Skip to main content

The Semantic Tableaux Version of the Second Incompleteness Theorem Extends Almost to Robinson’s Arithmetic Q

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1847))

Abstract

We will generalize the Second Incompleteness Theorem almost to the level of Robinson’s System Q. We will prove there exists a Π1 sentence V, such that if α is any finite consistent extension of Q +V then α will be unable to prove its Semantic Tableaux consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamowicz, Z.: On Tableaux consistency in weak theories, circulating manuscript from the Mathematics Institute of the Polish Academy of Sciences (1999)

    Google Scholar 

  2. Benett, J.: Ph. D. Dissertation, Princeton University (1962)

    Google Scholar 

  3. Bezboruah, A., Shepherdson, J.: Gödel’s Second Incompleteness Theorem for Q. Journal of Symbolic Logic 41, 503–512 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buss, S.: Bounded Arithmetic, in Proof Theory Lecture Notes, vol. 3. published by Bibliopolis, Naples (1986)

    Google Scholar 

  5. Fitting, M.: First Order Logic and Automated Theorem Proving. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  6. Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. Springer, Heidelberg (1991)

    Google Scholar 

  7. Krajícek, J.: Bounded Propositional Logic and Complexity Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  8. Kreisel, G.: A Survey of Proof Theory, Part I. Journal of Symbolic Logic 33, 321–388 (1968); Part II. In: Proceedings of Second Scandinavian Logic Symposium, pp.109–170. North Holland Press, Amsterdam (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kreisel, G., Takeuti, G.: Formally Self-Referential Propositions for Cut-Free Classical Analysis and Related Systems. Dissertationes Mathematicae 118, 1–55 (1974)

    MathSciNet  Google Scholar 

  10. Mendelson, E.: Introduction to Mathematical Logic. Wadsworth-Brooks-Cole Math Series (1987); See page 157 for Q’s definition

    Google Scholar 

  11. Nelson, E.: Predicative Arithmetic. Princeton University Press, Princeton (1986)

    MATH  Google Scholar 

  12. Parikh, R.: Existence and Feasibility in Arithmetic. Journal of Symbolic Logic 36, 494–508 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paris, J., Wilkie, A.: Δ0 Sets and Induction. In: Proceedings of the Jadswin Logic Conference (Poland), pp. 237–248. Leeds University Press (1981)

    Google Scholar 

  14. Pudlák, P.: Cuts Consistency Statements and Interpretations. Journal of Symbolic Logic 50, 423–442 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pudlák, P.: On the Lengths of Proofs of Consistency, in Collegium Logicum: Annals of the Kurt Gödel Society, vol. 2, pp. 65–86 (1996); published by Springer- Wien-NewYork in cooperation with Technische Universität Wien

    Google Scholar 

  16. Robinson, R.: An Essentially Undecidable Axiom System. In: Proceedings of 1950 International Congress on Mathematics, pp. 729–730 (1950); page 157 of ref. [10]

    Google Scholar 

  17. Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)

    MATH  Google Scholar 

  18. Solovay, R.: Private Communications (1994) about Pudlák’s main theorem from [14]. See Appendix A of [24] for a 4-page summary of Solovay’s idea

    Google Scholar 

  19. Statman, R.: Herbrand’s theorem and Gentzen’s Notion of a Direct Proof. In: Handbook on Mathematical Logic, pp. 897–913. North Holland, Amsterdam (1983)

    Google Scholar 

  20. Takeuti, G.: On a Generalized Logical Calculus. Japan. Journal on Mathematics 23, 39–96 (1953)

    MATH  MathSciNet  Google Scholar 

  21. Takeuti, G.: Proof Theory, Studies in Logic, vol. 81. North Holland, Amsterdam (1987)

    Google Scholar 

  22. Wilkie, A., Paris, J.: On the Scheme of Induction for Bounded Arithmetic. Annals on Pure and Applied Logic 35, 261–302 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Willard, D.: Self-Verifying Axiom Systems. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 325–336. Springer, Heidelberg (1993); See also [24] for more details

    Chapter  Google Scholar 

  24. Willard, D.: Self-Verifying Systems, the Incompleteness Theorem & Tangibility Reflection Principle, to appear in the Journal of Symbolic Logic

    Google Scholar 

  25. Willard, D.: Self-Reflection Principles and NP-Hardness. Dimacs Series in Discrete Math &Theoretical Comp Science, vol. 39, pp. 297–320. AMS Press (1997)

    Google Scholar 

  26. Willard, D.: The Tangibility Reflection Principle. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 319–334. Springer, Heidelberg (1997)

    Google Scholar 

  27. Wrathall, C.: Rudimentary Predicates and Relative Computation. Siam Journal on Computing 7, 194–209 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willard, D.E. (2000). The Semantic Tableaux Version of the Second Incompleteness Theorem Extends Almost to Robinson’s Arithmetic Q. In: Dyckhoff, R. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2000. Lecture Notes in Computer Science(), vol 1847. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722086_32

Download citation

  • DOI: https://doi.org/10.1007/10722086_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67697-3

  • Online ISBN: 978-3-540-45008-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics