [Masseron et al 93, Masseron 93]. We have looked at the representation of plan

operators and plan specifications in intuitionistic linear logic. We have described how

proofs can be built using an appropriate subset of linear logic deduction rules, and how

plans can be extracted from the proofs. In Chapter 5, we will introduce an alternative

representation for plans which allows a larger fragment of the logic to be used in

representing and solving planning problems.

Chapter 5

Linear Logic Planning with Plan
Terms

5.1 Introduction

This chapter introduces the notation for including plans as proof terms. This en-

ables a larger fragment of the linear logic to be used in plan formation than that used

in [Masseron et al 93]. We can then represent planning problems involving actions

with uncertain effects and forms of partial ordering and quantification. We then define

how the plan language is executed and indicate how plans may be partially evalu-

ated. Chapter 6 extends this to include induction rules with extracts corresponding to

recursive plans.

5.2 Constructing plan terms

Previous authors have extracted plans by using a procedure to recover plans from a

completed proof. Here, we will make the relationship of the proof to the plan more

concrete by attaching proof terms directly to the deduction rules in the style of type

theory [Nordstrom et al 90]. This makes the relationship of deduction rules and plan

formation clearer, and is easier to extend to deal with a larger subset of linear logic.

A type theory has been defined for linear logic in [Abramsky 931. Proof terms can be

seen as programs in Linear Lambda Calculus - a functional language in which there

is a restriction of using each input exactly once.

46

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 47

We describe such a system below, in which sequents of the form A I- plan: C should

be interpreted as meaning that plan gets us from a state described by resources A to

a state described by C. An operational semantics, also from [Abramsky 93], defines

how the constructs in the Linear Lambda Calculus are executed as plans.

In general, the inference rules describe how to build a plan for a given sequent out of

plans for the subgoals associated with inference rule.

The logic we describe is based on Abramsky's version of Intuitionistic Linear Logic. We

adapt this by omitting exponentials and additive conjunction, and by allowing a form of

quantification (Section 5.2.7). We will refer to our version of the logic as Intuitionistic

Linear Logic for Planning (ILL-P). The rules for ILL-P are given in Sections 5.2.1 -

5.2.8.

5.2.1 Transition axioms

Operator definitions now take the following form:

I- step: A -o C

5.2.2 Identity axiom and cut rule

The identity axiom says that required resource (or state) is available and we simply

instantiate the label on the goal side to that on the resource side. Note that in linear

logic, the Ax rule cannot apply if there are spare hypotheses on the left of the sequent.

x: A F- x: A
Ax

The cut rule allows us to attain a goal C via some intermediate state A. The plan for

reaching A from the current state is u, though x acts as a placeholder for this plan as

the plan u is formed, which accounts for the transition from the intermediate state to

the final goal. In the final plan, we replace occurrences of x with t. This substitution

is represented by the notation u[t/x].

FI-t:A F',x:AI-u:C

r, r, I-u[t/x] : C
ut

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 48

5.2.3 Linear implication

The formula A —o B corresponds to a single available action that can perform a tran-

sition from A to B.

The 1 —o rule corresponds to the application of the action to its preconditions. Appli-

cation of f to argument t is written here as f o t.

FI-t:A x:B,r'F-u:C
1-0

r,r',f : A—oBF-u[(fot)/x] : C

We often wish to use cut and 1 —o together. This enables us to cut in action from a

(reusable) axiom, then apply the action. We call this combination of rules lcut.

FI-t:A F',y:BI-u:C

I- step: A—oB x : A—oB,F,F' I- u[(xot)/y]

F, F' I- u[(step o t)/y]

- 1-0
C
- cut

To prove A —o B as a goal, we show that we can get B from A. The plan term Ax.t

indicates that the plan may be applied to an appropriate value for x. Here, Ax indicates

standard A-abstraction.
F,x : A I- t: B

r -o

F I- Ax.t: A—oB

5.2.4 Multiplicative conjunction

The 0 rule allows a planning problem to be broken down into two independent sub-

problems. Since the sub-problems rely on disjoint sets of resources, the plan term

consists of two sub-plans which may be executed in parallel.

F,x:A,y:BI-t:C 	 FF- t:A F'I- u:B ro
F,z:A®BHlet zbex®y int:C ®

	
F,F'HtOu:A®B

5.2.5 Disjunctive effects and conditionals

In some planning problems, it is desirable to represent plans with indeterminate out-

comes. These can be represented by actions with disjunctive effects. Here it is ap-

propriate to use the additive disjunction operator . A formula A ED B should be

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 49

interpreted as saying that either resource A or resource B is available, and in a plan,

we must cope with both possibilities.

[Masseron et al 93] gives an example of a problem in which socks are blindly taken

from a drawer. This action is represented by a transition in which a hidden sock (hs)

becomes either a black sock (bs) or a white sock (ws).

F- pick: hs —o(bs(D ws)

In resolving these disjunctions during the planning process, there are two possibilities:

the agent which will execute the plan may or may not be capable of performing a test

to resolve the disjunction at runtime.

If the agent can perform a test at runtime, it can select between two different plans,

i.e. we can build a conditional structure which may contain different actions in the

different branches.

F,x:AI-u:C F,y:BF- v : C
F,z : AEBH case z of inl(x) then u,inr(y) then v: C

This is equivalent to forms used in [Bruning et al 93].

The different approaches correspond to contingent and conformant planning, as dis-

cussed in Section 2.5. We discuss our restricted handling of conformant planning in

Section 8.7.

For a disjunction of goals, we must simply prove one goal or the other:

I' I- t:A
ED

F I-inl(t):AEBB
n

FF-u:B 	r2®
F I- irir(u) : A e B

5.2.6 Special values

T (top) is used to avoid the need to fully specify a goal state. It consumes all resources

present.
rT

F I- erase: T

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 50

In the example proof fragment below (shown without proof terms), the goal is to

achieve on(a, b), and we do not wish to specify what other resources are present. By

including T in the goal specification, we can allow the goal state to match with any

context that includes the goal condition. The rT rule allows the remaining resources

to be consumed.

on(a,b) I- on(a,b)
Ax

dear(a),on(b,table),clear(c),on(c, table) _FT
-91

	

on(a, b),dear(a) , on(b, table), ci ear(c) , on(c, table) I- o'n(a, b) ® T
	'a

The value 0 is used to denote impossible situations. Thus any resource is allowed to

be derived.

r,o F abort: A 10

5.2.7 Quantifiers

To make recursive plans or schematic plans, we will need to be able to handle quan-

tification in some form. We will consider quantification over unrestricted types only,

not over linear types in the sense of [Pfenning 98].

The quantifier rules for linear logic are the same as a version of the standard ones.

However, the meaning of V is for any rather than for every - a distinction which is

not meaningful in constructive or classical logic.

A universally quantified resource is one for which exactly one instance can be used,

and we choose the instance.

The resultant plan is parameterised, and will provide a plan for a specific instance when

supplied with a value for the parameter. We assume 0-reduction is used to compute

the plan instances. Thus the rules are:

r,y:A[t/x]Fc:C 	 FI-z:A[a/x]

F, z : Vx :r . A F c[(z o t)/y] : C
N 	

F F Aa.z : Vs : r . A
rV

where a is not free in F.

r is the type of the quantified variable (we omit typing constraints on terms t which

are implicit).

An existentially quantified resource is one where we are assured that some instance is

a resource, but we do not know which one.

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 51

F,t:A[a/x]Hc:C 	FI-c:C[t/x]
IF, t:x:r.AHc:C 13 	FFc:Bx:r.0

where a is not free in F, C.

5.2.8 Equality

We also sometimes need to reason about equality. Equality can be represented as a

resource a = h. Such equations may appear on the left hand side of sequents with

dummy labels (i.e. these labels can never appear in plan terms). To allow substitution

we introduce a new deduction rule:

F I- C: C[b/a]
subs titute(a=b)

F,(a=b) 1-c:C

We suppose a standard background equality theory.

This concludes the rules for ILL-P.

5.2.9 Relationship to features of planning problems

The following table describes how the various connectives and special values described

in this chapter realate to features of planning problems. Note that the sequent symbol,

I-, corresponds to linear implication, —o. Simple actions and plan specifications can be

written without using -°, as in [Masseron et al 931.

Connective Problem features
This is the only connective used in simple conjunctive STRIPS in
the style of [Jacopin 93].

—o Used in goal position, allows problem specification to be stated as a
sequent with an empty LHS. This is the required form for extracting
a plan term.
Used in resource position, —o allows an available action to be treated
as a resource.
Planning problems involving disjunction in goals or effects.
Disjunction of resources in an action effect is used to specify actions
with uncertain outcomes.

V Universal quantifier around plan specification allows for synthesis of
schematic plans.
In goal position, can be used to specify required value.
In effect position, stands for an unspecified value.

/T L;

I

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 52

Connective Problem features
T Used in problems with partially-specified goal.

0 Used to denote impossible situations. Axioms with 0 in effects can
be used as a way to allow the closing of branches of the proof which
describe impossible situations.

5.2.10 Partial specification of initial state

The initial state must include all of the resources that are needed as action precondi-

tions and goals. Some degree of flexibility is possible in describing the initial states as

follows:

Uncertain initial states may be described using a disjunction of resources. If it is

necessary that certain combinations of disjuncts need not be considered, this can

be specified by inclusion of axioms that match those situations and produce 0 as

an effect. This marks the situation as impossible and allows the proof branch to

be closed.

Quantifiers may be used instead of giving explicit values.

5.3 Plan execution

To describe the order of execution of the plan language, we need an operational Se-

mantics. Abramsky provides a semantics for the Linear Lambda Calculus. This can

be used to ensure that our primitive steps are executed in a correct order.

In the following, the letters t and u are used to represent arbitrary terms of the lan-

guage, whereas c and d represent terms which have been evaluated to a canonical form.

The relation t JL c says that t evaluates to a canonical form c. The canonical forms are

given by:

c ® d Ax.t inl(c) inr(d)

The operational semantics rules define how the evaluation of a terms of the plan lan-

guage is found from the evaluation its subterms. The canonical forms evaluate to

themselves.

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 53

To use these rules to execute a plan, we must find a rule for which the term below

matches the program, and for which evaluation of corresponding terms above the line

also match.

In most of the operational semantics rules, a left to right order of evaluation of the

terms above the line is enforced by dependencies between symbols on the top line.

E.g. in the rule below that we require the derivation of canonical forms c and d before

substitution into u.

tcød u[c/x,d/y]c
let the x ® y in u .IJ. c

A notable exception to this is the rule for executing t ® u. Here the terms above the

line are completely independent of each other, so the rules are not deterministic about

execution order. This corresponds to two plans t and u which may be executed in

parallel. The linear logic proof guarantees that there is no interaction between the two

plans, by ensuring that no resource appears in both plans (see Sec. 5.5.1).

t.JL.c ud

tØu1J-c®d

The rules for handling lambda-terms and their application are:

tJJ -Ax.v uc v[c/x]d

	

A.tJJ.A.t 	 touJI -d

The rules below give handling for conditionals.

	

t
	

t

inl(t) JL. inl(c)
	

inr(t) inr(c)

t JJ. inl(c) u[c/x] JL d
case t of inl(x) then u, inr(y) then v 4 d

t 4 inr(c) u[c/y] JJ d
case t of inl(x) then u, inr(y) then v 4 d

5.4 Partial evaluation

In this section we define partial evaluation on plan terms by giving rewrite rules for

Linear Lambda Calculus. Exhaustive application of these rewrite rules on a plan term

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 54

with respect to an input initial situation results in the elimination of some of the control

structures.

If some of the input data is available before execution, then application of the rewrite

rules results in a partial evaluation of the plan — i.e. we specialise with respect to the

available input situation.

One case of partial evaluation we are interested in is where a plan Vx(I(x) —o G(x)) is

evaluated for an instance 1(t) —o G(t). Here we apply rewrite rules to piano t, resulting

in a new plan, plan', which is specialised for instance t.

We define a one-step partial evaluation relation as a rewriting relation based on the

following four rules:

let c®dbex®y inn —+ u[c/x,d/y] 	 (5.1)

	

(Ax.t) o u —* t[u/x] 	 (5.2)

	

case inl(c) of inl(x) then u, ... —* u[c/x] 	 (5.3)

	

case inr(c) of..., inr(y) then v —* v[c/y] 	 (5.4)

The relation —p thus allows rewriting at arbitrary subexpressions of a plan term.

Our rewriting respects the binding associated with A-abstraction — it is sometimes

necessary to rename variables in lambda-terms to prevent capture of free variables

due to an accidental correspondence of variable names. This is a form of higher-order

rewriting (see [Baader & Nipkow 98] for details).

5.4.1 Correctness of partial evaluation

Definition 2 We say a relation B is correct with respect to a type system if the

following holds:

if a Ba' and I- a : C is a provable sequent, then I- a' : C is also a provable sequent.

We state here but do not prove:

Claim 1 the relation —* is correct w. r. t. the system ILL-P.

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 55

It follows that the relation _** (the reflexive transitive closure of —+) is also correct

w.r.t. ILL-P. One way to show the correctness of the rewrite rules is to carry out

transformations on the proofs corresponding to the transformations on the plan terms,

by induction over the structure of proofs.

5.4.2 The relationship between —+ and

The relationship between transformations by partial evaluation rules (—+) and by

operational semantics rules (JJ.) is as follows. We require, but do not prove that:

Claim 2

1. IfFP:Vx.Z and P o t_+*PI

then I- F' : Z and Vr[(P o t 4 r) if (P' JJ. r)].

. IfIP : A— o B and a: A and P oa +*P1

then I- F' : B and Vr.[(P o a 4 r) if (P' JL. r)].

3. IIHP 0 D10 ... 0 Dn T and P0Dj0 ... 0Dn _4*E

then E: T and Vr [(P o D1 o ... o Dn 4 r) if (E JJ. r)].

In each case, the claim is that the plan term resulting from partial evaluation is correctly

typed, and that execution of the partially evaluated term yields the same result as

execution of the original plan. Cases 2.1 and 2.2 cover the applications of single lambda-

terms arising from universal quantifiers and from linear implication in goal position.

Case 2.3 covers the nesting of lambda terms and their applications.

The typing claims of 2.1 and 2.2 can be obtained from Claim 1 and type inference for

application terms. 2.3 can be proved by induction over the definitions of JJ. and

Where there is a computational advantage, we may choose to work with a partially

evaluated plan term and avoid some run-time cost. This may, however, result in larger

use of space resource, as the plan term may grow larger on partial evaluation.

5.5 Correspondence of Linear Lambda Calculus programs
to plans

Programs in Linear Lambda Calculus have the appearance of functional programs.

However, they have the special feature that each linear argument is only used once, a

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 56

property which is guaranteed by the corresponding linear logic proof. Use of linear im-

plication, which represents state change, corresponds to function application in Linear

Lambda Calculus. A plan in our formalism is a program which accepts as arguments

the resources defining an initial state, and returns the goal state.

In the following example, we look at a plan to solve the goal:

I- empty ® clr(b) 0 on(b, c) ® clr(a) -o empty ® clr(b) 0 on(b, a) 0 clr(c)

with the transition axioms:

I- take: empty 0 dr(X) 0 on(X, Y) -o hold(X) 0 dr(Y)

F- stack: hold(X) 0 clr(Y) -o empty 0 clr(X) 0 om(X, Y)

The plan to solve this problem is:

let take ohl*h2*h3 be h6*h7 in
let stackoh4*h6 be h9*h10 in
let hlO be h11*h12 in

h9*hl 1*h12*h7

It is found by building a proof using rules above, and then computing the resultant

extract term.

The h values are labels for the hypotheses which appear in the linear logic proof.

hi: empty
 clr(b)
 on(b,c)
 clr(a)
 hold(b) 0 dr(c)
 hold(b)
 dr(c)
 empty 0 dr(b) 0 on (b, a)
 empty

hlO: clr(b)®on(b,a)
hil : dr(b)
h12 : on(b,a)

To understand the program, we need to consider the values which are passed in and

out of action steps. Fig. 5.1 shows the relationship between actions and values in the

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 57

plan. Arrows entering a box represent arguments and arrows leaving a box represent

returned results. The splitting and joining of lines simply corresponds to the book-

keeping operations of constructing and dismantling (multiplicative) conjunctions, and

these operations are interleaved with the actions.

hi

h2

B

Figure 5.1: Example program/plan

5.5.1 Partially-ordered plans in Linear Lambda Calculus

Here we give an example of a simple plan in which the steps are partially ordered,

and show how this is represented in both STRIPS and in Linear Lambda Calculus.

The problem is one of opening a door which has two locks. The partial-order aspect

is present because the two locks may be unlocked in either order. The STRIPS rep-

resentation of the of the problem is given below, and graphical representation of the

solution plan is given in Fig. 5.2.

operator: 	unlock(L)
preconditions: locked(L)
deletelist: 	locked(L)
addlist: 	unlocked(L)

operator:
preconditions:

deletelist:
addlist:

open-door
unlocked(lockl)
unlocked(lock2)
door-closed
door-closed
door-open

initial: locked(lockl)
locked(lock2)
door-closed

goal: 	unlocked(lockl)
unlocked (lock2)
door-open

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS
	

58

unlock(lockl)

unlock(lock2)

Figure 5.2: Example partially-ordered plan in STRIPS

In linear logic, the actions are represented by the following axioms:

	

I- unlock(].) : 	 locked(1) -o unlocked(l)

unlocked(lockl) 	 unlocked(tockl)

0 	 0
I-

	

open-door : 	unlocked(lock2) 	-o 	unlocked(lock2)

0 	 0
door-closed 	 door open

The problem specification is given by:

F- locked(lockl) 0 locked(lock2) 0 door-closed -o unlocked(lockl) 0 unlocked(lock2) 0 door .open

The plan is given below. Notice that open-door action is applied to a conjunction of

resources, and it is in obtaining each conjunct that the execution order is not forced

(Section 5.3). The applications of the unlock actions are within this conjunction,

and hence may executed in any order (or in parallel). Fig. 5.3 gives a graphical

representation of the plan.

Ahi.
let hi be h2*h3 in

let h3 be h4*h5 in
open_door o

h5*
(unlock o h2) *
(unlock o h4)

The labels have the following types:

hi: locked(lockl) ® locked(lock2) ® door-closed
h2: locked(locki)
U : locked(lock2) ® door-closed

locked(lock2)
door-closed

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 59

Figure 5.3: Example graphical representation of partially-ordered plan in Linear
Lambda Calculus

5.5.2 Execution of primitive steps

The parts of the program which arise from the application of transition axioms have a

special meaning. These are applications of actions, which bring about state changes.

They may represent the actions performed by a robot to transform the state of the

external world. Hence, these steps cannot be removed by partial evaluation, and it is

very important that they are executed in a correct order. An order is enforced where

necessary by the operational semantics.

5.6 Sources

This section is largely based on [Abramsky 93], though we omit rules for additive con-

junction, exponentials, and the special value 1 given there, as they have not appeared

useful in the planning problems. We have added the quantifier rules, which are given,

without proof terms, in [Masseron et at 93]. The rules for rT and 10, also omitted by

Abramsky, are based on those in [Masseron et at 931 and [Pfenning 98]. The partial

evaluation rules are similar to forms used in [Pfenning 98]. The handling of equality is

our own, though this has not been fully developed.

5.7 Summary

We have explained the extraction of plans from proofs of linear logic specifications.

The plans are built up as terms, whose construction is guided by the deduction rules

of linear logic. Additionally, this chapter has described the partial evaluation and

CHAPTER 5. LINEAR LOGIC PLANNING WITH PLAN TERMS 	 60

execution of such plans.

Chapter 6

Induction and Formation of
Recursive Plans

6.1 Introduction

In a traditional formulation of a planning problem, we have a set of primitive operators

which must be used to form a plan to get from fully specified initial state to a goal

state. The solution of a planning problem is a partially ordered sequence of fully

ground operator applications.

A frequently used example of a planning problem is the blocks world. A hand-crafted

procedure for solving blocks world problems can guarantee to always solve the problem

in a time linear in the number of blocks [Slaney & Thiebaux 96]. Little attention has

been given to the problem synthesising such procedures automatically, though limited

recursive problems in the blocks-world have been addressed [Ghassem-Sani & Steel 91].

We believe that recursive structure is often present in conventional planning problems,

but is usually hidden by the way that the domain is defined.

In fact, the inherent structure may allow a single abstract procedure to solve classes of

problems in the domain once and for all. This is expected to be much more efficient in

the case of large but structured problems, and also provides a solution to the problem

of incomplete knowledge - we can guarantee a solution without knowing everything

about the world.

In this chapter, we show how the superior expressiveness of linear logic over conven-

61

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 62

tional planning approaches enables recursive plans to be formed. By treating the

planning process as a proof problem, we exploit the simple relationship between proof

by induction and recursive procedures.

This chapter introduces induction, and relates induction in linear logic to the forma-

tion of recursive plans. induction on lists, natural numbers and trees are considered.

We give induction rules, partial evaluation rules and operational semantics for these

datatypes. The logic which we form by extending ILL-P to enable handling of recursive

problems will be referred to as ILL-PR.

We deal with issues which arise in representing the planing problems, such as how to

represent the problem specification so as to avoid fully specifying the goal state.

6.2 Induction

We choose to perform induction via inductively defined datatypes. For example, lists

of untyped elements can be defined as follows:

list ::= (term :: list) I nil

The usual definition for structural induction on lists is:

r F- P(nil) I' F- P(P) -* P(h' :: 1')
F F- Vl : list.P(l)

Such inductive definitions are associated with a well-founded order - see [Luo 94] for

details.

6.2.1 Special considerations for induction in Linear Logic

In linear logic, we can write a similar rule, but we must be careful about the treatment

of r. Since it denotes linear resources which are to be used exactly once, it would be

incorrect to allow its use in the step case of the proof. This would lead to a plan in

which the same resources are consumed on each successive recursive call. Exponentials,

which are tagged formulas that can be used any number of times, are permissible in F,

but we omit them in our treatment.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 63

However, if the form of the induction rule is such that the base case can only be

reached once, this corresponds to a part of the plan that is only executed once, and it

is therefore permissible to allow the F to be consumed in the base case.

F F- P(nil) P(P) I- P(h' :: 1')
F F- Vt : list.P(l)

In the rest of this thesis, for consistency, we prefer to omit the F in our definitions of

induction rules. This is not as restrictive as it may appear, since P(l) itself is often of

the form 1(1) -o G(l). In this case the 1(1) plays a role similar to the F, but this form

of the induction rule demands that 1(1) should be replenished if used.

In the example given below, we will consider manipulating towers, which are repre-

sented as lists of blocks.

6.3 Formation of recursive plans

6.3.1 Inductive datatype and corresponding induction rule

Here we illustrate induction using lists to represent towers of blocks.

We define a datatype for towers:

tower ::= (block :: tower) I empty

In the inductive proof, the handling of plan terms presents special difficulties. The

syntax for plans is extended by adding the notion of recursive plan, based on the

treatment of recursion in type theory [Nordstrom et at 90].

The inference rule that relates induction on towers to the formation of recursive plans

is as follows: 	
F- bp : F(empty) r: F(t') F- sp: F(b' :: t')

F- At.twr.rec(t, bp, Ar.At'.Ab'.sp) : Vt.F(t)

In general, the F(t) will be a plan specification of the form 1(t) -o G(t). The term

r attached to the induction hypothesis will behave as an available action, and its

appearance in the plan for the step case signifies the application of the recursive call.

Linear logic enforces that it must be used exactly once in the step case plan.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 64

Other induction rules are possible, which correspond to different uses of resources -

e.g. for natural numbers, two forms nat...ind and nat_ind2 are given in Section 6.3.2.

Execution and partial evaluation of twr_rec is considered in Sections 6.3.4 and 6.3.5.

6.3.2 Other inductively defined datatypes

Natural numbers

The Peano formulation of natural numbers is given by the inductive datatype:

nat ::= s(nat) I zero

An induction rule for the datatype is:

F- bp : F(zero) r: F(n') F- sp : F(s(n'))
nat_md

I- An.nat -re c(n, bp, Ar.An'.sp) : Vn: nat. F(n)

An alternative form of induction gives steps of 2:

F- bpo : F(zero) bp i : F(s(zero)) r: F(n') F- sp : F(s(s(n')))
nat_ind2

F- .Xn.nat.rec(n,bp o ,bpi , Ar.An'.sp) : Wi : nat.F(n)

Trees

The tree datastructure in this example is a binary tree with values at the branching

nodes, but not at the leaves.

tree ::= node (tree, tree, value) I empty

We can then write an induction rule for t of type tree:

F- P(empty) P(l),P(r) F- P(node(l,r,v))
tree-id

F- Vt : tree.P(t)

where 1 and r represent the left and right subtrees.

Note that we have any empty context on the left of the sequent. We cannot even use

a context in the base case, since it may be executed more than once.

Adding plan terms, we have:

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 65

F- bp :P(empty) red :P(1),recr :P(r) I- sp :P(node(l,r,v))

I- At.treerec(t, bp, Arec1.)recr.A1.Ar.Av.sp) : Vt: tree.P(t)
tree-id

where bp and sp are the plans for base and step cases, and rec is the recursive procedure

call.

6.3.3 Recursion versus iteration

We have chosen to use recursion to represent all forms of looping behaviour in our

plan language. In some circumstances, it is beneficial to synthesise plans that use the

more restrictive form of simple iteration. One reason to do this is that such plans can

be executed by a simpler mechanism, with lower space requirements. Generally, when

• recursive call is made, it is necessary to store the state of the calling function on

• stack so that it can be resumed when the recursive call returns. Hence the space

requirement for the computation increases with the number of nested calls.

However, in the case of recursive computation where the result of the recursive call

will be also be returned as the result of the calling function, there is no need to store

the state of the calling function. This is known as a tail recursive call.

A function which is tail recursive is equivalent to iteration. In the following, we describe

restrictions that can be imposed on the form of our proofs to restrict synthesised plans

to be in the tail-recursive form.

Tail recursion

Tail recursive plans can be found by restricting the form of the step cases in the

induction.

For example, for natural numbers, if we are generating the proof for a plan specification

of the form

Vn.pre(n) — o eff(n)

then we can use an induction rule of the form:

F- pre(zero) —o eff(zero) pre(n') —o eff(n') F- pre(s(n')) —o eff(s(n'))

F- Vn.pre(n) — o eff(n)

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 66

The step case can be proved if the following two goals can be proved:

	

pre(s(n')) I- pre(n') 	 (6.1)

eff(n') I- eff(s(n')) 	 (6.2)

This can be shown by the following partial proof of the induction rule step case, in

which 6.1 and 6.2 form the open sequents:

pre(s(n')) I- pre(n') eff(n') I- eff(s(n'))

pre(n') —o eff(n'),pre(s(n')) I- eff(s(n'))

pre(n') -.o eff(n') I- pre(s(n')) —o eff(s(n'))

If we read the induction hypothesis, pre(n') —o effin') as the specification of a recursive

function, then the plan corresponding to the sequent 6.1 is the plan to be executed

before the recursive call is made, meeting the preconditions of the recursive call.

The plan corresponding to the sequent 6.2 is the plan to be executed after the recursive

call is made. The criterion for making our plan tail-recursive is that the result of the

recursive call is also the result of the calling procedure - i.e. this part of the plan is

empty.

This happens when

eff(ri') = eff(s(n'))

i.e. proof above this point does not contain any applications of actions.

In summary we can write the tailored form of the induction rule as follows:

No actions in this proof

	

I- pre (zero) —o eff(zero) pre(s(n')) I- pre(n') 	eff(n') H effls(n'))

I- Vn.pre(m) —o eff(m)

An example of a plan which corresponds to the tail-recursive form (for towers) is given

in Section 6.4.1.

6.3.4 Operational semantics of recursive plans

Section 5.3 described an operational semantics defining the execution of recursive plans,

which is a subset of that described in [Abramsky 93]. In this section, we describe our

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 67

extensions to describe execution of recursive plans of the forms described in Sections

6.3.1 and 6.3.2.

In the following bp, sp, c, d and e are canonical.

Towers

First, we will give a solution for the case of towers. The general form of a plan for

recursion over towers is:

At.twr..zec(t, bp,)x.Ay.Az.sp)

where t is a tower,

bp is the base case of the recursive plan,

sp is the step case of the recursive plan taking the following parameters:

x is the recursive plan,

y is the top block,

z is the rest of the tower.

When we apply this rule to a specific tower in place of t, we know from the definition

of the datatype that t is either empty or is of the form b' :: t'. Hence, in reducing the

plan term, we have two different cases to deal with:

If t evaluates to empty, then execute bp:

tJJ.empty bpiJ.c
twr..zec(t, bp, sp) .JJ.c

Otherwise, evaluate the step case plan, sp.

tc::d spotwrrec(t,bp,sp)ocodJJ.e

tur.zec(t, bp, sp) JJ.e

Note that the second (step case) rule must pass the entire recursive plan as an argument

to the step case plan.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 68

Natural numbers

The selection of the appropriate rule for execution of natural number depends on the

evaluation of t

tJJ.zero bpc
natrec(t, bp, sp) .JJ. c

t JL. s(n) sp o nat.zec(n, bp, sp) o n JL c

natrec(t, bp, SP) 4 c

Trees

For trees, the operational semantics rules must handle two instances of recursive call

- one for each subtree.

tJJempty bp -kc
treerec(t, bp, sp) JJ. c

t node (1, r, v) sp o tree.xec(l, bp, sp) o treerec(r, bp, sp) o 1 o r o v J,I. c

tree.rec(t, bp, sp) 4 c

6.3.5 Partial evaluation of recursive plans

We must also define how plans are partially evaluated in the case of recursive plans.

To do this, we define an extended partial evaluation relation ==.

Towers

twr.rec(empty, bp, sp) == bp 	 (6.3)

twrrec(b :: t, bp, sp) == sp o twr.rec(t, bp, sp) o b o t 	(6.4)

Natural numbers

Similarly, for natural numbers, we can give the partial evaluation rules as:

nat.rec(zero,bp,sp) == bp 	 (6.5)

natrec(s(n), bp, sp) == sp o natzec(n, bp, sp) o n 	(6.6)

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 69

Trees

In the case of binary trees, we must pass two instances of the recursive call one for

each subtree.

tree.rec(empty, bp, sp) == bp
	

(6.7)

tree-re c (node (1, r, v), bp, sp) == sp otree_rec(l,bp,sp)
o tree...rec(r, bp, sp)

olor o
	

(6.8)

Correctness of partial evaluation

in Section 5.4 we claimed correctness of the partial evaluation relation —* w.r.t. the

system ILL-P. For the extended logic ILL-PR and the extended relation =, used in

rules (6.4 - 6.8), we require, but do not prove:

Claim 3 = is correct (del. 2) w.r.t. the system ILL-PR.

It follows that the relation ===>*(the reflexive transitive closure of ==) is also correct

w.r.t. ILL-PR.

6.3.6 The relationship between ==> and

Here, we repeat the claim of Section 5.4.2 for the extended relation 	, that the result

of executing the partially evaluated plan is the same as executing the original plan.

Claim 4

IfI- P:Vx.Z and P o t*P

then F- P' : Z and Vr[(P o t .iL r) if (P' 4 r)].

IfI- P:A —oB and a:A and P oa ==*P!

then I- P' : B and Vr.[(P o a JJ- r) if (P' JJ- r)j

3.IfHP0Dl0 ... 0DnT and P0Dl0 ... 0 1)n *F2

then E: T and Vr [(P o D1 a ... o Dn 4 r) if (E 4 r)].

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 70

6.4 Examples

6.4.1 Example using towers

The following example shows a solution to the problem of inverting a tower of blocks.

The specification of the problem itself requires the use of a recursively defined func-

tion. This cannot be be executed itself as a plan, but simply states properties of the

specification language.

As we shall see in the example below, our proof procedure requires both the application

of deduction rules, contributing to the instantiation of a plan term, and the application

of rewrite rules, to transform equivalent expressions into the same syntactic form.

For this example, we wish to solve a problem of the form:

F- plan : Vt. [twr(t) -o twr(rev(t))J

which means that a tower t can reversed by execution of plan. rev is a reverse function,

used in defining relationship between initial and goal states.

The following will be used as plan operators.

I- pick(b:: t): twr(b :: t) ® hn -o twr(t) ® hold(b)
I- put (b, t) : 	twr(t) 0 hold(b) -o twr(b:: t) 0 hn

where hn stands for "holding nothing". Since we are going to need to pass through

intermediate steps in the plan where we have two separate towers, it is necessary

to include a reference to a second tower throughout. The problem of finding this

generalisation of the original specification is discussed in Section 3.5.6. The generalised

plan specification is given below, and this is what we must prove in order to sythesise

the plan:

Vt, a.twr(t) 0 twr(a) 0 hn -o twr(empty) 0 twr(app(rev(t), a)) 0 hn

The definitions of rev and app are given by:

rev(empty) = empty 	 (6.9)

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 	71

rev(b:: t) = app(rev(t), b:: empty) 	 (6.10)

app(empty,u) = u 	 (6.11)

app(b:: t,u) = b:: app(t,u) 	 (6.12)

From this we can prove the associativity of app.

app(app(a, b), c) = app(a, app(b, c)) 	 (6.13)

Now we use the induction rule (for clarity, we will omit plan terms).

(base) (step)
tor_nd(t)

F Vt.Va.twr(t) ® twr(a) ® hn —otwr(empty) ® twr(app(rev(t),a)) ® hn

Base case:

twr(empty) ® twr(ai) ® hn F twr(empty) ® twr(ai) 0 hn
Ax

rrevjrtr (ppl)

twr(empty) ® twr(ai) ® hn F twr(empty) 0 twr(app(empty,ai)) ® hn
rrewr.te(revl)

twr(empty) ® twr(ai) ® hn F- twr(empty) 0 twr(app(rev(empty),ai)) 0 hn

F twr(empty) ® twr(ai) ® hn—otwr(empty) 0 twr(app(rev(empty),ai)) 0 hn

F Va.twr(empty) ® twr(a) ® hn —o twr(empty) ® twr(app(rev(empty), a)) 0 hn vv

(base)

Step case:

In searching for such a proof, we allow meta-variables (A in this proof) so as to delay

the choice of witness term t in the use of the rule 1V.

The step case involves applications of the pick and put actions, and the application of

the recursive call represented by the induction hypothesis.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 72

(1) 	(2)

twr(tj) ® twr(A) 0 hn
twr(empty) 0 twr(app(rev(ti), A)) 0 hn,

twr(ti), I- twr(empty) ® twr(app(rev(bi :: ti), a2)) 0 hn
twr(bj 	02),

hn
I®

twr(ti) 0 twr(A) 0 hn —o

twr(empty) 0 twr(app(rev(ti), A)) 0 hn,
F twr(empty) 0 twr(app(rev(bi ti), 02)) 0 hn

twr(ti),
twr(bi :: a2) 0 hn

twr(tj) 0 twr(A) 0 hn —o

twr(empty) 0 twr(app(rev(ti), A)) 0 hn,
twr(a2), F twr(empty) 0 twr(app(rev(bj :: ti), a2)) 0 hn
twr(ti),
hold(bi)

twr(ti) ® twr(A) 0 hn
twr(empty) 0 twr(app(rev(ti),A)) 0 hn,

F twr(empty) 0 twr(app(rev(bi :: ti), a2)) 0 hn
twr(a2),

twr(ti) 0 hold(bi)
lcut(pick)

twr(ti) 0 twr(A) 0 hn
twr(empty) 0 twr(app(rev (ti), A)) 0 hn,

twr(bi :: ti), 	 F twr(empty)Otwr(app(rev(bi :: ti),a2))Ohn
twr(a2),

hn

twr(ti) 0 twr(A) 0 hn —o

twr(empty)0 twr(app(rev(ti),A))® hn, F twr(empty)0 twr(app(rev(bi :: tj),a2))Ohn
twr(bi ti) 0 twr(a2) 0 hn

	

twr(ti) 0 twr(A) 0 hn —o 	
F 	

twr(bj :: ti) 0 twr(a2) 0 hn—o
twr(empty) 0 twr(app(rev(ti), A)) 0 hn 	twr(empty) 0 twr(app(rev(bi :: ti), a2)) 0 hn

rV,IV

I 	twr(ti) 0 twr(a) 0 hn —° 	1 F- 	
twr(bi ii) 0 twr(a) 0 hn

0. twr(empty) 0 twr(app(rev(ti),a)) 0 hn j 	a. twr(empty) 0 twr(app(rev(bj ti),a)) 0 hn

(step)

The subproof (1) deals with satisfying the preconditions of the recursive call. In doing

so, the meta-variable A is instantiated to b1 :: a2 .

twr(A) F- twr(bi :: 	
Ax,Arrb1::o2

a2) 	 hn F- hn
Ax

	

twr(ti) I- twr(ti)
Ax 	

twr(A), hn I- twr(bi :: a2) 0 hn
r®

	,.

twr(ti), twr(A), hn F- twr(ti) 0 twr(bi a2) ® hn

(1)

The subproof (2) takes us from the postconditions of the recursive call to the post-

conditions of the step case. In this case, this part involves no applications of actions,

which results in a tail-recursive plan. In this case, this was not achieved by forcing

such a restriction, as described in Section 6.3.3, though that approach could have been

used if it was specifically required that the plan must be tail recursive.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 73

Ax

twr(empty) ® twr(app(rev(ti), b1 :: a2)) ® hn
I-

twr(empty) ® twr(app(rev(ti), b 1 a2)) ® hn
rrewrite(appl)

twr(empty) ® twr(app(rev(ti), b1 :: a2)) ® hn
I-

twr(empty) 0 twr(app(rev (ti), b1 :: app(empty, a2))) 0 hn
- 	

- 	 rrewrite(app2)
twr(empty) 0 twr(app(rev(ti), b1 :: a2)) 0 hn

I-
twr(empty) 0 twr(app(rev (t1), app(b :: empty, a2))) ® hn

rrewrite(appas8oc)
twr(empty) 0 twr(app(rev(ti), b1 a2)) 0 hn

I-
twr(empty) 0 twr(app(app(rev(ti), b1 :: empty), a2)) 0 hn

rrcwrite(rev2)
twr(empty) 0 twr(app(rev (ti), b1 a2)) 0 hn

I-
twr(empty) 0 twr(app(rev(bi ti), a2)) 0 hn

(2)

The plan can now be given as (after application of some simplification rules):

At-2.
twr_rec (t_2,

Aa_2.Xh3.
let h3 be h6*h7 in

let hi be hlO*hll in h6*hlO*hll,

Ahi .Ab_1 .At_1 .Aa_8.Ah60.
let h60 be h63*h64 in

let h64 be h67*h68 in
let pickoh63oh68 be h75*h76 in

let put oh67oh76 be h92*h93 in
let hlob_1.::a_8oh75*h92*h93 be h97*h98 in

let h98 be h101*h102 in h97*hl0l*h102)

Plans like this one can be produced automatically by the Lino system (Chapter 8).

6.4.2 Example partial evaluation

Now we can show how this general plan can be partially evaluated to create a specific

plan for a given initial state. In this example, the bi: :b2: :b3: :empty represents a

three-block tower, and p*q*r represent the labels of a conjunction of literals in the

initial state.

Planobi: :b2: :b3: :emptyoemptyop*q*r

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 74

When evaluated with the data available, the plan reduces to a form that can be exe-

cuted a simple sequence of actions:

let pickopor be h107*h108 in
let putoqoh108 be h109*h110 in

let pickohlO7ohllO be h123*h124 in
let putoh109oh124 be h125*h126 in

let pickoh123ohl26 be h139*h140 in
h139*put o h125 o h140

6.4.3 Example with sets represented as lists

It is useful in describing many planning problems to handle finite sets. Unfortunately

the axioms stating that order and duplication in sets are irrelevant cause some trouble.

With in as the set constructor, these axioms can be stated for elements d and e in a

set s as follows:

in(d, (in(d, s))) = in(d, s)

in(d, in(e, s)) = in(e, in(d, s))

To properly handle finite sets, it would be necessary to show that proofs are valid

with respect to these axioms. Here we will do without these axioms and only simulate

sets by the use of lists. This simply means that we impose an arbitrary order on the

elements.

The following example makes use of lists of towers, which are themselves lists of blocks.

The problem is to dismantle a tower to form a list of towers, each containing only a

single block. To define this example, we define a a function flatten, which is used to

the state the relation between the tower initially present, and its final state as a list of

towers of blocks.

flatten can be defined as:

flatten(h :: t) = (h :: empty) :: flatten(t) 	 (6.14)

flatten(empty) = nil 	 (6.15)

The problem specification is:

Vt. [twr(t) ® lst(nil) —o twr(empty) ® lst(flatten(t))]

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 75

The following actions will be used:

I— lop(h) : 	 twr(h:: t) -o twr(t) ® twr(h:: empty)
H gather(t, 1): twr(t) 0 lst(l) -o lst(t :: 1)

Where lop is an action which creates a new tower from a block removed from the top

of t. gather adds a tower into a list of towers.

We need to be able to create and to destroy empty towers. There are several ways that

we could go about doing this.

The approach we will take here is to add the necessary twr(empty) resources to the

specification.

Base case: 	
A

twr(empty) ® lst(nil) F twr(empty) ® lst(nil)

	

I- twr(empty) 0 lst(nil) -o twr(empty) 0 lst(nil) 	
6.15

F twr(empty) 0 lst(nil) -o twr(empty) 0 lst(flatten(empty))

Step case:

twr(empty) 0 lst(flatten(h t)) F twr(empty) 0 lst(flatten(h :: t))
Az

6.14

twr(empty) 0 lst((h :: empty) :: flatten(t)) F twr(empty) 0 lst(flatten(h :: t))
ict(gather)

twr(empty) 0 lst(flatten(t)), twr(h :: empty) F twr(empty) 0 lst(flatten(h:: t))
l-0

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)), F twr(empty) 0 lst(flatten(h :: t))
I®

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)),
F twr(empty) 0 18t(flatten(h t))

twr(t) ®twr(h empty), lst(nil)
ic,t(lop)

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t)), I- twr(empty) 0 lst(flatten(h :: t))
twr(h t), lst(nil)

I®

twr(t) 0 lst(nil) —o twr(empty) 0 lst(flatten(t)),
F twr(empty) ® lst(flatten(h :: t))

twr(h :: t) 0 lst(nil)
r -ø

twr(t) 0 lst(nil) -o twr(empty) 0 lst(flatten(t))
F

twr(h t) 0 lst(nil) -o twr(empty) 0 lst(flatten(h :: t))

The recursive plan extracted is:

At-2.
twr_rec (t_2,

.Xh2 . h2,
Ah1.Ab_1.At_1.)h3.

let h3 be h4*h5 in
let lop oh4 be h7*h8 in
let hloh7*h5 be hlO*hll in hlO* (gather oh8*hll))

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 76

6.4.4 Example using trees

In this section we give an example of induction on a binary tree datastructure. Suppose

we have available actions goright and goleft to progress down either branch of the

tree, and a test which allows us to expand the recursive definition of intree determine

which branch to proceed down.

I- goleft : 	 tree(node(l, r, v))
I- goright: 	tree(node(1, r, v))
I- testtreel: 	intree(b, empty)
I- testtree2: intree(b, node (l,r,v))

—0 tree(l)
—o tree(r)
—00

—o (b = v) intree(b, 1) ED intree(b, r)

The testtreel axiom specifies that intree(b, empty) can never occur. If a matching

term appears in a proof, the rule allows 0 to be derived, which signals an absurd state

from which anything can be derived (see Section 5.2.6).

We can then create a proof and extract a plan which navigates the tree. The assumption

that we can resolve the is effectively an assumption that when the plan is executed,

we we will always know which subtree to follow at each step.

We attempt to the prove the goal:

Vt.Va.tree(t) ® intree(a, t) o(x.y. tree (node (x, y, a))) 0 T

First we apply the tree induction rule on t.
(base) (step)

tree_*nd(t)

I- Vt.Va.tree(t) ® zntree(a,t) —o(3x.ay.tree (node (x,y,a))) ® T

Base case

We deal with the base case showing that it assumes an absurdity - i.e. that a is in

the empty tree. We can use the action testtreel to introduce the 0, which allows us

to prove anything. From the point of view of the proof, this corresponds to showing

that the situation will not occur. The corresponding plan term fails to execute.

tree(empty), 0 F- (z.y.tree(node(x, y, al))) ® T
10

lcut(teatt,eel)

tree(empty),intree(ai, empty) F- (3x.3y.tree(node(x,y,ai))) 0 T

tree(empty) 0 intree(ai, empty) I- (3x.2y.tree (node (x, y, ai))) ® T

F- tree(empty) 0 intree(a i ,empty) —o(2x.Ry.tree (node (x, y, ai))) 0 T

I- Va.tree(empty) 0 intree(a, empty) —o(3x.3y.tree(node(z, y, a)))(& T

(base)

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 77

Step case

The proof for the step case proceeds by expanding the definition of intree and doing

a case split into three possibilities: (1) the current node has value a, (2) the value a is

in the left subtree, or (3) the value is in the right subtree.

(2) (3)

(1) H1, H2, tree(node(li, Ti, Vi)), intree(ai,li) intree(a, Ti) F (2x.3y.tree(node(z,y,a2))) ® T

(a2 =vi)
E)

H1,H2,tree(node(li,ri,vi)), 	intree(a2,11) 	F (x.y.tree(node(x,y,a2)))® T
E)

intree(a2, ri)
lcut(teattee2)

H1, H2, tree(node(li, ri, vi)), zntree(a2, node(li, Ti, Vi)) F (x.3y.tree(node(x,y, a2))) ® T

Hi,H2, tree (node(li,ri,vi)) ®intree(a2, node (1i,rl,vi)) F (x.y.tree (node (x,y,a2)))®T

H1, H2 F tree(node(li,ri,vi)) ®intree(a2,node(1i,rl,vi))—o(3x.3y.tree(node(x,y,a2)))0T

H1, H2 F- Va.tree(node(li, ri,vi)) ® intree(a, node(li, ri,vi)) —o(3x.3y.tree(node(x, y, a))) ® T

(step)

Where H1 and H2 are the two induction hypotheses:

H1 Va.tree(l i) ® intree(a, Ii) —(x.y.tree(node(x, y, a))) ® T
H2 Va.tree(ri) ® intree(a, ri) —o(x.2y. tree (node (x, y, a))) ® T

In case (1) the equality allows us to make a substitution and we need only show that

the value has been found. The presence of T allows us to dispose of the unwanted

hypotheses.

tree(node(li,ri,vi)) F tree(node(li,ri,vi))

tree(node(li, rj,Vi)) F- 3y.tree(node(li, y, Vi))

tree(node(li, Ti, Vi)) F ax.y.tree(node(x,y, vi))
	

Hi,H2FT
 rT

H1, H2, tree(node(li, Ti, Vi)) F (3x. 3y.tree (node (x, y, Vi))) ® T 	
aubatitute

H1, H2, tree(node(li, Ti, Vi)), a2 = Vj F (x.y.tree(node(x, y, a2))) ® T

(1)

In case (2), we have assumed that the value lies in the left subtree, so we can apply an

action goleft to move down the left subtree. We can then use the I —o rule to apply

one of the induction hypotheses (i.e. make the recursive call) to reach the goal. Proof

of (3) is omitted, since it is similar to (2), using the right subtree instead of the left.

tree(lj) F 	
Ax

tree(li) 	intree(a2,11) I- intree(a,11)
Ax

intree(a2,11),tree(li) I- tree(h) ® intree(a2,11)

x.y.tree (node (x,y,az)) F 2z.2y.tree(node(x,y,a2))
Ax

H2,T FT

H2, 3x.2y.tree(node(x, y, a2)), T F (3x.3y.tree(node(x, y, a2))) 0 T

F (2x.3y.tree(node(x, y, a2))) 0 T

H2,(x.y.tree(node(x,y,a2))) ® T F (3x.y.tree(node(x,y,a2))) ® T
I-0

tree(li) ® intree(a2, Ii) —o(x.3y.tree(node(x, y, a2))) ® T,
H2,

intree(a2, Li),
tree(li)

'v'a.tree(li) 0 intree(a,li) —o(Bx.y.tree(node(x,y,a))) 0 T,
H2, 	

F (x.y.tree(node(x,y,a 2)))0T
intree(a2, li),

tree(li)

Va.tree(L i) ® intree(a,1i)—o(2x.y.tree(node(z,y,a))) 0 T,
112,

tree(node(li,rj, vi)), 	
F (3x.Jy.tree(node(x,y,a2))) 0 T

intree(a2, Li)

(2)

IV

cut(goift)

OM

0

I
Ci

00

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 79

The plan

From the proof we can extract the plan:

At.
tree_rec (t_2,

Aa_1.Ah3.
let h3 be h4*h5 in abort(apply(testtreel,h5)),

Ah1.Ah2.Al_1 .Ar_1.Aa_2.Ah7.
let h7 be h8*h9 in

case testtree2oh9 of
inl(hll) then h8*erase
inr(h12) then

case h12 of
inl(h13) then

let hi oa_2oapply(goleft,h8)*h13
be h18*h19
in h18*erase

inr(h14) then
let h2 o a_2 o apply (goright,h8)*h14
be h23*h24
in h23*erase)

6.4.5 Example: Nim

Here we consider the game of Nim. This is a two-player game for which a winning

strategy exists for one of the players. We show that a proof can be built of the winning

strategy in the linear logic framework. The example involves the use of recursion and

of actions with uncertain effects.

The rules

There are various forms of the game of Nim. Here we consider a simple version. At

the start of the game there is a row of 21 counters. Players take turns to remove 1, 2

or 3 counters from the row. The aim of the game is to avoid taking the last counter.

The winning strategy

Either player can find themselves in one of only 21 possible states. It is fairly easy to

categorise the states into winning and losing positions.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 80

We can see our goal state as leaving the opponent with only a single counter. Reasoning

backwards from the goal state, it is clear that this state is accessible if there are 2, 3 or

4 counters remaining at our turn. Furthermore, we can guarantee to reach this state

if the opponent was left with 5 counters at the previous turn.

Similarly, every fourth position from 1 is also a losing position. In the 21-counters

version of the game, the player to take the first move will always be the loser if the

opponent plays perfectly. The winning and losing positions for 21 down to 0 counters

are shown below.

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L W W W L W W W L W W W L W W W L W W W L W

Solution to a fixed-size problem

For the problem with fixed size, the solution branches on the possible choices of move

from the opponent. At our turn, we always play so as to leave the opponent in state

where the number of remaining counters is 4n + 1, for some n. So after branching on

the opponent's move, our move brings us back to the same state in each branch. Hence

the proof tree contains repeated subtrees (below nodes 7, 20 and 32).

In the 9-counter problem below, we attempt to prove:

I- them 0 s(s(s(s(s(s(s(s(s(zero))))))))) -o them 0 s(zero)

Fig. 6.1 gives the structure of a proof of the above specification.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 81

Figure 6.1: Proof tree for 9-counter Nim game.

This leads to a long plan which branches on every possible move by the opponent.

Inductive solution

Here we consider the solution for a more general problem. The winning strategy only

works for problems with 4n + 1 counters, for any n. We can write this goal in linear

logic as:

I- Vn.t hem ® s(mult(n, s(s(s(s(zero)))))) -o them ® s(zero)

In order to solve this problem, our prover needs to know about multiplication and

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 82

addition. These appear as the rewrite rules for mult and plus.

Figure 6.2: Proof tree for Nim game with 4n + 1 counters.

CHAPTER 6. INDUCTION AND FORMATION OF RECURSIVE PLANS 83

This gives the following plan:

An-2.
nat_rec (n_2,
AM.

let h3 be h6*h7 in h6*h7,
Xh1.An_1.Ah57.

let h57 be h60*h61 in
let theytakeoh60oh6l be h66*h67 in

case h67 of
inl(h70) then
let vetake3oh66oh7O be h97*h98 in

let hloh97*h98 be h102*h103 in h102*h103

inr(h71) then
case h71 of

inl(h106) then
let wetake2oh66oh106 be h118*h119 in

let h1oh118*h119 be h123*h124 in h123*h124

inr(h107) then
let wetakeloh66ohlO7 be h129*h130 in

let h1oh129*h130 be h134*h135 in h134*h135)

Note that this plan is much shorter than that generated specifically for the 9-counter

game. It is also more general, as it applies to games for any choice of n. If we applied

the partial evaluation rules to the recursive plan with the value n = s(s(0)), we would

generate the same plan as for the 9-counter case.

6.5 Summary

This chapter has shown how inductive proofs can be used to synthesise recursive plans.

We looked at the inductive datatypes of towers, natural numbers and binary trees and

gave induction rules for each of these, defining also the formation of plan terms.

We have also defined how to partially evaluate and execute these recursive plans.

We have given various example planning problems specified using inductive datatypes,

and shown solution as proofs and corresponding extracted plans.

Our examples have also demonstrated how to use function symbols in specifying plan-

ning problems and how to avoid giving a complete specification of a goal state.

Chapter 7

Automated Proof Search

7.1 Introduction

So far, we have considered the formalism for representing planning problems and their

solutions (proofs). We have not said anything about how to find such proofs automat-

ically. Here we consider previous approaches to proof search in linear logic. We then

consider the issue of forward versus backward chaining when constructing proofs in

ILL to solve planning problems, and find that forward chaining has advantages.

We then present a forward-chaining strategy which is complete for the fragment in-

volving only the connectives -a, ® and ED. However, this fragment does not include all

the connectives that we need in order to handle all the planning problems which we

want to be able to handle.

We then present a strategy which allows a carefully defined larger fragment of the logic

to be used, but which is not complete.

Finally, the strategy for the application of rewrite rules in proof search is considered.

7.2 Search in linear logic

In this section we consider three approaches to proof search in linear logic - Jacopin's

CSLL algorithm, connection-based approaches, and linear logic programming.

These approaches differ strongly in the following ways:

84

CHAPTER 7. AUTOMATED PROOF SEARCH
	

85

The fragment of linear logic tackled, e.g. multiplicatives, additives, exponentials,

quantifiers.

The approach to context splitting and redundancy in proofs caused by per-

mutability of rules.

. Whether emphasis is on representation of proof or automation of search.

. Applicability to planning problems.

7.2.1 Jacopin's CSLL algorithm

Jacopin's approach is a search algorithm to realise Masseron's proof system for con-

structing proofs of plans (called formal actions by Masseron) in linear logic.

Jacopin restricts proof search to use only the decidable fragment involving the rules,

ax, l®, r® and cut. The application of cut is restricted its use in applications of the

transition axioms on the left side. The left side of the transition axioms (i.e. the action

preconditions) is matched within the left side of open sequent in the proof (i.e. the

current state). This effectively makes the search equivalent to a total-order planner

using forward state-space search.

Plan extraction then uses a method which is based on Masseron's geometric approach.

The full algorithm from [Jacopin 93] is given below. The algorithm uses the following

arguments:

. Axioms - set of axioms describing available transitions.

. E2 , E1 - Antecedent and Succedent of sequent, describing initial and final states.

. P - Proof constructed by CSLL.

E denotes multiset inclusion.

U denotes multiset union.

(A, C) denotes a sequent A F- C

86 CHAPTER 7. AUTOMATED PROOF SEARCH

CSLL(Axioms,E2 ,E1 ,P)
If Ej H E1 is the identity Then

return P
Else

Choose (A as , Gas) from Axioms such that A as Ei
If (Ei = A as) A (Ej = Gas) Then

return P
Else

(A,,,, C.,,) = (r, B)
(E,E1) = (IF uF',C)

I Fl-B F',BF-C
F,F'HC 	

cut

(A 1 , C1) - (F' U {B})
While (A1, C1) = (VU {B' 0 B"}, C) Do

F',B',B"I-C

PPu r',B'®B"HC1® I
(A 1 , C1) +— (F'U{B',B"},C)

End While

C2) +- (Ai, C1)
While (A2, C2) = (CU &C'®C") Do

Choose non-deterministically:
I C'l- C' iHC" rO l.Ppul

CI , HC'®C"

(A2, C2) - (z,C")
2. Exit While

End While

C3) - (A2, C2)
CSLL(Axioms,A3,C3,P)

End If
End If

The algorithm applies rules with the following priority:

Identity axiom, Ax.

Exact match with a transition axiom.

Cut of a transition axiom (forward application of action),

and do the following to the resulting sequent:

• Exhaustively apply I®.

• Nondeterministically choose whether to apply rO.

Recursively call CSLL on resulting sequent.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 87

Non-deterministic application of r® rule often causes redundant search. This problem

has been addressed in our work by deferring application of rø until late in the proof,

and adopting a lazy context splitting mechanism.

Jacopin's conclusions on linear logic are mainly pessimistic. One reason for this could

be because the fragment used is very restrictive, yet the search algorithm has an

unnecessary choice point into the search at the point of context splitting. Hence there

is no advantage over a conventional planner in expressiveness or performance. In

Jacopin's formulation it is necessary to fully specify the goal state of planning problems.

However, we have already seen that the T operator this problem.

7.2.2 Connection-based methods

In this section we do not discuss a specific algorithm, but a family of algorithms which

are based on a similar representation. Connection-based proof search has been used in

planning problems since it was introduced by Bibel [Bibel 86]. This approach was not

designed as a linear logic theorem proving method (it predates linear logic) but derived

from a FOPC prover by engineering resource sensitivity into the representation used

in proof search.

We take a brief look at Bibel's representation, and consider subsequent work that has

used similar representations for linear logic theorem provers. The main advantage is

the elimination of redundancies in the proof search space caused by permutabilities

of sequent deduction rules. The method is based on making connections between

positive and negative instances of formulae in the proof. In the planning problem,

these correspond to effects and to preconditions and goals. The resource-sensitivity is

enforced by imposing the restriction that each formula is connected at most once.

Bibel's LCM

We give a brief sketch example from Bibel's original paper on the Linear Connection

Method (LCM) [Bibel 86]. Note that Bibel does not formalise a resource sensitive logic,

but only adds a resource-sensitivity into an existing representation used in constructing

proofs [Bibel 83]. Note also that Bibel's claim was that making a minor change to an

CHAPTER 7. AUTOMATED PROOF SEARCH

existing proof method (i.e. adding resource-sensitivity) allowed planning problems to

be solved without changing the logic or adding frame axioms.

Initial situation:

ontable(a) A on(b, a) A dear(b) A handempty

Coal situation:

ontable(a) A dear(a) A hold(b)

Description of action pick:

antecedent: clear(x) A on(x, y) A handempty

consequent: hold(x) A clear(y)

We adhere to Bibel's notation as follows:

T for ontable
0 for on
C for clear
E for handempty
H hold

The problem is written in the logic as follows:

TaAObaACbAEAVXy(CXAOXyAE—*HXA Cy) +TaACaAHb

It is then converted into AND/OR form:

-'Ta V Oba V -'Gb V -iE V xy(Cx A Oxy A E A (-'Hx V -iCy)) V Ta A Ca A Hb

Universal variables are skolemised and existential variables are replaced by free van-

ables.

-iTa V -'Oba V -iCb V -iE V (Cx A Oxy A E A (-'Hz V -'Cy)) V Ta A Ca A Hb

The problem is laid out as a matrix with the disjunctions laid out horizontally and the

conjunctions laid out vertically.

CHAPTER 7. AUTOMATED PROOF SEARCH
	

89

Cx 	 Ta

Oxy 	 Ca

E 	 Hb

-'Ta 	-'Oba 	-'Gb 	-'E 	 -'Fix 	-'Cy

The proof is then constructed making connections between matching facts and goals.

Cx 	 Ta

-'Ta 	-'Obi

Completing the proof involves finding appropriate connections in the matrix, and also

determining appropriate substitutions. The linearity restriction requires that each

literal may be connected with at most one other literal.

The original paper does not give an algorithm, but Bibel used an adaptation of a proof

search without the linearity assumption. Later publications refer to a goal-driven linear

backward-chaining (LBC) algorithm, and to LIP algorithm [Fronhöfer 97], which is

a close relative of partial-order causal link planning.

Connection proofs and linear logic

The resource-sensitive nature of Bibel's method makes it sensible to relate it to linear

logic. The equivalence to linear logic, at least for simple conjunctive problems has

been shown by [Grol3e et al 96]. This relates both approaches (and also another one

based on equational resolution) to a common semantics. It is worth noting that since

sequents are not handled directly, the context-splitting issue does not arise.

[Kreitz et at 961 presents a connection-based prover for multiplicative and exponential

fragment of classical linear logic. This is based on the linear connection idea, and on

CHAPTER 7. AUTOMATED PROOF SEARCH 	 90

connection-matrix formulations for other logics [Wallen 90]. This formulation removes

certain redundancies from the proof search space. There is also a strong relationship to

Girard's notion of representing linear logic proofs as proof nets [Girard 95]. Proof nets

behave very well for the multiplicative fragment, but need awkward extensions to deal

with exponentials and additives. Even simple conjunctive planning problems cannot

be handled by (multiplicative) proof nets, as we would need to know in advance how

many times each action transition would be used.

[Bruning et al 93] presents an adaptation of a connection method which effectively

adds handling for additive disjunction.

[Fronhöfer 97] provides a survey of research descendents of the linear connection

method.

7.2.3 Linear logic programming

In logic programming, proof search itself is seen as a form of computation. Hence, logic

programming languages perform systematic proof search, and that is why they are of

interest to us.

Several formulations of Prolog-like languages for linear logic have been devised. Two

which have given rise to practical implementations are Lolli [Hodas & Miller 94] and

Lygon [Harland et al 96]. Here, we shall give an account of the principles behind Lolli,

which is a summary of [Hodas & Miller 94].

Logic programming can be characterised as a declarative proof system that can be

given an executable semantics in the style of [Miller et al 91].

Hodas and Miller also require that proofs should be goal directed, which is given a

formal definition using the notion of uniform proofs. In a uniform proof, the right-

introduction rules are applied to break down goals to atomic formulas before any

left-introduction rules are applied. Since, in this setting, the left side of the sequent

represents program and data, this means that goals are processed uniformly and inde-

pendently from the program.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 91

Lolli

The logic behind Lolli is derived by the following steps:

Define a fragment of intuitionistic linear logic for which uniform proofs are pos-

sible (L).

Replace all the left-introduction rules with a single backchaining rule, giving C.

Extend the fragment by allowing missing connectives to appear in goals only

(C').

Additionally, Hodas and Miller describe an approach to resource management which

lazily handles the choice of how to split the context when applying rules such as r®.

Proof system £

In this section, we will consider a fragment of intuitionistic linear logic using only

T, &, ®, !, -o, and V. In fact, even ® and ! cause some difficulties, because uniform

proofs involving these connectives may not be possible. For example a 0 b F- b 0 a

and !a I-!a®!a have proofs, but not uniform proofs, since both require a left rule to be

applied before a right rule. We will ignore! and 0 rules for the time being, though

is handled in a limited way by the form of sequents that we use.

Consider sequents of the form: F; A I- B where B is a formula, F is set of formulas

and A is a multiset of formulas. Such sequents have their context divided into an

unbounded part F (a set) and a bounded part A, which is a multiset corresponding to

left-hand side of sequents of the purely linear fragment.

The sequent

B 1 , ..., B; C1, ..., Cm H B

is equivalent to the linear logic sequent

!Bi,...,!B n ,Ci,...,Cm F-B

It is now natural to make a second modification to linear logic by introducing a second

CHAPTER 7. AUTOMATED PROOF SEARCH
	

92

kind of implication. We will use intuitionistic implication B 	C, which is directly

equivalent to !B -o C.

The system £, with these restrictions, is defined by the following proof rules:

F,B;,B H C
F,B;i FC absorb

identity 	 rT
F;AI- A 	 H F;LT

r; A, Bi I- C
F;z,B1&B2I-C

F;z 1 HB F;z 2 ,CHE 1
IF; Al, 2 ,B—oCHE

F;iHB F;LHC
IF; HB&C

IF; z,B I- C
r r; A I- B—CC

r;OHB F;i,CHE 	 F,B;A+C
F;i,B=CHE l 	 F;HB=C

F; L, B[t/x] H C 	 F; A I- B[y/x]

F; L, VxB I- C IV 	 F; Z I- VxB rV
Provided that y is not free in the lower sequent.

The proof system C

The various left-introduction rules can now be combined into a single backchaining

rule. This is done by decomposing a linear formula B to define a set JIBIJ of triples

(I', i, B') as follows:

(ø,ø,B) E IIBiI,

if (F,i.,B 1 &B2) E IIBII then both (I',i.,B 1) E IIBII and (F,i.,B2) E IIBI

if (F.z,Vx,B') E IIBiI, then for all closed terms t, (F,,B'[t/x]) E IIBII,

if (F, i, B1 = B2) E IIBII then (F U {B}, L, B2) E IIBII and

CHAPTER 7. AUTOMATED PROOF SEARCH
	

93

5. if (F, z, B 1 -o B2) E JIBIJ then (F, 1.w{B 1 }, B 2) E JIBIJ, where W denotes multiset

union.

This is now used to define the backchaining rule:

F;OI-B1 ... F;OHB 	FAiF-Ci...F;L m HCm
BC

F;1i,...,L m ,BHA

provided n, m > 0, A is atomic, and ({B 1 ,. .. , Bn }, {C1,. . . , Cm}, A) E IIB1I

Hodas and Miller call this proof system C.

The proof system C'

The connectives ® and ! were omitted because of their bad behaviour when appearing

on the left of the sequent. However, we have the possibility of allowing some connectives

to appear in goals only. Hodas and Miller define C' using R-formulas (resource formu-

las), which can appear on either side of the sequent, and G-formulas (goal formulas),

which can only appear only on the right of sequents.

R:= T I Al R 1 &R2 I G—oRI G=RIVxR

G:=TIAIG1&G2IR_0GIRGIVxGIGlG2I1IG1®G 2 l!GlXG

Now we can introduce rules for the missing forms 1, , ®,!, and 3.

F;ØH1 rl

F;OH B
F;OH!B

r; A HB 2
r(i = 1,2)

I- 13i ED B2

r; A I-B[x/t]
F;AI-x.B

F;Z 1 HBi F;L 2 HB2
r®

I- B 1 0 B2

CHAPTER 7. AUTOMATED PROOF SEARCH
	

94

Resource management

An extra problem that the proof system for linear logic faces is that some of the proof

rules, e.g. for ® require that the bounded context should be split in a non-deterministic

way. The r® rule is one example.

IF; z 1 HG 1 F;z 2 HG2
r; A I-G 1 ®G2

When applying this rule in a bottom-up way, we need to decide how to partition L

into A, and z2. If L has cardinality n then there are 2" possible partitions of A.

Fortunately, it is possible to perform this context splitting lazily. We first attempt

a proof of Gi with all of the resources in L available. Then we can determine that

zi comprises those resources actually used, and the remainder constitute Using

this basic idea, Hodas and Miller formalise the notion by defining a 3-place relation

of the form I{G}O, meaning that goal G can be proved from resources in I, with the

resources 0 remaining. Using this representation it is possible to define the behaviour

of the connectives using the following form:

I{G i }M M{G2}0
I{Gi ® G2}0

Lolli for planning

Since the use of the ® connective in resource formulas is forbidden in this language, we

cannot model a planning action with multiple effects by a clause with a conjunction

in its head. For this reason, planning problems cannot be directly presented to the

Lolli interpreter. It is, however, possible to represent and solve planning problems

by defining a very simple meta-interpreter, which uses forward reasoning instead of

backward reasoning.

We give a minimal Lolli planner below, in which the clause succeeds Plan Goal is

satisfied if Plan can be instantiated to a list of actions satisfying Goal. The operator

-o represents linear implication, and attempting a goal of the form The goal erase

stands for the constant T, which is allowed to consume any resources left over after

proving Goal.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 95

succeeds nil Goal :-
Goal,
erase.

succeeds (Step :: Plan) Goal:-
operator Step Pre Eff,
Pre,
Eff -o succeeds Plan Goal.

This program can be run to form a plan to get from Initial to Goal using the following

query:

Initial -o succeeds Plan Goal.

With the in-built depth-first search strategy of Lolli, this program tends to loop, but

by extending slightly to include a depth bound so we can do iterative-deepening search,

we get a working but inefficient planner.

7.2.4 Summary

Jacopin's CSLL is a search algorithm for a very limited fragment of linear logic, suf-

ficient to solve conjunctive planning problems using a forward-chaining strategy,

The is no attempt to deal efficiently with non-determinism caused by context-

splitting.

Connection-based methods are a family of methods in which redundancies in the

proof search space (including context-splitting) are removed by considering di-

rect relationships between facts and goals in the proof. So far, these methods

have been extended to the fragment of linear logic including multiplicatives and

exponentials, and to multiplicatives and additive disjunction.

linear logic programming in Lolli tackles proof search in a large fragment of linear

logic, restricted in such a way that proofs are uniform. The fragment is made as

large as possible by allowing some connectives to be used in goals only. A lazy

context splitting mechanism deals efficiently with context splits.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 96

7.3 Forward chaining versus backward chaining in ILL
proof search

Before describing our own strategies for proof search in ILL, we consider the issue of

forward versus backward chaining when constructing proofs to solve planning problems.

Proofs may be constructed in the direction forwards from the initial state or backwards

from the goal. We show that backwards search is problematic if T is used to avoid

completely describing the goal state.

In this section, we use Pre I- Eff representation for actions, which are applied by the

cut rule.

7.3.1 Forward chaining without T

For a proof in which actions are applied forwards, action preconditions are matched

against current state. This is achieved by applying the cut rule so as to cut in action

instances on the left. This form of cut application we call fcut. We then get proofs

which have the following general shape:

Action2 	F- G
fcut

Action 1 ... I- G
feut

Note that the goal is preserved in righthand sequents.

7.3.2 Forward chaining with T

If we wish to avoid fully specifying the goal, T may be used as a conjunct in the goal

G. Application of the rT rule (Section 5.2.6) accounts for the disposal of any unused

resources. The rT rule does not need be applied until after all the actions have been

applied and goal conditions have been met.

CHAPTER 7. AUTOMATED PROOF SEARCH
	

97

_ . rT

rm

Action 2
fcut

L- 	,O

Action 1 	... I- G'®T
fClLt

7.3.3 Backward chaining without I

Backward chaining involves checking the goal to see if it contains effects of a possible

action. We can define a backward chaining (bcut) rule below, which is a specialisation

of the standard cut rule. Here we assume matching on goal terms has built-in handling

of associativity and commutativity of ®.

FI- Pre®Z PreI- Eff
bcut

FE-Eff®Z

Note that we use a meta-variable Z to represent the part of the goal formula not

achieved by the current action. The backward-chaining proof has the following shape:

Action1
bcut

IF-...

I H... 	Action2
bcut

IF-...

Note that the initial state is preserved on each application of bcut. If T does not

appear in the goal, the meta-variable in bcut is always immediately instantiated.

7.3.4 Backward chaining with T

If we apply the rT rule to dispose of resources after the last action is applied, this

corresponds to applying the rT near the root sequent of the proof. We must apply

the rT rule before we know what resources it is to dispose of. In combination with

CHAPTER 7. AUTOMATED PROOF SEARCH 	 98

the bcut rule, this means we must allow an uninstantiated meta-variable into the goal.

This is a problem, because the meta-variable allows the effects of any action to match

the goal. Consider the following example:

Suppose we have a domain with resources a and b which are mutually exclusive. We

encode this by including a single instance of resource a or b in the initial state, and

making sure our action preserves the constraint that we have either one copy of a or

one copy of b.

Suppose we have only one action

a®c—ob®c 	 (7.1)

Suppose we start from a specification

mit F- bøc®T 	 (7.2)

where mit is a context representing the initial state.

Cutting in a meta-variable Z in place of T, we get:

initF- b®c®Z 	 (7.3)

Applying backward-chaining bcut rule for the action, we get:

initF- a®c®Z 	 (7.4)

Applying bent rule again, we get:

initl- aøa®c®Z' 	 (7.5)

where Z = b 0 Z'. Note that this instantiation means that the previous goal in 7.4

contains both a and b, which are intended to be mutually exclusive.

Applying bent rule again, we get:

mit F- a®a®a®c®Z" 	 (7.6)

where Z' = b 0 Z".

CHAPTER 7. AUTOMATED PROOF SEARCH 	 99

Since linear logic allows us to have multiple copies of the same resource, and since we

have a meta-variable in the goal, the goal may grow infinitely in the backward-chaining

proof. This does not mean that an incorrect proof will ever be found, only that we

expend a large amount of time searching a space that has no meaningful interpretation

in the planning problem.

To get around this problem, we would need to impose some check, external to the logic,

on whether the current goal is meaningful as a partial description of a state.

7.4 A complete proof search strategy for a fragment of
ILL

In this section, we give a complete proof search strategy for a fragment of ILL using

only ®, and -o. This is sufficient for describing simple planning problems involving

conjunction and disjunction.

We draw on two of the approaches to proof search in ILL mentioned earlier - Jacopin's

CSLL algorithm [Jacopin 93] and linear logic programming systems, especially Lolli

[Hodas & Miller 94].

We have forward chaining application of reusable transition axioms (in common with

Jacopin's CSLL), handling for more of the connectives of ILL, and lazy context splitting

in the style of [Harland & Pym 97].

7.4.1 Complete search

Since we forbid the use of exponentials, each of the allowed deduction rule, when

applied bottom-up, results in smaller subgoals. We therefore have only a finite search

space and the problem is decidable.

This search space exhibits some redundancy, as some orderings of rule applications are

equivalent to others. We remove some of the redundancy be eagerly applying the 'safe'

deduction rules.

We will then show how this generalises to the case where actions are reusable, by

imposing a depth limit on the number of applications of the 1 - rule.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 100

In Section 7.5.2 we describe the proof search strategy actually implemented. This

further generalises the strategy described to use more connectives, i.e. quantifiers,

constants T, and 0, arbitrary applications of rewrite rules.

7.4.2 Invertible rules

Invertible rules are those for which the upper sequent is necessarily provable if the

lower sequent is provable. Hence application of an invertible rule cannot be a mistake.

One such rule is the l® rule.

IF, A,B I-C
F,A®BHC

We can show that this is invertible by showing that we can derive the upper sequent

if we assume the lower sequent.

Al-A BF-B
A,BI-A®B

rø
 F,A®Bl-C

F,A,Bl- C 	
CU

See Appendix A for invertibility of other rules. Note about the use of cut: Since we

used cut in these proofs, they are not necessarily valid in a proof search where we do not

use cut. However, since we have a cut-elimination theorem for the logic, we know that

an equivalent proof could be found (shown by transforming proofs). This argument

does not remain valid for inductive proofs, as cut elimination no longer holds. Our

search procedure does not encompass selection and application of induction rules.

By contrast, the r® rule is not invertible.

Fl-A
F,r' I- A®B

This rule relies on an appropriate splitting of the linear context into F and F'. In some

cases an appropriate division is not possible, e.g.:

aØbI- a cI-b®c
a®b,cH a®(b®c)

In this case it is mistake to apply the rø rule without first applying I® to break the

formula a 0 b on the left.

CHAPTER 7. AUTOMATED PROOF SEARCH 	 101

The invertible rules in the current fragment are: l®, l, r -o:

Since application of these rules is always safe, it does not represent a real choice point in

the search. It is sensible to apply these rules eagerly - i.e. always apply an invertible

rule where possible. If more than one invertible rule is applicable, we can choose the

order based on an arbitrary order. For our set of rules, we chose to apply le with the

lowest priority. This rule causes branching in the proof, so we prefer to apply it later.

7.4.3 Non-invertible rules

If there are no invertible rules to apply, we can attempt to apply the non-invertible

rules r, r®, 1 -o • If any of these are applicable, then we have a nondeterministic choice

of which to apply and how to apply them. Choices are:

. Which of the possible rules to apply.

How to split the context in the r -o and r® rules.

. Which of the two possible rED rules to select - i.e. which goal to satisfy.

For rED and r®, there can never be a choice over which to apply, since we have only a

single formula on the right.

The application of the 1 -o rule is more problematic, since this is where the choice of

action occurs when reasoning about planning problems. There may be a choice of -o

formulae, corresponding to different available actions.

7.4.4 Strategy

The strategy is to apply eagerly the invertible rules l®, r -°, lED, and nondetermin-

istically apply the other rules r®, 1 -a, rED This is the general strategy used by e.g.

[Galmiche & Boudinet 94].

7.4.5 Unbounded actions

In the discussion above, we considered only the use of bounded actions of the form

A -o B. In the planning problems, we need to model actions that can be used any

CHAPTER 7. AUTOMATED PROOF SEARCH 	 102

number of times. Previously, we modelled this by the of the cut rule together with

actions described by axioms. We can also describe unbounded actions by formulas of

the form !(A -o B). The exponential excuses the reuse, or non-use, of the formula in

the proof.

With unbounded actions, we lose the termination property of our proof procedure.

However, we can keep control by performing a search by iterative deepening. The

problem of finding a proof with a specific number of action applications is equivalent

to the bounded-actions case considered above, and is decidable. Here, we repeat the

search, increasing the depth bound on each iteration.

7.4.6 Summary

We gave a complete strategy for applying sequent rules of ILL to solve planning prob-

lems. In Section 7.5, we present a search strategy for a wider fragment of ILL. That

algorithm is not, however, complete.

7.5 Search strategy for a larger fragment

In this section we extend the search strategy described in Section 7.4. Here we will

handle a larger fragment, at the expense of completeness. Previously, we only consid-

ered ®, ED, -o. The proof search procedure is defined here for a fragment using most of

ILL, but we limit the use of cut, and omit explicit use of exponentials. However, the

transition axioms representing planning operators are reusable, and so are a form of

exponential formulas.

In the following, we consider actions to be represented by the -o connective only. In

the implementation we use an lcut rule to perform actions. The difference is that

icut allows actions to be treated as re-usable. Since our search algorithm contains the

problem by bounding the number of times icut can be applied, we can treat them

equivalently here.

In Section 7.5.1 we analyse the invertibility or otherwise of the proof rules for this

enlarged fragment of ILL. This analysis motivates the search strategy presented in

CHAPTER 7. AUTOMATED PROOF SEARCH 	 103

Section 7.5.2.

7.5.1 Categorisation of rules

Certain of the proof rules have the property of invertibility, meaning that the premises

are derivable whenever the conclusion is derivable. It is possible to commit to the

application of these rules without the danger of losing a proof. We now analyse the

rules to determine a good strategy.

10, r -o These (invertible) rules cause the context to increase. These rules should be

applied with the highest priority, as they should be performed before any context

splitting rules.

12, rV These rules are invertible. However, they introduce an eigenvariable and the

side condition requiring that it does not appear elsewhere in the sequent.

1V, r2 These are not invertible, because they can interact with the side conditions of

the 12 and rV rules. For this reason, it is sensible to eagerly apply the invertible

quantifier rules, and defer the application of IV and rB

10, rT If either of these rules can be applied, then the current branch of the proof

is closed. There is an interaction with the context-splitting mechanism here, as

we may have a delayed choice as to which resources in the context are actually

present in this branch of the proof. It is never a mistake to apply these rules.

l This rule is invertible, but has the unfortunate effect of causing the proof to break

into two branches. Most of the effort after that is therefore going to be duplicated,

so we are not keen to apply this early.

nED, r2ED Here we have a nondeterministic choice point, since we need to apply one

rule out of the pair. From an efficiency point of view, it would be preferable to

defer these rules as long as possible.

rO splits the goal and the context. This can be a mistake, as some required splittings

of the context may not be possible until context-increasing rules have been fully

CHAPTER 7. AUTOMATED PROOF SEARCH
	

104

applied. We therefore do not want to apply it until the context is fully decom-

posed. In fact, it is usually only useful when we are testing to see if we have

achieved the goal.

l -o Also causes a context split. In planning problems, its use corresponds to the

application of an action which must be used exactly once - usually the induction

hypothesis. Its use is potentially a mistake, if it splits the context too soon or if

it is applied to the wrong resources.

We summarise this analysis in the following table.

Context increasing: l® 	r -o

Quantifiers: 13 	 rV Side conditions
lv 	r3 No side conditions

Decompose: 10 	 rT Close branch
Causes branching

ri 	r2@ Nondeterministic choice

Context splitting:
1 -o Actions

Ax Close branch

7.5.2 Search algorithm

The general strategy is to fully decompose formulas in the context before applying

any context splitting rule. Note that this is unlike the strategy employed in e.g. Lolli

(Section 7.2.3), where right rules are always applied ahead of left rules.

The only context splitting rules that we have are 1 -o, and r®.

We define our strategy using three procedures:

Decompose

Apply rules to remove connectives. This comprises application of the context-

increasing, quantifier, and decompose rules, but not context-splitting rules from

above table. Decompose contains no choice points - we commit to the selected

rule.

TestGoal

TestGoal is to check whether the goal has been reached already, without further

actions. TestGoal is always applied after Decompose, and it is allowed to use all

CHAPTER 7. AUTOMATED PROOF SEARCH
	

105

the rules except 1 -o. Usually it will only need r® and Ax, which are applied with

the lowest priority. TestGoal always terminates, with either success or failure.

3. Act

Act attempts to select and apply an action using 1 -o, either failing or returning

a new open sequent.

The strategy is to first apply Decompose, then apply TestGoal to each result. If

TestGoal fails then apply Act and recurse on the result.

There are nondeterministic choices present which represent opportunities for making a

mistake in the proof. These become choice points in a backtracking search. Notice that

for the 7S rules, the choice is only which of the two rules to apply. It is safe, however

to commit to the order in which the rules are applied. Below, we give pseudo-code

for our procedure, in which choose indicates a choice point to which execution may

backtrack, and select indicates a choice to which we immediately commit. The try

else try ... end try construct attempts each procedure in turn until one of them

succeeds.

procedure LinoSolve(I F- G):

{

try
call Decompose(I I- G)

else try
call TestGoal(I I- G)

else try
call Act(I F- G)

end try
ti
U

procedure Decompose(I F- G):

{

select first applicable rule from the order:
I®, r -o, to, 8, rV, rT,1, IV, rR

Apply rule to derive a set of unsatisfied sequents S
for each sequent I' I- G' in S do

call LinoSolve(I' F- G')

}

procedure TestGoal(I I- G):

{

CHAPTER 7. AUTOMATED PROOF SEARCH
	

106

try

{

select first applicable rule from:
l®,r—o,lO,l2,rV,rT,lE, IV, r2

Apply rule to derive a set of unsatisfied sequents S
for each sequent I' I- G' in S do

call TestGoal(I' H G')

}

else try
if dominant connective in G is 0
then

{

Apply r® to derive a set of unsatisfied sequents S
for each sequent I' F- C' in S do

call Test Goal(I' I- G')
}

else fail
endif

else try
if dominant connective in G is e
then

choose either r1 or r2 to get I' I- G'
call TestGoal(I' F- C'))

else fail
endif

else try
choose any possible application of ax and apply it

end try

0
procedure Act(I F- G)

{

choose any formula in the context of the form a -o b
Apply 1 -o to derive open sequents Si and 82
call TestGoal(si) /* check action preconditions */
call LinoSolve(82) /* continue planning from modified state */

}

The use of lazy context-splitting means that there is no choice point for how to split a

context at the point where a context-splitting rule is applied, e.g. by rO rule. However,

there is a choice point wherever the commitment is made on how to split the context.

This is done by ax and I -o rules. Other left rules are forced to be applied before any

context-splitting rules.

	

CHAPTER 7. AUTOMATED PROOF SEARCH
	

107

7.5.3 Reduced Fragment

Although we do not have complete proof search for the current fragment, we can

identify some forms of failure of the proof search with some features of the sequent

which we are attempting to prove. Here we define a restricted fragment of the logic for

which these specific problems will not occur. This leaves us with a fragment which still

allows all the connectives to be used in the form in which they most naturally appear

in planning problems.

Some proofs will not be possible due to the restriction which we have placed on TestGoal

- i.e. that we do not consider the application of actions during the TestGoal. For

example, consider the following incomplete proof attempt for a I- a® (b—oc). When

we apply TestGoal here, we get:

Ax

bI- c
r-o

al- a 	F-b--cc
a F- aØ(b—oc)

A proof of the open goal b H c may be possible by the application of transition axioms,

but this specifically forbidden within TestGoal, so it will not be found.

We can prevent this situation from occurring by banning the use of -o within a goal

expression dominated by ®. The following grammar captures this idea by defining G0

for goal expressions outside the scope of ®, and G1 for goal expressions inside its scope.

We will generally prove sequents restricted to be of the form R I- G0

R:=R®R G0—oR I RR I Vx.R I 3x.R IT 10
G0 :=G1®Gi IR—oG0I G 0 G0 IVx.Go I 3x.Go 1T1 0

G1 :=G1®Gi I G 1 G1 IVx.Gi I 3x.Gi IT 10

None of our example planning problem specifications needed to be changed to conform

to this reduced fragment.

7.5.4 Depth bound

An iterative-deepening strategy is used to control the proof search. The depth bound

counts the number of applications of action axioms, (see Section 7.4.5).

CHAPTER 7. AUTOMATED PROOF SEARCH 	 108

7.6 Rewriting strategy

7.6.1 Introduction

We have previously described a proof strategy for a large fragment of intuitionistic

linear logic. This fragment has been chosen to allow the handling of planning problems

in an expressive language.

However, in order to deal with examples involving recursion, we make of use of auxiliary

functions such as reverse in the problem specification. Such functions are specified

recursively using equations.

This section considers the problems of controlling the application of these equations in

testing equality between expressions.

7.6.2 Functions specified as rewrites

It would have been pleasing if the rippling strategy (Section 3.5.4) was successful in

this case, but the interleaving with planning steps usually involves skeleton disruption,

and cannot be handled by rippling. We have separately accounted for the application

of actions during the proof search, and what we need is a strategy to use the rewrite

rules in a cheap test of equality.

Since the equations represent function definitions, there is usually a natural orientation

of the rule which corresponds to evaluation of the function. Such definitions usually

yield rewrite rules which always terminate with a unique result. In such a case, to

decide equality of ground terms, we need only apply the rules exhaustively.

In the presence of free variables, matters are unfortunately not so straightforward.

7.6.3 Summary

The inclusion of rewrite rules in planning domains introduces search problems for which

there is no general, complete solution. However, a strategy of exhaustive rewriting is

very often successful, so this approach is adopted.

CHAPTER 7. AUTOMATED PROOF SEARCH
	

109

7.7 Conclusion

We looked at three existing approaches to proof search in linear logic. For the re-

quirements of the planning problems we wish to deal with, we introduced a complete

algorithm, which combines forward search (as CSLL), with a large set of connectives

extended to include -o, l and lazy context splitting (as Lolli).

We then introduced an algorithm for a larger set of connectives, which is not shown

to be complete, but for which we can define a restriction on logic which is relatively

harmless in our applications, but which eliminates an important source of incomplete-

ness

We also described our approach to the problem of applying rewrite rules.

Chapter 8

The Lino Implementation

8.1 Introduction

In this chapter, we introduce the Lino system, and discuss its key features, particularly

the lazy context splitting mechanism and proof search procedure.

8.2 Overview

In this section, we give an overview of the Lino system implementation. The Lino

system comprises:

A proof checker, using standard proof rules of ILL, plus extended proof rules for

recursion on lists, natural numbers and binary trees, and the application of term

rewriting rules.

Lazy context splitting is integrated and makes use of the CLP(FD) solver of

SICStus Prolog {Carlsson et al 971. Our implementation of lazy context-splitting

is described in Section 8.3. Output of completed proofs is available formatted

with WIX and as proof trees drawn using the dot package [Gansner & North

00].

An automated search procedure. The search procedure is implemented as a

control layer on top of the prover. We discuss the procedure and its properties

in Section 7.5.

110

CHAPTER 8. THE LINO IMPLEMENTATION
	

111

Extraction of Abramsky (Linear Lambda Calculus) proof terms, as described in

Chapter 5.

Partial evaluation of proof terms (Section 5.4).

Execution of proof terms (Section 5.3).

Notation

Some examples from the Lino system are given in this chapter. The following notation

for linear logic symbols is used in Lino.

Girard Lino
H ==>

-0

*
& &

+
T top
o o

Vx:r.P all (xP)
x:r.P exists(x,P)

The Lino versions of the quantifiers lack type restrictions. This is an omission in the

current version of Lino, which potentially allows application of inappropriate induction

rules. This flaw will be rectified in future versions.

8.3 Lazy context splitting

Any theorem prover for linear logic needs to deal with the choice arising from the need

to split the context when applying multiplicative rules (Section 7.2.3).

The Lolli system uses an input-output model of resources. In splitting the context

between two branches of the proof, first one branch is attempted, with all resources

being made available to it, then the unused resources are passed to the second branch.

This is adequate some of the time, but extra complications may arise. Suppose the

first branch attempted contains an occurrence of T in the goal position. The behaviour

of the rT rule is such that it may consume as many or as few of the resources as we

CHAPTER 8. THE LINO IMPLEMENTATION 	 112

wish. So when we attempt the right branch of the proof, we still have not fixed which

resources are available.

A more general approach was given by [Harland & Pym 97]. A boolean variable is

attached to each resource to indicate whether it is available in a given branch of the

proof. Constraints are then established between these boolean variables.

By using the boolean constraints model, we do not make any assumptions about what

order will be used for tackling branches, or what proof strategy is employed.

Below we give the r rule, annotated for lazy context splitting. The variables in square

brackets represent boolean values indicating whether the resource is available.

For example, the resource a must be present on the left side of exactly one of the upper

sequents. Its occurrence in the first sequent is determined by a boolean value xi, and

its occurrence in the second sequent is indicated by the opposite value :ffj.

a[xi],b[x2] I- a a[ffi],b[ff2] F-b

a,b I- a®b

In proving the left branch we need to set Xl = true and x2 = false, and this auto-

matically resolves the resources present in the right branch. This leads to the proof we

want:

al-a bF-b
a,bF-a®b

When Lino is used interactively, a hypothesis under the control of the constraint solver

is flagged with an © symbol. The meaning is that the resource may optionally be used

in the current branch of the proof.

In the following example, we illustrate the lazy context splitting by showing an inter-

active proof of a, b I- a 0 b. Input from the user is in the form of rule names (the r

input applies any possible right rule).

Welcome to Lino, version 1.4

hi: a
h2: b

CHAPTER 8. THE LINO IMPLEMENTATION
	

113

==> a*b

I: r.
Applied r(*)

0 hi: a
@ h2: b

==> a

I:ax.
Applied ax

h2: b

==> b

I:ax.
Applied ax

*** Completed subproof ***

*** QED ***

In the second example, we consider the behaviour of the rT rule. In this example, the

use of the rT rule in one branch of the proof does not resolve the context split, and

the hypotheses hi and h2 remain under the control of the constraint solver until the

second branch of the proof is completed.

Welcome to Lino, version 1.4

hi: a
h2: b

==> top*b

I: r.
Applied r(*)

@ hi: a
@ h2: b

==> top

CHAPTER 8. THE LINO IMPLEMENTATION
	

114

i: r.
Applied r(top)

@ hi: a
@ h2: b

==> b

I:ax.
Applied ax

*** Completed subproof ***

*** QED ***

8.4 Problem specification

A problem specification consists of definitions of rewrite rules, axioms and goal theo-

rem

These are simply described using Prolog facts, e.g., the specification for the problem

of reversing a tower of blocks described in Section 6.4.1.

probnanie (revblocks).

rr(revl, C], 	rev(empty) => empty).

rr(rev2, [b,t], rev(b::t) => app(rev(t),b::empty)).

rr(appi, [n], 	app(empty,u) => u).

rr(app2, [b,t,u], app(b::t,u) => b::app(t,u)).

rr(appassoc, [a,b,c], app(app(a,b),c) => app(a,app(b,c))).

axiom(pick(b::t), [b,t], [twr(b::t),hn] 	==> twr(t)*hold(b)).

axiom(put(b,t), 	[b,t], [twr(t),hold(b)] ==> twr(b::t)*hn).

goal(

[1 ==>
all (t,

all (a,
twr(t)*twr(a)*hn -<> twr(empty)*twr (app (rev (t) ,a))*hn))

).

CHAPTER 8. THE LINO IMPLEMENTATION
	

115

8.5 Proof scripts

A scripting facility is implemented. Scripts are stored in the form of Prolog lists

specifying a sequence of rules to be used by Lino. An interactive Lino session generates

a script by logging rule applications.

Generally, the steps that can be used in the script are invocations of primitive proof

rules. However, the search algorithm of Section 7.5, which functions as a proof tactic,

can be invoked in the same way at any point in a scripted or interactive proof.

8.6 Output from Lino

In Lino, two styles of output for proofs are supported:

• Proof trees in LA'IX, formatted using the package proof . sty. This is conven-

tional presentation of sequent proofs, but is suitable only for small proofs.

• Proof trees presented graphically with cross-referencing to FTEX-formatted -

quents at individual proof steps. Graphical trees are generated using the dot

package [Gansner & North 00].

Extracted plans in the form of Linear Lambda Calculus terms are output. These terms

are also output to a file which be can be read directly into the partial evaluation and

plan execution module.

8.7 Conformant plans

We considered conformant and contingent plans in Section 2.5. Actions with uncertain

effects are modelled using a disjunction of possible effects. In our framework, we resolve

this disjunction in the proof using the ie rule, branching the proof for each possible

outcome. This results in a plan which conditionally branches on the disjunction. This

is a contingent plan.

In the case of conformant planning, it is deemed to be impossible to perform a test a

run-time to resolve the disjunction, and conditional branches should not appear.

CHAPTER 8. THE LINO IMPLEMENTATION 	 116

We must resolve the disjunction in order to complete the proof. To ensure that this

does not lead to a conditional branch in the resulting plan, we need to do one of two

things:

Ensure that exactly the same plan is used in both branches, hence the case

split exists in the proof but is redundant in the plan. This brings in issues about

deciding equality of plan terms, which we would prefer to avoid. This is discussed

further in Section 10.3.3.

Ensure that no actions at all are used in the branches for each disjunct. The

conditional branches then only select between different ways of demonstrating

that the goal has been reached, but do not effect actions to be performed by the

executing agent.

In Lino, we take the second approach. We model the non-testable form of e using an

alternative connective, (1E. Thus we can solve problems such as the socks problem

[Bibel 86].

The restriction for conformant plans is a restriction of the proof search only, not of the

underlying logic. The proof rules for the new connective are the same as those for ,

though we modify the extract terms.

The proof search relegates the application of the 1ED@ rule into the TestGoal phase

of the proof search. In this phase of the proof search, no applications of actions are

allowed. Hence we enforce that both plans for both disjuncts can be formed with no

further applications of actions.

This is a somewhat restricted form of conformant planning which means that the

disjuncts must form the goal directly, and cannot be used to form preconditions to

further actions.

When dealing with problems involving 	, we must be more careful about the form

of the plan term constructed. The restriction on the proof guarantees that the same

actions will work regardless of which disjunct holds, however the substitution operation

used in building the plan terms allows the action invocation to be substituted inside'

the conditional branches. We can use the following alternative form, which fixes the

CHAPTER 8. THE LINO IMPLEMENTATION 	 117

evaluation of the action outside the scope of the conditional.

FF-t:A x:B,F'I-u:C
F,F',f : AB H let fot be x in U: C

Since the conditional branches have no significance with regard to action execution,

we do not wish them to appear in the plan at all.

The form of the IEB rule is given by:

F,x:AHu:C F,y:BI-v:C 	 IED
F, z : A B F- case z of inl(x) then u, inr(y) then v: C

For the 1ED@ rule, we use a form which simply says that an appropriate type will be

returned: 	
F,x:AE-:C F,y:BH : C
F,z: AEBB H yields(C) : C

We need to extend our operational semantics with appropriate rules defining how these

new forms are executed.

The full socks example appears in Section B.9.

8.8 Partial evaluation and plan execution

Partial evaluation is a direct implementation of the partial evaluation rewrite rules

given in Section 5.4 and Section 6.3.5. The notion of substitution requires some care,

as in the presence of A-terms, we must avoid the capture of free variables.

The rules are applied exhaustively, starting with leftmost outermost applications.inwards.

Plan execution is a direct implementation of the operational semantics described in

Sections 5.3 and 6.3.4.

8.9 Code Size

The table below gives a breakdown of the size of the code in the Lino system. The

figures give the number of lines of Prolog code, excluding comments and blank lines.

CHAPTER 8. THE LINO IMPLEMENTATION
	

118

We consider that this a relatively small program, given that it provides proof checking,

a degree of automation, and the handling of plan terms.

Module Lines
Theorem-proving shell and deduction rules 620
Plan extraction 234
Partial evaluation and execution 522

Search 81
Output formatting 437

Total 1894

8.10 Conclusions

In this chapter, we have described the Lino system, which is an implementation of the

ideas introduced in Chapters 5, 6, and 7.

Lino is a proof checker for ILL, enhanced with induction rules and term rewriting

rules. Lino handles interactive, scripted or automatic approaches for performing proofs.

Unlike general-purpose proof checkers, Lino provides built-in handling for lazy splitting

of linear contexts. It also provides extraction, partial evaluation and execution of plan

terms. Automated proof search mixes application of left and right sequent rules to

provide a forward-chaining search implemented by a strategy which eliminates much

of the possible redundancy in handling application of proof rules. In summary, Lino is

designed specifically to handle the various requirements of deductive planning in ILL.

Chapter 9

Evaluation

9.1 Introduction

In this chapter we consider the capabilities and performance of our planning technique

in comparison to:

. Methods for planning or proof search in linear logic.

. Recursive planning methods introduced in Chapter 3, i.e. those of [Manna &

Waldinger 87], [Ghassem-Sani 92], and [Stephan & Biundo 95]

9.2 Comparison with linear logic systems

The linear logic planning system and theorem provers vary in the logic they deploy, i.e.

classical or intuitionistic and the fragment they handle, and the proof search technique

they use.

9.2.1 Jacopin

Jacopin uses a very restricted fragment of intuitionistic linear logic. Our planning

algorithm would behave like Jacopin's on any problems defined with that restricted

fragment, except that our more careful application of the context-splitting rule r®

would be expected to give us a performance advantage. One of Jacopin's key criticisms

of the use of linear logic, i.e. the necessity of fully specifying the goal state, can be

119

CHAPTER 9. EVALUATION 	 120

overcome simply by the inclusion of T in the goal state. Jacopin prefers to use only

the very limited fragment of the logic to avoid moving into a higher complexity class.

In fact, simply adding the T to Jacopin's minimal fragment makes almost no difference

to the forward-chaining search procedure.

The example which Jacopin gives to back up this argument is that of swapping two

registers, given an action for assignment. Here, the resource cont(x, a) is used to

represent that register x contains value a, and the problem is to exchange the values of

registers x and y, with an extra register z available. In Jacopin's restricted fragment,

the problem is represented as follows:

cont(x, a), cont(y, b), cont(z, zero) I- cont(x, b) ® cont(y, a) ® cont(z, b)

The problem that Jacopin points out is that the goal state must include a specification

of the final state of the spare register, z, which is not so much part of the goal as a

consequence of the solution.

In our framework, we would avoid this problem by using T as mentioned.

comt(x, a), cont(y, b), cont(z, zero) F- cont(x, b) 0 cont(y, a) 0 T

An alternative is to use an existential quantifier to describe the value of the intermediate

register.

cont(x, a), cont(y, b), cont(z, zero) I- cont(x, b) 0 cont(y, a) 0 Bval.cont(z, val)

Jacopin's other criticism is the inability of linear logic to represent a situation where

a single effect satisfies a precondition of two different actions, with both actions pre-

serving the condition. In linear logic, any such an action must consume then replace

the condition, so it would not be possible for them to exist in parallel plans.

9.2.2 Lolli

We have covered Lolli in some detail in Chapter 7.

Our proof search algorithm has been inspired by Lolli, but adopts a different set of

restrictions placed on the fragment and a different strategy. The choice of strategy

made in Lolli make it unsuitable for direct use as a planner.

CHAPTER 9. EVALUATION 	 121

In particular, our strategy is not goal driven, and allows the interleaving of the appli-

cation of left and right rules. This has allowed the adoption of a set of connectives

which is more appropriate for planning problems.

9.2.3 Lygon

Lygon documentation [Harland et al 961 devotes a little attention to its application to

planning problems. Lygon is based on classical linear logic, and it is an interesting

question whether this is suitable as a logic for plan formation. In fact, the problem

which they give as an example involves deriving the final state resulting from executing

a set of actions (without a specified order).

9.2.4 Hölldobler et al.

The work of Hölldobler's group has the following aspects: The basic approach has been

to describe a system based on equational reasoning.

The correspondence was established between their approach and those of Bibel and

Masseron. In a later paper by Brüning and others [Bruning et al 93], they have extended

the method to deal with disjunction. This informs an adaptation of Bibel's linear

connection method to solve disjunctive problems. They identify the 1EI rule with

formation of conditional branches in the plan, and this is equivalent to the formulation

that we have used. However, their notion of plan extraction does not allow for the

formation of conformant plans in which uncertainty is handled without the use of

conditional branches.

Some consideration has also been given to extending the method to recursive plans

[Hölldobler & Störr 98]. This paper considers only the correctness of given recursive

plans with respect to given initial states. Nevertheless, it is interesting because it

defines a syntax and semantics for a recursive plan language.

CHAPTER 9. EVALUATION 	 122

9.3 Comparison with other recursive planners

The approaches of [Manna & Waldinger 87], [Ghassem-Sani 92] and [Stephan & Biundo

951 were described in Chapter 3.

9.3.1 Basis for comparison

There is some difficulty making a useful comparison between the behaviours of the

various systems. We must rely only on published accounts of the systems, which only

give us an overview, with limited examples. Each system uses a different representation

for problems, with brings its own restrictions on what problems can be expressed.

We consider the following aspects of representation style to be important:

The logic on which the system is based, e.g. situation calculus, modal logic,

linear logic.

The approach adopted to handling the frame problem.

. The use of auxiliary functions and/or predicates in defining problems, such as

our use of a reverse function defined using rewrite rules.

. The use of inductively defined datatypes versus the use of induction over well-

founded relations.

. The use of a fixed set of induction rules versus the dynamic creation of induction

rules on demand.

Strategies and Implementations:

. If the systems were implemented at all, how much of the process was automatic?

The problem solving strategy adopted by the planner - for example searching

forwards from the initial state or backwards from the goal state.

. Automatic generalisation.

CHAPTER 9. EVALUATION
	

123

9.3.2 Manna and Waldinger

The approach of Manna and Waldinger is based on first order situation calculus. This

is very expressive for representing problems, but correspondingly difficult to reason

with.

Their logic is not constructive, so could be used to produce plans which are not ex-

ecutable. Manna and Waldinger guard against this by separately filtering out non-

executable plans during plan construction in an ad hoc way.

No solution to the frame problem is given. Explicit frame axioms are required, and

explicit inference steps are required to handle them. The problem is discussed in

[Manna & Waldinger 87], pages 364-365.

Their plan theory, unlike our formalism, allows functions and identifiers to have differ-

ent interpretations between states. This introduces extra complications in reasoning.

In their "how to clear a block" example, the only example they present, they do not

make use of auxiliary functions to define the relationships between states.

Because of redundancy in the representation, which refers to entities with or without a

state argument, the approach requires a form equational unification. This equational

unification is troublesome, because it may yield an infinite number of unifiers. Although

the example given in [Manna & Waldinger 871 does not make use of any auxiliary

functions, in rewrite rules defining these functions could be built into the equational

unifier.

The proof method is based on a deductive tableau system. There is no claim that the

proof process can be automated, and there is no report of an implemented system.

Their example demonstrates the plan being constructed backwards from the goal, but

the representation is capable is of building the plans in either direction. Plans them-

selves are represented as terms constructed during proof.

Induction is performed on the basis of well-founded relations. The selection and gen-

eralisation of induction rules are identified as difficult problems which are not solved

automatically.

CHAPTER 9. EVALUATION 	 124

They use a general form of induction over relations. This must be customised for

particular theories by hand. It part of the process of theory development to show that

relations are well-founded. This results in a fixed set of well-founded relations that can

be used in a generic induction rule.

In general, we believe that Manna and Waldinger's representation is more flexible than

ours, but much more complex and not so amenable to automation.

9.3.3 Ghassem-Sani and Steel

Ghassem-Sani and Steel's RNP planner is based on a restricted form of Manna and

Waldinger's plan theory. Explicit reference to state is avoided completely by the use

of STRIPS operators. The STRIPS assumption is used to avoid the frame problem.

Plans are represented as partially-ordered networks of plan steps, in the style of plan-

ners such as Nonlin. This representation is augmented with special types of nodes to

allow the representation of conditional and recursive plans.

The proof process is fully automatic, and is goal driven in the manner of conventional

partial-order planners. The occurrence of a subgoal related to the final goal by a well-

founded relation motivates a case analysis for the introduction of recursive constructs.

Typically, the guard conditions of partially-defined destructor functions form the basis

of the case analysis. Thus RNP has a principled approach to introducing induction into

the proof and to forming an appropriate induction rule. A limited form of automatic

generalisation is also performed by the planner.

In comparison to our system, we find that RNP has a more compelling solution to

the problems of search control. However, this is achieved at a cost of restricting the

language to the point where some of the more interesting problems cannot be expressed.

There is no equivalent in RNP of using auxiliary functions to express the relationship

between initial and goal states using rewrite rules. In their example of reversing a list,

they use plan operators to fulfill the role that is taken by rewrite rules in our system

- i.e. defining equivalences instead of state transformations. Since they have no other

way to define the relationship between initial and goal state, it seems impossible to

specify a problem like our reversing a list example, in which the relationship between

CHAPTER 9. EVALUATION 	 125

initial and final list is defined using rewrite rules.

9.3.4 Stephan and Biundo

In the approach of Stephan and Biundo, a dynamic temporal logic is used. This is an

expressive framework, but inference in this framework is a complicated process, with

multiple proof steps required to handle frame conditions.

A tactical theorem prover is used to control reasoning. Plans are represented as terms

which exist in the logic at the same level as terms describing world state.

Induction can be performed on the basis of inductively-defined datatypes. This is an

interactive process in which a user must make key decisions. Having done this, the

recursively defined procedures may be used in an automatic system.

In comparison with our system, the emphasis is somewhat differently placed. They

provide a sophisticated environment for the modelling of planning domains, where work

is done up front by a domain modeller. The end result is a system which can work

automatically in that specific domain.

The process of synthesising the recursive plans themselves is not automatic, nor is

generation of generalisations in induction.

9.3.5 Lino

Our approach makes use of a fragment of intuitionistic linear logic, which is carefully

chosen to be expressive enough to handle interesting planning problems, but restrictive

enough to enable a useful search procedure to be defined.

For expressing recursive planning problems, we allow the use of inductively-defined

datatypes. We use predefined induction rules, making use of constructors only. Selec-

tion of the induction rule must be done manually, as must rule generalisation.

We do not allow functions and symbols to change their interpretations between states,

and this makes it simple to define a relationship between initial and goal states using

a recursively defined function.

CHAPTER 9. EVALUATION 	 126

The linear logic approach has a very tidy handling of the frame problem, and a very

clear and direct relationship between proof steps and constructs in the plan language.

We can represent partially-ordered, conditional plans and recursive plans. The logi-

cal system is considerably simpler than the other deductive approaches of [Manna &

Waldinger 87] and [Stephan & Biundo 951.

9.4 Example problems

In this section we consider the planner with respect to various problems existing in

the literature. Due to the small number of publications on recursive planners, there

is no established corpus of problems. The greatest number of examples comes from

Ghassem-Sani's thesis [Ghassem-Sani 92]. Below we consider the suitability of our

planner on these problems. We also give a number of further problems devised as test

cases for our planner.

9.4.1 Examples from Ghassem-Sani

The examples from Ghassem-Sani are as follows:

Factorial function

Division function

Fibonacci function

Ackermann function

Reversing a list

Clearing the base of a tower

Building a tower

Hammering a nail into a plank

Examples 1-5 need not be modelled as planning problems at all. They are proofs of

mathematical theorems for which no notion of state change is necessary. In Ghassem-

Sani's representation, there is no separate notion of a rewrite rule. The RNP plans in

CHAPTER 9. EVALUATION
	

127

these cases are effectively proofs that exhaustive application of these rules would lead

to a solution of the problem.

The Ghassem-Sani representations tend to make use of destructor functions. This is

the most natural representation to use in conjunction with goal-driven plan search

process.

Our tower reverse is similar to Ghassem-Sani's list reverse, but our formulation does

have a state-changing aspect.

We cannot model the example of hammering a nail into a plank. In Ghassem-Sani's

modelling of the problem, the outcome of each hammer action is that the nail is either

flush or not flush.

We cannot use the modelling in our framework, because there is no corresponding

inductively defined datastructure, which we require to model recursion in our frame-

work. Furthermore, we should not be able to synthesise this plan in our system as its

termination cannot be proved.

9.4.2 Example problems for Lino

These problems have all been solved interactively, and most of them are solved suc-

cessfully solved by automated search. However, in all cases the selection of induction

rules and the generalisation of the theorem was done by hand.

CHAPTER 9. EVALUATION
	

128

Problem Requires Solution Time/ms Comments
Gener- found
alisa- by
tion auto-

mated
search

revblocks Yes Yes 70
flatten No Yes 50 Uses list-of-lists formulation.

division No No - Formulation 	uses 	exponen-

____________ tials.

factorial No Yes 67
fibonacci No Yes 27
gripper Yes Yes 1261 Finds inefficient plan.

gripper2 Yes Yes 22702 Finds efficient plan for same
problem, by the use of a cus-
tomised induction rule.

ants Yes No - Fails due to rewrite strategy
preconditions.

boat Yes No - Search space too large.

nim9 No Yes 154 9 counter problem - no induc-
tion.

nim No Yes 105 Problem 	specified 	for 	all
winnable games

tree No No - Search 	requires 	equality
substitution not handled by
search procedure.

socks No Yes 126 Contingent version.

conformant socks No Yes 626 Conformant version.
omelette-lemma Yes Yes 138

omelette3 Yes Yes 116
omelette Yes No -

Generally, the modelling of the problem in a suitable form in linear logic was found to

be a difficult process. Although this is true to some extent of all planning problems,

there are many established test domains for STRIPS and ADL planning. The diffi-

culty involved in constructing reasonable formulations for the domains cannot easily

be separated from the difficulty of solving them.

Timings were obtained on a PC with a 550MHz Pentium III processor, running Linux.

The code bytcode compiled using SICStus Prolog 3.7.1.

The times are generally low, but the problems are small in size. The poor time for the

gripper2 problem shows that the times scale badly as the length of the required step

case plan increases. It is likely that this could be improved with simple modificatons

CHAPTER 9. EVALUATION 	 129

to the search code, as little attention has been given to optimising it for speed.

9.5 Discussion

Since there is no established corpus of linear logic planning problems, it is not possible

to make a clear comparison of our system with others.

However, we have shown that our representation is expressive enough to give a clean

formalisation of some existing problems, and many new ones. Automated proof search

is often successful, and where it is not, this can often be related to specific features of

the problem formulation.

We can tackle some problems which are adapted from standard STRIPS and ADL

planning problems. This illustrates the notion that by making use of the inherent

recursive structure in the problem, a solution can be found relatively easily, which will

deal with problems of any size.

Chapter 10

Conclusions and Further Work

10.1 Introduction

In this chapter we report the main conclusions of the work and consider directions for

further work.

10.2 Conclusions

10.2.1 Contributions

Recursive plans in linear logic

We have extended the use of linear logic in planning to deal with problems involving

recursion.

We have demonstrated that intuitionistic linear logic, with an appropriate induction

principle, can be used to represent and solve a range of recursive planning problems.

The linear logic formalism avoids the need for frame axioms and gives a clear rela-

tionship between proofs and plans. Plans are represented as terms of Linear Lambda

Calculus, which are extracted directly from the proof of a plan specification. In this

formalism, it is possible to synthesise general recursive plans which can handle a family

of instances of planning problems.

We can also describe problems involving action steps with uncertain outcomes which

may or may not be observable. Our plan language can express:

130

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 131

• parallel branches,

• conditional branches,

• recursion.

Schematic plans can be specialised with respect to information about a problem in-

stance by means of partial evaluation rules. We also describe how to execute the plan

directly on a problem instance, according to the operational semantics for the language.

The correctness of the plans rests on the correctness of the underlying proof rules

with respect to the extraction and evaluation mechanism. This differs from the typical

situation with conventional planners, for which it is necessary to prove the correctness

of the planning search algorithm. In our approach, planning is done by theorem proving

in our chosen logic. The correctness of plans is independent of the search mechanism

used to prove the planning goal.

For RNP [Ghassem-Sani & Steel 91], correctness of plans depends in part on correctness

of conflict detection, which in some cases involves testing conditions inside a recursive

plan with parallel steps outside the recursive plan. This is a non-trivial problem.

Search procedure

We have given a search strategy for a defined fragment of the logic, and shown that

it is complete. This fragment has been chosen carefully to enable interesting planning

problems to be expressed. The fragment comprises only the following: 0, -o, E1. In

the implementation the algorithm is extended to deal with the use of V, 3, T, 0, with

some restrictions.

For problems involving only conjunction, this corresponds to forward-chaining in the

style of [Jacopin 93]. However, we are are able to use a much larger fragment of the

logic, and adopt efficient solutions to the problem of splitting the linear context.

Implementation

The above ideas have been implemented in Prolog as a system, Lino, which demon-

strates the feasibility of the approach. It is a semi-automatic linear logic proof checker,

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 132

which uses a set of rules including induction rules and rewrite rules. Lazy context

splitting is implemented using constraints in a CLP(FD) solver. Lino may be used for:

. interactive proof checking,

. automated proof search, which is complete under restrictions defined in Section

7.4.1. In the implementation, the proof search strategy is extended to deal with

a larger fragment of the logic, for which completeness of the strategy has not

been shown. A simple strategy for application of rewrite rules is also employed.

Lino also encompasses the following:

. automatic extraction of plans from completed proofs,

partial evaluation of plans,

. execution of plans.

Results

Our system allows a range of problems to represented. The degree to which automatic

solution is possible varies. See Appendix B for a summary of problem examples. We

believe that it has a wider coverage of problems than the RNP planner of [Ghassem-

Sani & Steel 91], whilst being more amenable to automation than the approaches

of [Manna & Waldinger 87] and [Stephan & Biundo 95].

10.3 Further Work

The area of automatic recursive plan formation is a challenging one. In this section we

consider the opportunities for extending the current work.

10.3.1 Proofs of correctness

In Chapters 5 and 6 we made the following claims in relation to partial evaluation and

execution of plans.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 133

Claim 1 Correctness of partial evaluation w.r.t. ILL-P (Section 5.4.1).

Claim 2 The relationship between -p and JI. (Section 5.4.2).

Claim 3 Correctness of partial evaluation w.r.t. ILL-PR (Section).

Claim 4 The relationship between 	and .JJ. (Section 6.3.6).

We have given no proofs of these claims, so it is important further work to produce

such proofs.

10.3.2 Equality of values

We have made use of limited reasoning about equality in our system, without fully

developing a theory of equality (Section 5.2.8). Important further work would be to

develop this theory and demonstrate correct deduction rules.

Note that we distinguish in our system between equality of values (e.g. blocks, towers)

which do not have linear types and the treatment of plan terms, which do.

10.3.3 Equality of plan terms and conformant planning

Our treatment of conformant planning (Section 8.7) is compromised because we are

limited to plans in which the outcomes of plan steps with uncertain effects are never

used as preconditions to further plan steps. This means that many problems in con-

formant planning cannot be solved by our approach.

In order to solve the more general problem, we must allow the proof to branch on the

disjunction, and allow each branch to contain further actions. However, since we cannot

form a conditional test in the plan, we must enforce that the two branches contain

equivalent plans. We need to define what we mean by the notion of equality of plans

in this context to study how we can enforce this equality. The work of Barber [Barber

97] may be of some relevance here.

The conformant plans that we can synthesise require altered forms of plan terms.

An extension of the operational semantics was not given for these new forms, and is

required as further work.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 134

10.3.4 Formulation of problems in linear logic

Since there is no existing corpus of recursive planning problems, our example problems

have been hand-coded into linear logic specifications, such that inductively defined

types were present in the specification given to the theorem prover. An important

question is whether it would be possible to work from conventional plan specifications,

such as the corpus of planning problems available in the PDDL language [McDermott

et al 98].

This requires the generation of recursive plans from an input in which there is no

explicit use of inductive datatypes. In Fig. 1.1, this corresponds to performing the

steps labelled problem translation and problem generalisation. This route could be

beneficial in cases where we are presented with a large problem instance that has a

recursive structure. We would therefore expect solution of the abstract plan to be

cheap compared to the large problem instance.

Once the abstract problem is solved, we can cheaply generate a specific plan by taking

the evaluation and plan translation route. We will discuss these how the processes of

problem translation and problem generalisation may be realised.

Problem translation

We would need a system capable of recognising the presence of a an inductively defined

type in a planning domain. The domain description would be supplied in e.g. STRIPS

or PDDL. Translation would be done relative to a library of standard inductively

defined datatypes. Domain analysis, such as that used in the TIM system [Fox & Long

98], could identify the signature of encodings of inductive types. An example is the on

relation in blocks world problems, which effectively behaves as a list constructor.

It therefore seems plausible that the concept of a tower could be automatically derived

from a planning domain description. If a system is able to automatically bring into

play the notion of lists in a domain in which they are only implicit, it can also recognise

that a library of list-related concepts may be useful - e.g. member, append.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 135

Generalisation of ground problems

In our recursive planning examples, we have made use of recursively defined functions

to specify the required relationship between structures appearing in initial and goal

states. To automatically derive such a problem specification, it would be necessary to

speculate the general relationship between initial and final state. This would need to

be done on the basis of a library of predefined relations (e.g. flatten, reverse).

This approach is potentially useful in solving problems which are very large, but with

uniformly structured problem instances.

This is similar to problems that have been considered in the machine learning literature,

particularly in the area of Inductive Logic Programming (ILP), e.g. [Muggleton 911.

10.3.5 Search control in Lino

Although the step cases of recursive plans can often be very short, the undirected

forward-chaining search strategy of Lino is not efficient compared to modern STRIPS

planners. Here we suggest some improvements.

Generalisation of ground plans

Small, ground problem instances can be generated from the domain definition. A

fast STRIPS planner could then be used to generate possible solutions to the ground

problem. These solutions could then be analysed w.r.t. recursive structure and used

to guide the choice of actions during recursive plan generation. A similar form of

generalisation is considered in [Baker 94]. In Fig. 1.1, this corresponds to a route from

abstract problem to abstract plan via ground problem and ground plan.

This may also be used to inform choice of induction rule and generalised theorem.

We could envisage an architecture which solves a large problem by extracting a general

recursive structure in the problem, then generates and solves one or more ground

problem instances. Such solutions may then be generalised to lead to a provably

correct general solution. This general solution can then be evaluated to solve a given

large problem, or executed directly.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 136

10.3.6 Induction rule choice

The work described in this thesis has not addressed the important problems of selection

of induction rules, but instead has relied on pre-selection of induction rules from a

limited set. The literature on inductive theorem-proving contains a number of more

sophisticated approaches which allow an induction rule to be synthesised or selected

on the basis of a partially complete step case proof. Important recent approaches to

this problem are:

• In [Kraan 94, Kraan et al 96] induction rules are chosen from a pre-stored set,

but the choice is deferred until a step case proof has been attempted. The step

case proof is performed with meta-variables in place of induction terms. Rippling

is used to control the instantiation of the meta-variables, and the resulting step

case is used to select a matching induction rule.

• In [Protzen 95] induction rules are not stored, but synthesised from scratch. The

method can only deal with destructor-style induction, and generates appropriate

restrictions on hypotheses such that the induction rule is sound.

• Gow [Gow 00] first finds a step case proof using a representation with meta-

variables (as Kra.an did). The other cases of the induction rule are then generated

and proved automatically. Gow's approach allows rules to be synthesised from

scratch without Protzen's restriction to destructor-style inductions.

10.3.7 Generalisation of specification

The use of the induction hypothesis often fails due to the absence of a matching re-

source. For example, in the cases where we consider towers of blocks, we usually require

to move the blocks to a tower which may not be mentioned in the specification.

In this case, the solution is to build the proof for a strengthened specification with

extra resources. This is the same class of problem which has been tackled successfully

in [Hesketh et at 92, Ireland & Bundy 96] (see Section 3.5.6). In that work, the problem

is solved by adding accumulator arguments to the specifications. In the planning case,

failure to prove should suggest missing resource and generalise the initial final states

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 	 137

of the planning problem specification.

10.3.8 Complete search

In Section 7.4 we considered a complete search strategy for a fragment of ILL including

only the connectives ®, , -o.

The fragment of the logic which we use in representing our planning problems is often

larger than the fragment for which proof search is shown to be complete.

Further work is required to define an extended fragment for which proof search can be

proved to be complete.

10.4 Summary

We have demonstrated that linear logic provides a suitable formalism for the expression

of planning problems involving inductive types, which has enabled us to realise our aims

of making a planner that can form plans involving conditional constructs and recursion.

Whilst our work has some limitations, we believe that the approach is very promising,

and there are interesting opportunities to overcome these limitations.

We believe that this is a promising approach which opens several interesting possible

areas for future research.

Appendix A

Invertible Rules in Intuitionistic
Linear Logic

Original rule
	 Proof of inversion

Al- A 	BI- B
F,AHB FHA —oB 	A,AoBHBl0

FE-A—oB ° F,AE- B

Al-A 	BE-B r®
F,A,BI- C A,BI-A®B 	F,A®BI- C

F,A®BF- C 1®
cut

F,A,BE- C

Al- A 	
1

AHAeB 	r,AEIBI- C
F,AE- C 	F,BE -C F,AE- C 	

cut

r,ABl- C
BE- B 	r2ED

BF- AEBB 	F,AeBI - C
IT,Bl- C 	

cut

A[a/x] I- A[a/x]

F}-A[a/x]
N

Fl- Vx.A 	Vx.AFA[a/x]

F F- VxA 	
rV r I- A[a/x] 	

cut

A[a/x] I- A[a/x]

F, A[a/x] I- C A[a/x] I- BxA 	
r 	

F, 3xA I- C

F, xA I- C 	
13 cut

F, A[a/x] I- C

138

Appendix B

Examples

B.1 Reverse blocks

This is the example of reversing a tower of blocks. It is solved automatically by the
prover.

B.1.1 Problem specification

twr(t)
	

twr(empty)

F- Vt.Va. 	twr(a)
	

-o 	twr(app(rev(t), a))

hn
	

hn

B.1.2 Axioms

I- pick(b t) : twr(b t) 0 hn -o twr(t) 0 hold(b)

F- put (b, t) : 	twr(t) 0 hold(b) -o twr(b:: t) 0 hn

B.1.3 Rewrite rules

rev(empty) 	empty 	 (revl)

rev (b:: t) -+ app(rev (t), b :: empty) 	 (rev2)

app(empty,u) -+ u 	 (appl)

app(b:: t, u) -+ b:: app(t,u) 	 (app2)

app(app(a,b), c) —* app(a, app(b, c)) 	 (appassoc)

139

APPENDIX B. EXAMPLES
	

140

B.1.4 Plan

.Xt_2.
twr_rec (t_2,

Aa_2.Ah3.
let li3 be h6*h7 in
let h7 be hlO*hul in h6*hlO*hll,

)thl .Ab_1.At_1.Aa_8.Ah60.
let h60 be h63*h64 in
let h64 be h67*h68 in

let pickoli63*h68 be h75*h76 in
let put oh67*h76 be h92*h93 in
let hlob_1::a_8oh75*h92*h93 be h97*h98 in

let h98 be h101*h102 in h97*hl0l*h102)

141 APPENDIX B. EXAMPLES

B.1.5 Proof tree

APPENDIX B. EXAMPLES
	

142

B.2 Flatten

This problem is to flatten a tower of blocks. The flattened tower is represented by a
list of single-block towers.

B.2.1 Problem specification

F Vt.twr(t) ® lst(nil) —otwr(empty) ® lst(flattened(t))

B.2.2 Axioms

F lop(h) : 	 twr(h:: t) -o twr(t) ® twr(h :: empty)

F gather(t, 1): twr(t) ® lst(l) -o lst(t :: 1)

B.2.3 Rewrite rules

flattened(h :: t) -+ (h:: empty) :: flattened(t) 	(1 latl)
flattened(empty) -+ nil 	 (flat2)

B.2.4 Plan

At-2.
twr_rec (t_2,

Ah2.h2,
.Xhl.Ab_1.At_1.Ah3.

let h3 be h4*h5 in
let lop oh4 be h7*h8 in
let hloh7*h5 be hlO*hll in hlO*gatheroh8*hll

143 APPENDIX B. EXAMPLES

B.2.5 Proof tree

APPENDIX B. EXAMPLES
	

144

B.3 Factorial

B.3.1 Problem specification

I- Vx.nat(x) —o nat(fac(x)) ® T

B.3.2 Axioms

nat(x)

I-mult(x,y): nat(x)®nat(y) -0 	 nat(y)

nat(mu(x, y))

I- subl(x) : 	nat(s(x)) —o nat(x) 0 nat(s(x))

I- addl(x): 	 nat(x) —o nat(x) 0 nat(s(x))

B.3.3 Rewrite rules

nat(fac(zero)) -+ nat(s(zero)) 	 (fad)
nat(fac(s(x))) 	nat(mu(s(x), fac(x))) 	(fac2)

B.3.4 Plan

)x_2.
nat_rec (x_2,

Ah3.
let addloh3 be h7*h8 in h8*erase,

Ahi .Ax_1 .Ah113.
let sublohl13 be h118*h119 in

let h1oh118 be h123*h124 in
let znultoh119*h123 be h137*h138 in

let h138 be h141*h142 in h142*erase)

145 APPENDIX B. EXAMPLES

B.3.5 Proof tree

APPENDIX B. EXAMPLES
	

146

B.4 Fibonacci

B.4.1 Problem specification

F Vx.(3y.fib(z, y)) ® (3z.f ib(s(x), z)) ® T

B.4.2 Axioms

F fibO: 	 -o fib(zero, zero)

F fibi : 	 -o fib(s(zero), s(zero))

fib(x,yl)

F fib2(x,yl,y2) : fib(x,yl) ® fib(s(x),y2) -o 	 fib(s(x),y2)

fib(s(s(x)), add(yl , y2))

B.4.3 Plan

Ax-2.
nat_rec (x_2,

fibO*fibl*erase,
Ahi .Ax_1.

let hi be h9*hlO in
let hlO be h13*h14 in

let fib2oh9*h13 be h20*h21 in
let h21 be h24*h25 in h24*h25*erase)

147 APPENDIX B. EXAMPLES

B.4.4 Proof tree

APPENDIX B. EXAMPLES
	

148

B.5 Boat

This is a river crossing problem. There are ii adults and 2 children wishing to cross
from the west to the east bank of the river. A boat is available, which may only take
1 adult or 2 children.

B.5.1 Problem specification

inboat(nil)

at(boat, west)
0

at(crowd(n), west)
I-Vn.

at(crowd(zero), east)
0

at(person(child), west)
0

at(person(child), west)

inboat(nil)
0

at(boat, east)
0

(m.at(crowd(rn), west))
-o 	 0

at(crowd(n), east)
0

at(person(child), east)
0

at(person(child), east)

APPENDIX B. EXAMPLES
	

149

B.5.2 Axioms

at(person(adult) , p1)

F- leavecrowd: at(crowd(s(n)),pl) -o

at(crowd(n), p1)

at(person(adult), p1)

F- joincrowd: -'-o 	at(crowd(s(n)),pl)
at(crowd(n),pl)

at(person(pn), p1)
at(boat,pl)

F- embark(pn,pl): at(boat,pI) -0

inboat(person(pn) :: nil)
inboat(nil)

at(person(child), p1) at(boat,pl)
0 0

I- embark(child, p1): at(boat,pl) -0 	 inboat(person(child)::
0 person(child)

inboat(person(child) :: nil) nil)

at(boat, p1)
at(boat,pl) 0

F disembark(pn, p1): 0 -o 	 inboat(rest)
inboat(person(pn) :: rest) 0

at(person(pn) , p1)

at(boat, west) at(boat, east)
F roweast : 0 -o 	 0

inboat(person(pn) :: rest) inboat(person(pn) :: rest)

at(boat, east) at(boat, west)
F- rowwest: 0 -o 	 0

inboat(person(pn) :: rest) inboat(person(pn) :: rest)

APPENDIX B. EXAMPLES
	

150

B.5.3 Plan

An-2.
nat_rec (n_2,
)h2.
let h2 be h3*h4 in
let h4 be h5*h6 in
let h6 be h7*h8 in
let h8 be h9*h1O in
let hlO be h11*h12 in
let embark oh3*h5*h12 be h14*h15 in
let embarkohll*hl.4*h15 be h17*h18 in
let roweastoh17*h18 be h20*h21 in
let disembark oh20*h21 be h23*h24 in
let h24 be h25*h26 in
let disembark oh23*h25 be h28*h29 in
let h29 be h30*h31 in h30*h28*h7*h9*h31*h26,

Ahl.An_1..\h32.
let h32 be h33*h34 in
let h34 be h35*h36 in
let h36 be h37*h38 in
let h38 be h39*h40 in
let h40 be h41*h42 in
let embark oh33*h35*h42 be h44*h45 in
let embark oh4l*h44*h45 be h47*h48 in
let roweastoh47*h48 be h50*h51 in
let disembark oh50*h51 be h53*h54 in
let h54 be h55*h56 in
let rowwestoh53*h55 be h58*h59 in
let leavecrowdoh37 be h61*h62 in
let disembark oh58*h59 be h64*h65 in
let h65 be h66*h67 in
let embark oh6l*h64*h66 be h69*h70 in
let roweastoh69*h70 be h72*h73 in
let disembarkoh72*h73 be h75*h76 in
let h76 be h77*h78 in
let embark oh56*h75*h77 be h80*h81 in
let rowwestoh80*h81 be h83*h84 in
let disembark oh83*h84 be h86*h87 in
let h87 be h88*h89 in
let hloh88*h86*h62*h39*h89*h67 be h91*h92 in
let h92 be h93*h94 in
let h94 be h95*h96 in
let h96 be h97*h98 in
let h98 be h99*hlOO in
h91*h93*h95*(joincrowdoh78*h97)*hlOO*h99)

151 APPENDIX B. EXAMPLES

B.5.4 Proof tree

APPENDIX B. EXAMPLES 	 152

APPENDIX B. EXAMPLES
	

153

B.6 Gripper

This is an adaptation of the gripper domain from the AlPS competition corpus. The
domain features a robot with two grippers. The goal is to transfer a number of balls
from one room to another.

We use natural numbers to represent the number of balls at each location, and provide
an obvious generalisation. Given the simple induction rule for natural numbers, the
planner is able to find the plan for the balls one-by-one, using only a single a hand.

B.6.1 Problem specification

at(n, rooma)

at (m, roomb)

I- Yn.Vm. 	atrobby(rooma)

free(left)

free(right)

atlus(n,m),roomb) ® T

B.6.2 Axioms

I- move(from, to) : 	atrobby(from) -o atrobby(to)

at(s(n), r) at(n, r)
0

F- pick(n, r, g) : atrobby(r) -o atrobby(r)
0 0

I ree(g) holdsbaU(g)

at(n, r) at(s(n), r)
0 0

F- drop(n, r, g) : atrobby(r) -o atrobby(r)
0 0

holdsball(g) free(g)

B.6.3 Rewrite rules

plus(zero,y) -* y 	 (plusl)
plus(s(x),y) -+ s(plus(x,y)) 	(plus2)
plus(x,s(y)) -+ s(plus(x,y)) 	(plus3)

APPENDIX B. EXAMPLES
	

154

B.6.4 Plan

An-2.
nat_rec (n_2,
)m_2.Ah3.

let h3 be h6*h7 in
let h7 be hlO*hul in
let liii be h14*h15 in
let h15 be h18*h19 in hlO*erase,

Ahl.An_1.Ain_12.Ah877.
let h877 be h880*h881 in
let h881 be h884*h885 in
let h885 be h888*h889 in
let h889 be h892*h893 in
let pickoh88O*h888*h893 be h1411*h1412 in
let h1412 be h1415*h1416 in
let drop oh884*h1416*moveohl4l5 be h1575*h1576 in
let h1576 be h1579*h1580 in
let hlos(m_12)o

h1411*h1575*(move oh1579) *h892*h1580)))

be h1586*h1587
in h1586*erase)

155 APPENDIX B. EXAMPLES

B.6.5 Proof tree

APPENDIX B. EXAMPLES
	

156

B.7 Gripper2

This version of the problem uses the nat_ind2 induction rule (Section 6.3.2), which
allows both robot hands to be used.

B.7.1 Problem specification

at(n, rooma)

at(m, roomb)

F Vn.Vm. 	atrobby(rooma)

free(left)

free(right)

at(plus(n, m), roomb) ® T

B.7.2 Axioms

I- move (from, to) : 	atrobby(from) —o atrobby(to)

at(s(n), r) at(n, r)

Fpick(n,r,g) : atrobby(r) -0 atrobby(r)
0 0

free(g) holdsball(g)

at(n, r) at(s(n), r)
0 0

F drop(n, r, g): atrobby(r) -o atrobby(r)
0 0

holdsball(g) free(g)

B.7.3 Rewrite rules

plus(zero,y) -* y 	 (plusl)
plus(s(x),y) - 	s(plus(x,y)) 	(plus2)
plus(x,s(y)) -* s(plus(x,y)) 	(plus3)

APPENDIX B. EXAMPLES
	

157

B.7.4 Plan

An-2.
nat_rec2(n_2,
Am_2.Ah3.

let h3 be h6*h7 in
let hi be hlO*hll in
let hil be h14*h15 in
let h15 be h18*h19 in hiO*erase,

)m_8.Ah134.
let h134 be h137*h138 in
let h138 be h141*h142 in
let h142 be h145*h146 in
let h146 be h149*h150 in
let pickohl37*h145*h150 be h210 in
let h210 be h213*h214 in
let h214 be h217*h218 in
let move oh217 be h219 in
let dropohl4l*h218*h219 be h230 in
let h230 be h233*h234 in
let h234 be h237*h238 in h233*erase,

Ahi . An_i. Ani_22 . Ah14772.
let h14772 be h14775*h14776 in
let h14776 be h14779*h14780 in
let h14780 be h14783*h14784 in
let h14784 be h14787*h14788 in
let pick oh14775*h14783*h14788 be h24833 in
let h24833 be h24836*h24837 in
let h24837 be h24840*h24841 in
let pick ohl4i8i*h24836*h24840 be h29167 in
let h29167 be h29170*h29171 in
let h29171 be h29174*h29175 in
let move oh29i74 be h29177 in
let dropohi4i79*h29i75*h29177 be h30380 in
let h30380 be h30383*h30384 in
let h30384 be h30387*h30388 in
let drop oh24841*h30383*h30387 be h30616 in
let h30616 be h30619*h30620 in
let h30620 be h30623*h30624 in
let moveoh30623 be h30626 in
let hlos(s(m_22))o

h29170*h30619*h30626*h30388*h30624
be h30630*h30631
in h30630*erase)

158 APPENDIX B. EXAMPLES

B.7.5 Proof tree

APPENDIX B. EXAMPLES 	 159

APPENDIX B. EXAMPLES
	

160

B.8 Socks

This is the socks problem described in [Bibel 86] and [Masseron et al 93]. Uncertain
effects are involved, but not recursion.

Masseron's formulation has specific axioms for disposing of left-over resources (socks)
when the goal has been acheived. The formulation used here makes of T instead.

B.8.1 Problem specification

bs ® b8 0 T
I- hs®hs®hs ---o ED

ws 0 ws ® T

B.8.2 Axioms

Fpick: hs —o bsws

B.8.3 Plan

)h82.
let h82 be h85*h86 in

let h86 be h89*h90 in
case pickoh90 of

inl(h94) then
case pickoh89 of

inl(h99) then inl(h99*h94*erase)
inr(hlOO) then
case pickoh85 of

ml (h104) then ml (h104*h94*erase)
inr(h105) then inr(h105*hlOO*erase)

inr(h95) then
case pickoh89 of

inl(h109) then
case pickoh85 of

inl(h114) then inl(h114*h109*erase)
inr(h115) then inr(h115*h95*erase)

inr(hllO) then inr(hllO*h95*erase)

APPENDIX B. EXAMPLES
	

161

B.8.4 Proof tree

APPENDIX B. EXAMPLES 	 162

B.9 Conformant socks

This is the socks problem in which we use actions with untestable conditional outcomes
(See Section 8.7). This forces the planner to generate the conformant version of the
plan.

B.9.1 Problem specification

bs ® bs ® T
F-

hs®hsøhs --° ED

ws ® ws ® T

B.9.2 Axioms

F pick: hs -o bs 	ws

B.9.3 Plan

Ah574.
let h574 be h577*h578 in

let h578 be h581*h582 in
let pickoh582 be h583 in
let pickoh581 be h594 in
let pickoh577 be h675 in yields(bs*bs*top+ws*ws*top)

APPENDIX B. EXAMPLES
	

163

B.9.4 Proof tree

APPENDIX B. EXAMPLES
	

164

B.10 Omelette problem

This problem was introduced in [Levesque 96] as follows:

We begin with a supply of eggs, some of which may be bad, but at least 3
of which are good. We have a bowl and a saucer, which can be emptied at
any time. It is possible to break a new egg into the saucer, if it is empty,
or into the bowl. By smelling a container, it is possible to tell if it contains
a bad egg. Also, the contents of the saucer can be transferred to the bowl.
The goal is to get 3 good eggs and no bad ones into the bowl.

In our representation, we do not separate the action with an uncertain outcome from
the sensing action. A peano representation of natural numbers is used to count the
eggs. The representation uses the form eggs(pl ace, n_good, n_total) to mean that there

are (at least) ngood good eggs out of a total ntotal eggs at place.

We (manually) separate the problem into the proof of a lemma, and the proof of the
top level goal using the lemma. The lemma says that if there is at least one good egg
in the fridge, then we can add it to the eggs in the bowl.

The detect-impossible action is used to eliminate the impossible situation where
there are more good eggs than the total number of eggs.

B.10.1 Problem specification (for 3-egg problem)

eggs(f ridge, s(8(s(zero))),n_total)

eggs (saucer, zero, zero)

eggs(bowl, zero, zero)

-o

I- Vniotal.
(n_remaining.eggs(f ridge, zero, n_remaining))

eggs(saucer, zero, zero)

eggs(bowl, s(s(s(zero))), s(s(s(zero))))

T

APPENDIX B. EXAMPLES
	

165

B.10.2 Axioms

F break_into(cont)

F saucer-to-bowl

F saucer..to_bin:

F detect_impossible

eggs(fridge,s(nl), s(n2))

eggs(cont, n3, n4)

eggs(fridge, s(nl), n2)

eggs(cont, n3, s(n4))
ED

eggs (fridge, nl, n2)
0

eggs(cont, s(n3), s(n4))

eggs(saucer, S (zero), s(zero)) 	 eggs (saucer, nl, n2)
0 	 -o 	 0

eggs (bowl, n3, n4) 	 eggs(bowl, s(n3), s(n4))

eggs(saucer, nl, n2) -o eggs (saucer, zero, zero)

eggs (f ridge, s(n),zero) -o 0

B.10.3 Lemma

This lemma is proved separately, and used as an axiom in the proof of the main goal.
The lemma says that if we have at least one good egg in the fridge, we can get it into
the bowl.

(2d.eggs(fridge, a, d))
eggs (f ridge, s(a), b) 	 0

0 	 eggs(saucer, zero, zero)
F lemmal : Va.Vb.Vc. 	eggs(saucer, zero, zero) -o

0 	 eggs (bowl, s(c), s(c))
eggs(bowl,c,c)

T

APPENDIX B. EXAMPLES
	

166

B.10.4 Plan (for lemma)

The lemma was found automatically (excluding selection of induction rule).

Aa_1.)b_2.
nat_rec (b_2,

Ac_2.Ah3.
let h3 be h6*h7 in

let h7 be hlO*hll in
abort (detect-impossible oh6),

)h1.Ab_1.)c_8.Ah1O3.
let h103 be h106*h107 in

let h107 be hllO*huil in
case break_intooh106*h11O of

inl(h131) then
let h131 be h135*h136 in
let
hi o c_8oh135*saucer_to_binohl36*hill

be h142*h143 in
let h143 be hi46*h147 in

let h147
be h150*h151
in h142*hi46*h150*erase

inr(h132) then
let h132 be h154*h155 in
let saucer_to_bowloh111*h155 be h160*h161 in
h154*h160*hi6i*erase)

167 APPENDIX B. EXAMPLES

B.10.5 Proof tree (for lemma)

APPENDIX B. EXAMPLES
	

168

B.10.6 Plan (for 3-egg problem)

The 3-egg problem was solved automatically, given the lemma as an axiom.

)iii_total_12 . Ah1914.
let h1914 be h1917*h1918 in
let h1918 be h1921*h1922 in
let leinmal os(s(zero)) on_total_l2o zero ohl9j.7*h1921*h1922
be h3210*h3211 in
let h3211 be h3214*h3215 in
let h3215 be h3218*h3219 in
let lemmal o s(zero) od_282o s(zero) oh3210*h3214*h3218
be h3360*h3361 in
let h3361 be h3364*h3365 in
let h3365 be h3368*h3369 in
let lemmal o zero o d_294 o s(s(zero)) oh3360*h3364*h3368
be h3389*h3390 in
let h3390 be h3393*h3394 in
let h3394 be h3397*h3398 in
h3389*h3393*h3397*erase

APPENDIX B. EXAMPLES
	

169

B.10.7 Proof tree (for 3-egg problem)

APPENDIX B. EXAMPLES
	

170

B.11 Generalised omelette problem

This problem presents the more general version of the problem: to make an omelette
from any number of good eggs. The proof relies on the same lemma as the 3-egg version
of the problem (Section B.10.3).

This problem can be solved interactively, but the solution does not lie within the search
space of the Lino search procedure.

The failure is caused by the interaction of quantifier rules. The Decompose phase of the
planning algorithm commits too early to removing the universal quantifiers around the
induction hypothesis. This prevents matching with the constant which is introduced
by the existentially quantified effects.

B.11.1 Problem specification

Initially, the fridge contains a good eggs, out of a total of b eggs, and the bowl contains c
good eggs. Introducing the variable c instead of using zero is a required generalisation.

(r 	I

(3d.eggs(fridge, zero, d))
eggs(f ridge, a, b)

F- 	
eggs(saucer, zero, zero)

Va.Vb.Vc. [eggs(saiicer, zero, zero) 	

i
J 	I 	 II eggs(bowl,c,c) 	

eggs (bowl, plus (a, c), plus(a, c))
0
T

B.11.2 Rewrite rules

plus (zero,y) -+ y 	 (plusl)
plus(s(x),y) —* s(plus(x,y)) 	(plus2)
plus(y,zero) -4 y 	 (p1u83)
plus(x,s(y)) -+ s(plus(x,y)) 	(p1u84)

APPENDIX B. EXAMPLES
	

171

B.11.3 Plan

Aa_2.
nat_rec (a_2,

Ab_1.Ac_1.Ah2.
let h2 be h3*h4 in
let h4 be h5*h6 in h3*h5*h6*erase,

Ah1.Aa_1 .Ab_2.Ac_2.Ah7.
let h7 be h8*h9 in

let h9 be hlO*hli in
let lemmal o a_i ob_2 o c_2 oh8*hiO*hii

be h17*h18 in
let h18 be h19*li20 in

let h20 be h2i*h22 in
let hlod_los(c_2) ohi7*hi9*h21
be h26*h27 in
let h27 be h28*h29 in

let h29 be h30*h31 in h26*h28*h30*erase)

APPENDIX B. EXAMPLES
	

172

B.11.4 Proof tree

38
1-0

I I 	44
—i rr

41 	45
ri

I 	I 	46
—i rr

47
lexists

49 	I 51
rexists 	[

a 	I52
axi

	

ax 	r*

54
lrewrite (plus4)

I lrewrite(plus4) I

I rrewrite(plus2) I

I rrewrite(plus2) I

laxi

Bibliography

[Abramsky 931 S. Abramsky. 	Computational interpretations of linear logic.
Theoretical Computer Science, 111:3-57, 1993. (Revised version

of Imperial College Technical Report DoC 90/20).

[Baader & Nipkow 98] F. Baader and T. Nipkow. 	Term Rewriting and All That,
chapter 11. Cambridge University Press, 1998.

[Baker 94] S. Baker. A new application for explanation-based generali-
sation withing automated reasoning. In Alan Bundy, editor,
12th International Conference on Automated Deduction, Lec-
ture Notes in Artificial Intelligence, Vol. 814, pages 177-191,
Nancy, France, 1994. Springer-Verlag.

[Barber 97] A. Barber. Linear Type Theories, Semantics and Action Cal-
culi. Unpublished PhD thesis, Department of Computing Sci-
ence, University of Edinburgh, 1997.

[Bibel 83] W. Bibel. Matings in matrices. CA CM, 26:844-852, 1983.

[Bibel 86] W. Bibel. 	A deductive solution for plan generation. 	New
Generation Computing, 4:115-132, 1986.

[Blum & Furst 95] A. Blum and M. Furst. Fast planning through planning graph
analysis. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 1636-1642, 1995.

[Boyer & Moore 791 S. Boyer and J S. Moore. A Computational Logic. Academic
Press, 1979. ACM monograph series.

[Bruning et al 93] Brüning, S. Hölldobler, J. Schneeberger, U. Sigmund, and
M. Thielscher. 	Disjunction in resource-oriented deductive
planning. In Proceedings of the International Symposium on
Logic Programming, page 670, 1993.

[Bundy 88] A. Bundy. The use of explicit plans to guide inductive proofs.
In R. Lusk and R. Overbeek, editors, 9th International Con-
ference on Automated Deduction, pages 111-120. Springer-
Verlag, 1988. Longer version available from Edinburgh as DAI
Research Paper No. 349.

173

BIBLIOGRAPHY
	

174

[Carlsson et al 971 	M. Carlsson, G. Ottosson, and B. Carlson. An open-ended
finite domain constraint solver. In Proc. Programming Lan-
guages: Implementations, Logics, and Programs, 1997.

[Chapman 871 D. Chapman. Planning for conjunctive goals. Artificial Intel-
ligence, 32:333-377, 1987.

[Cresswell et al 99] S. Cresswell, A. Smaill, and J. Richardson. 	Deductive syn-
thesis of recursive plans in linear logic. In Proceedings of the
Fifth European Conference on Planning ECP-99, pages 252-
263, Durham, UK, 1999.

[Dengler 961 Dengler. Customized plans transmitted by flexible refine-
ment. In 12th European Conference on Artificial Intelligence,
1996.

[Fikes & Nilsson 711 R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2:189-208, 1971.

[Fox & Long 98] M. Fox and D. Long. The automatic inference of state invari-
ants in TIM. Journal of Artificial Intelligence Research, 9:367
- 421, 1998.

[Fronhöfer 97] B. Fronhöfer. 	Plan generation with the linear connection
method. Informatica, 8(1), 1997.

[Galmiche & Boudinet 94] D. Galmiche and E. Boudinet. Proof search for program-
ming in intuitionistic linear logic. In Proceedings of CADE-12
Workshop on Proof Search in type-theoretic languages, 1994.

[Gansner & North 00] R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering. Software
Practice and Experience, 30(11), September 2000.

[Ghassem-Sani & Steel 91] G. R. Ghassem-Sani and S. W. D. Steel. Recursive plans.
In Proc. of the European Workshop on Planning EWSP-91,
pages 53-63, St. Augustin, Germany, 1991.

[Ghassem-Sani 92] G. R. Ghassem-Sani. Recursive Nonlinear Plans. Unpublished
PhD thesis, Department of Computer Science, University of
Essex, 1992.

[Girard 87] J.-Y. Girard. 	Linear logic. 	Theoretical Computer Science,
50:1-102, 1987.

[Girard 95] J.-Y. Girard. Linear logic: its syntax and semantics. In Jean-
Yves Girard, Yves Lafont, and Laurent Regnier, editors, Ad-
vances in Linear Logic, number 222 in London Mathemati-
cal Society Lecture Notes Series. Cambridge University Press,
1995.

BIBLIOGRAPHY
	

175

[Gow 001 	 J. Gow. Position paper. In Proceedings of 9th Workshop on
Inductive Theorem Proving, 17th International Conference on
Automated Deduction, June 2000.

[Green 691 	 C. Green. Application of theorem proving to problem solv-
ing. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 219 - 239, 1969.

[GroBe et al 96] 	G. Gro6e, S. Hölldobler, and J. Schneeberger. Linear deductive
planning. Journal of Logic and Computation, 6(2):233-262,
1996.

[Harland & Pym 97] 	J. Harland and D. Pym. Resource-distribution via boolean
constraint (extended abstract). In William McCune, editor,
Proceedings of CADE-14, pages 222-336, Townsville, North
Queensland, Australia, July 1997. Springer-Verlag LNCS
1249.

[Harland et al 96] 	J. Harland, D. Pym, and M. Winikoff. Programming in Lygon:
An overview. In M. Wirsing and M. Nivat, editors, Algebraic
Methodology and Software Technology, pages 391-405, Munich,

Germany, July 1996. Springer-Verlag LNCS 1101.

[Hesketh et al 92] 	J. Hesketh, A. Bundy, and A. Smaill. Using middle-out rea-
soning to control the synthesis of tail-recursive programs. In
Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction, volume 607 of Lecture Notes in Artificial
Intelligence, pages 310-324, Saratoga Springs, NY, USA, June
1992.

[Hodas & Miller 94] 	J. S. Hodas and D. Miller. Logic programming in a fragment
of intuitionistic linear logic. Information and Computation,
110(2):327-365, 1994. Extended abstract in the Proceedings
of the Sixth Annual Symposium on Logic in Computer Science,
Amsterdam, July 15-18, 1991.

[Hölldobler & Störr 98] S. Hölldobler and H.-P. Störr. Reasoning about complex ac-
tions. In Reasoning about actions: foundations and applica-
tions, Tenth European Summer School on Logic, Language and
Computation, 1998.

[Ireland & Bundy 96] A. Ireland and A. Bundy. Extensions to a Generalization Critic
for Inductive Proof. In M. A. McRobbie and J. K. Slaney, edi-
tors, 13th International Conference on Automated Deduction,
pages 47-61. Springer-Verlag, 1996. Springer Lecture Notes in
Artificial Intelligence No. 1104. Also available from Edinburgh
as DAI Research Paper 786.

[Jacopin 93] 	 E. Jacopin. Classical Al planning as theorem proving: The
case of a fragment of linear logic. In AAAI Fall Symposium on

BIBLIOGRAPHY
	

176

Automated Deduction in Nonstandard Logics, Technical Re-
port FS-93-01, pages 62-66. AAAI Press Publications, Palo
Alto, 1993.

[Japaridze 98] 	G. Japaridze. A formalisim for resource-oriented planning.
IRCS Report 98-01, University of Pennsylvania, Institute for
Cognitive Science, January 1998.

[Koehler 96] 	 J. Koehler. Planning from second principles. Artificial Intel-
ligence, 87:145 - 186, 1996.

[Kraan 94] 	 I. Kraan. Proof Planning for Logic Program Synthesis. Un-
published PhD thesis, Department of Artificial Intelligence,
University of Edinburgh, 1994.

[Kraan et al 96] 	I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for
synthesis and induction. Journal of Automated Reasoning,
16(1-2):113-145, 1996. Also available from Edinburgh as DAT
Research Paper 729.

[Kreitz et al 96] 	C. Kreitz, H. Mantel, J. Otten, and S. Schmitt. Connection-
Based Proof Construction in Linear Logic. Technical Report
AIDA-96-17, FG Intellektik, FB Informatik, TH Darmstadt,
December 1996.

[Levesque 961 	H. Levesque. What is planning in the presence of sensing?,
1996.

[Luo 94] 	 Z. Luo. Computation and Reasoning: A type theory for com-
puter science. International Series of Monographs on Com-
puter Science. Oxford Science Publicatons, 1994.

[Manna & Waldinger 87] Z. Manna and R. Waldinger. How to clear a block: a theory
of plans. Journal of Automated Reasoning, 3(4):343-377, 1987.

[Masseron 93] 	M. Masseron. Generating plans in linear logic II: A geometry of
conjunctive actions. Theoretical Computer Science, 113:371-
375, 1993.

[Masseron et al 931 	M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans
in linear logic I: Actions and proofs. Theoretical Computer
Science, 113(2):349-371, 1993.

[McCarthy & Hayes 69] J. McCarthy and P. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence. Edinburgh Univer-
sity Press, 1969.

[McDermott et al 981 D. McDermott et al. PDDL - the planning domain definition
language. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, 1998.

BIBLIOGRAPHY
	

177

[McDermott 87] 	D. McDermott. A critique of pure reason. Computational
Intelligence, 3:151 - 160, 1987.

[Miller et al 91] 	D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 1991.

[Muggleton 91] 	S. Muggleton. Inductive logic programming. New Generation
Computing, 8(4):295-318, 1991.

[Nordstrom et al 90] 	B. NordstrOm, K. Petersson, and J. Smith. Programming in
Martin-Löf Type Theory. Oxford University Press, 1990.

[Pednault 87] 	E. Pednault. Formulating multi agent dynamic world problems
in the classical planning framework. In Georgeff and Lansky,
editors, Reasoning about actions and Plans, 1987.

[Penberthy & Weld 92] J. S. Penberthy and D. Weld. UCPOP: A sound, complete,
partial order planner for ADL. In Proceedings of the third in-
ternational conference on principles of knowledge representa-
tion and reasoning (KR-9), pages 103-114, Cambridge, MA,
USA, October 1992.

[Peot & Smith 92] 	M. A. Peot and D. E. Smith. Conditional nonlinear planning.
In Proceedings of the First International Conference on Arti-
ficial Intelligence Planning Systems, pages 189-197, 1992.

[Pfenning 98] 	F. Pfenning. Graduate course on linear logic, 1998.

[Protzen 95] 	M. Protzen. Lazy Generation of Induction Hypotheses and
Patching Faulty Conjectures. Unpublished PhD thesis, Tech-
nische Hochschule Darmstadt, Darmstadt, Germany, February
1995.

[Pryor & Collins 96] 	L. Pryor and G. Collins. Planning for contingencies: A
decision-based approach. Journal of Artificial Intelligence Re-
search, 4:287-339, 1996.

[Pryor 95] 	 L. Pryor. Decisions, decisions: Knowledge goals in planning.
In Proc. of AISB-95 Hyrid Problems, Hybrid Solutions, pages

181-192, 1995.

[Sacerdoti 75] 	E. D. Sacerdoti. The nonlinear nature of plans. In Proceed-
ings of IJCAI-75, pages 206-214, Tbilisi, USSR, 1975. Inter-
national Joint Conference on Artificial Intelligence.

[Schellinx 91] 	H. Schellinx. Some syntactical observations on linear logic.
Journal of Logic and Computation, 1(4):537-559, September
1991.

[Slaney & Thiebaux 961 J. Slaney and S. Thiebaux. Linear time near-optimal planning
in the blocks world. In 13th American National Conference on
Artificial Intelligence (AAAI-96), pages 1208 - 1214, 1996.

BIBLIOGRAPHY
	

178

[Smith & Weld 98] D. E. Smith and D. S. Weld. 	Conformant Graphplan. 	In

Proceedings of the 15th National Conference on A.I., 1998.

[Stephan & Biundo 93] W. Stephan and S. Biundo. A new logical framework for de-
ductive planning. 	In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, pages 32 - 38, 1993.

[Stephan & Biundo 95] W. Stephan and S. Biundo. Deduction-based refinement plan-
ning. DFKI Research Report RR-95-13, DFKI, Saarbrücken,
Germany, 1995.

[Sussman 73] G. J. Sussman. A Computational Model of Skill Acquisition.
Unpublished PhD thesis, Artificial Intelligence Laboratory,
MIT, Cambridge, Ma., 1973.

[Tate 77] A. Tate. Generating project networks. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages

888 - 893, 1977.

[Troelstra 921 A. S. Troelstra. Lectures in linear logic. CSLI, 1992.

[Wallen 901 L. Wallen. Automated Deduction in Non- Classical Logics. MIT

Press, 1990.

[Warren 761 D. Warren. Generating conditional plans and programs. In
Proceedings of AISB Summer Conference, pages 344-354. Uni-
versity of Edinburgh, 1976.

[Weld 941 D. S. Weld. An introduction to least commitment planning.
Al Magazine, 15(4):27-61, 1994.

[Weld et al 98] D. S. Weld, C. R. Anderson, and David E. Smith. Extend-
ing Graphplan to handle uncertainty and sensing actions. In
Proceedings of AAAI-98, 1998.

