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Abstract. A discrete strategy improvement algorithm is given for con-
structing winning strategies in parity games, thereby providing also a
new solution of the model-checking problem for the modal µ-calculus.
Known strategy improvement algorithms, as proposed for stochastic ga-
mes by Hoffman and Karp in 1966, and for discounted payoff games and
parity games by Puri in 1995, work with real numbers and require sol-
ving linear programming instances involving high precision arithmetic.
In the present algorithm for parity games these difficulties are avoided
by the use of discrete vertex valuations in which information about the
relevance of vertices and certain distances is coded. An efficient imple-
mentation is given for a strategy improvement step. Another advantage
of the present approach is that it provides a better conceptual understan-
ding and easier analysis of strategy improvement algorithms for parity
games. However, so far it is not known whether the present algorithm
works in polynomial time. The long standing problem whether parity
games can be solved in polynomial time remains open.

1 Introduction

The study of the computational complexity of solving parity games has two main
motivations. One is that the problem is polynomial time equivalent to the modal
µ-calculus model checking [7,18], and hence better algorithms for parity games
may lead to better model checkers, which is a major objective in computer aided
verification.

The other motivation is the intriguing status of the problem from the point of
view of structural complexity theory. It is one of the few natural problems which
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is in NP ∩ co-NP [7] (and even in UP ∩ co-UP [9]), and is not known to have a
polynomial time algorithm, despite substantial effort of the community (see [7,1,
17,10] and references therein). Other notable examples of such problems include
simple stochastic games [3,4], mean payoff games [5,21], and discounted payoff
games [21]. There are polynomial time reductions of parity games to mean payoff
games [15,9], mean payoff games to discounted payoff games [21], and discounted
payoff games to simple stochastic games [21]. Parity games, as the simplest of
them all, seem to be the most plausible candidate for trying to find a polynomial
time algorithm.

A strategy improvement algorithm has been proposed for solving stochastic
games by Hoffman and Karp [8] in 1966. Puri in his PhD thesis [15] has adapted
the algorithm for discounted payoff games. Puri also provided a polynomial time
reduction of parity games to mean payoff games, and advocated the use of the
algorithm for solving parity games, and hence for the modal µ-calculus model
checking.

In our opinion Puri’s strategy improvement algorithm for parity games has
two drawbacks.

– The algorithm uses high precision arithmetic, and needs to solve linear pro-
gramming instances: both are typically costly operations. An implementa-
tion (by the first author) of Puri’s algorithm, using a linear programming
algorithm of Meggido [12], proved to be prohibitively slow.

– Solving parity games is a discrete, graph theoretic problem, but the crux of
the algorithm is manipulation of real numbers, and its analysis is crucially
based on continuous methods, such as Banach’s fixed point theorem.

The first one makes the algorithm inefficient in practice, the other one obscures
understanding of the algorithm.

Our discrete strategy improvement algorithm remedies both above-mentioned
shortcomings of Puri’s algorithm, while preserving the overall structure of the
generic strategy improvement algorithm. We introduce discrete values (such as
tuples of vertices, sets of vertices and natural numbers denoting lengths of paths
in the game graph) which are being manipulated by the algorithm, instead of
their encodings into real numbers. (One can show a precise relationship between
behaviour of Puri’s and our algorithms; we will treat this issue elsewhere.)

The first advantage of our approach is that instead of solving linear pro-
gramming instances involving high precision arithmetic, we only need to solve
instances of a certain purely discrete problem. Moreover, we develop an algorithm
exploiting the structure of instances occurring in this context, i.e., relevance of
vertices and certain distance information. In this way we get an efficient imple-
mentation of a strategy improvement algorithm with O(nm) running time for
one strategy improvement step, where n is the number of vertices, and m is the
number of edges in the game graph.

The other advantage is more subjective: we believe that it is easier to analyze
the discrete data maintained by our algorithm, rather than its subtle encodings
into real numbers involving infinite geometric series [15]. The classical continuous
reasoning gives a relatively clean proof of correctness of the algorithm in a more
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general case of discounted payoff games [15], but we think that in the case of
parity games it blurs an intuitive understanding of the underlying discrete struc-
ture. However, the long standing open question whether a strategy improvement
algorithm works in polynomial time [4] remains unanswered. Nevertheless, we
hope that our discrete analysis of the algorithm may help either to find a proof of
polynomial time termination, or to come up with a family of examples on which
the algorithm requires exponential number of steps. Any of those results would
mark a substantial progress in understanding the computational complexity of
parity games.

So far, for all families of examples we have considered the strategy improve-
ment algorithm needs only linear number of strategy improvement steps. Not-
ably, a linear number of strategy improvements suffices for several families of
difficult examples for which other known algorithms need exponential time.

In this extended abstract, some substantial proofs are omitted, in particular
for Lemmas 3 and 5, as well as the detailed correctness proof of the algorithm
of Section 4. For a more complete exposition see [19].
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2 Preliminaries

A parity game is an infinite two-person game played on a finite vertex-colored
graph G = (V0, V1, E, c) where V = V0 ∪̇V1 is the set of vertices and E ⊆ V0 ×
V1 ∪ V1 ×V0 the set of edges with ∀u ∈ V ∃v ∈ V : uEv, and c : V → {1, . . . , d}
is a coloring of the vertices. The two players move, in alternation, a token along
the graph’s edges; player 0 moves the token from vertices in V0, player 1 from
vertices in V1. A play is an infinite vertex sequence v0v1v2 . . . arising in this way.
The decision who wins refers to the coloring c of the game graph: if the largest
color which occurs infinitely often in c(v0)c(v1)c(v2) . . . is even then player 0
wins, otherwise player 1 wins. One says that player 0 (resp. player 1) has a
winning strategy from v ∈ V if starting a play in v, he can force a win for
arbitrary choices of player 1 (resp. player 0). By the well-known determinacy of
parity games, the vertex set V is divided into the two sets W0, W1, called the
winning sets, where Wi contains the vertices from which player i has a winning
strategy.

Moreover, it is known (see, e.g., [6,14]) that on Wi player i has a memoryless
winning strategy, which prescribes the respective next move by a unique edge
leaving each vertex in Vi.

In the following we fix the basic notations for games and strategies. Let
G = (V0, V1, E, c) be a game graph with the vertices V = V0 ∪ V1 and the
coloring c : V → {1, . . . d}. Let W0, W1 be the winning sets of G.
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A strategy for player i (i = 0, 1) is a function ρ : Vi → V1−i such that vEρ(v)
for all v ∈ Vi. A strategy for player i is called a winning strategy on W ⊆ V
if player i wins every play starting in W when using that strategy. A winning
strategy for player i is a winning strategy on the winning set Wi.

We set

V+ = {v ∈ V | c(v) is even} and V− = {v ∈ V | c(v) is odd}

and we call vertices in V+ positive and those in V− negative.
We introduce two orderings of V , the relevance ordering < and the reward

ordering ≺. The relevance order is a total order extending the pre-order given by
the coloring, i.e., such that c(u) < c(v) implies u < v. (So higher colors indicate
higher relevance.)

By inf(π) we denote the set of vertices occurring infinitely often in the play
π. Referring to < over V , we can reformulate the winning condition for player 0
in a play π as

max<(inf(π)) ∈ V+.

Another ordering, the reward order ≺, indicates the value of a vertex as seen
from player 0. The lowest reward originates from the vertex in V− of highest
relevance, the highest from the vertex in V+ of highest relevance. Formally, we
define:

u ≺ v ⇐⇒ (u < v ∧ v ∈ V+) ∨ (v < u ∧ u ∈ V−)

We extend the reward order ≺ to an order on sets of vertices. If P, Q ∈ 2V

are distinct, the vertex v of highest relevance in the symmetric difference P4Q
decides whether P ≺ Q or Q ≺ P : If v ∈ V+ then the set containing v is taken
as the higher one, if v ∈ V− then the set not containing v is taken as the higher
one. Formally:

P ≺ Q ⇐⇒ P 6= Q ∧ max<(P4Q) ∈ Q4V−

Note that we use the same symbol ≺ for vertices and for sets of vertices.
We also need a coarser version ≺w of ≺, using a reference vertex w and taking

into account only P - and Q-vertices of relevance ≥ w:

P ≺w Q ⇐⇒ P ∩ {x ∈ V |x ≥ w} ≺ Q ∩ {x ∈ V |x ≥ w},

and the corresponding equivalence relation:

P ∼w Q ⇐⇒ P �w Q ∧ Q �w P

3 Game Graph Valuations

In this section we present the terminology and main ideas underlying the appro-
ximative construction of winning strategies. The plays considered in the sequel
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are always induced by two given strategies σ and τ for players 0 and 1 respec-
tively. Any such pair σ, τ determines from any vertex a play ending in a loop L.
The first Subsection 3.1 introduces certain values called play profiles for such
plays. A play profile combines three data: the most relevant vertex of the loop L,
the vertices occurring in the play that are more relevant than the most relevant
vertex in the loop, and the number of all vertices that are visited before the most
relevant vertex of the loop. The order ≺ above is extended to play profiles (so
that ≺-higher play profiles are more advantageous for player 0). An arbitrary
assignment of play profile values to the vertices is called a valuation.

Subsection 3.2 gives a certain condition when a valuation originates from a
strategy pair (σ, τ) as explained. Such valuations are called locally progressive.

The algorithm will produce successively such locally progressive valuations.
In each step, a valuation is constructed from a strategy σ of player 0 and an ‘op-
timal’ response strategy τ of player 1. In Subsection 3.3 this notion of optimality
is introduced. We show that a valuation which is optimal for both players 0 and
1 represents the desired solution of our problem: a pair of winning strategies for
the two players.

The last Subsection 3.4 will explain the nature of an approximation step,
from a given valuation ϕ to a (next) ‘response valuation’ ϕ′. One should imagine
that player 0 picks edges to vertices with ≺-maximal values given by ϕ, and
that player 1 responds as explained above, by a locally progressive valuation ϕ′.
The key lemma says that uniformly ϕ′ will majorize ϕ (i.e., ϕ(v) � ϕ′(v) for all
vertices v ∈ V ). This will be the basis for the termination proof because equality
ϕ = ϕ′ will imply that ϕ is already optimal for both players.

3.1 Play Profiles

Let G = (V0, V1, E, c) be a game graph. Let Π be the set of plays that can
be played on this graph. We define the function w : Π → V which computes
the most relevant vertex that is visited infinitely often in a play π, i.e., w(π) =
max< inf(π). Furthermore, we define a function α : Π → 2V which computes
the vertices that are visited before the first occurrence of w(π):

α(π) =
{
u ∈ V

∣∣ ∃i ∈ N0 : πi = u ∧ ∀k ∈ N0 : k ≤ i =⇒ πk 6= w(π)
}
.

We are interested in three characteristic values of a play π:

1. The most relevant vertex uπ that is visited infinitely often: uπ = w(π).
2. The set of vertices Pπ that are more relevant than uπ and visited before the

first visit of uπ: Pπ = α(π) ∩ {v ∈ V | v > w(π)}.
3. The number of vertices visited before the first visit of uπ: eπ = |α(π)|.

We call such a triple (uπ, Pπ, eπ) a play profile. It induces an equivalence relation
of plays on the given game graph. By definition each profile of a play induced
by a pair of strategies belongs to the following set:

D =
{
(u, P, e) ∈ V × 2V × {0, . . . , |V | − 1} ∣∣ ∀v ∈ P : u < v ∧ |P | ≤ e

}
.
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The set D is divided into profiles of plays that are won by player 0, respectively 1:

D0 =
{
(u, P, e) ∈ D ∣∣ u ∈ V+

}
and D1 =

{
(u, P, e) ∈ D ∣∣ u ∈ V−

}
.

We define a linear ordering ≺ on D. One play profile is greater than another
with respect to this ordering if the plays it describes are ‘better’ for player 0,
respectively smaller if they are better for player 1. Let (u, P, e), (v, Q, f) ∈ D:

(u, P, e) ≺ (v, Q, f) ⇐⇒




u ≺ v
∨ (u = v ∧ P ≺ Q)
∨ (u = v ∧ P = Q ∧ v ∈ V− ∧ e < f)
∨ (u = v ∧ P = Q ∧ v ∈ V+ ∧ e > f)

The idea behind the last two clauses is that in case u = v and P = Q it is more
advantageous for player 0 to have a shorter distance to the most relevant vertex
v if v ∈ V+ (case f < e), resp. a longer distance if v ∈ V− (case f > e).

For the subsequent lemmata we need a coarser ordering ≺w of play profiles:

(u, P, e) ≺w (v, Q, f) ⇐⇒ u ≺ v ∨ (u = v ∧ P ≺w Q)

and a corresponding equivalence relation ∼w:

(u, P, e) ∼w (v, Q, f) ⇐⇒ u = v ∧ P ∼w Q

3.2 Valuations

A valuation is a function ϕ : V → D which labels each vertex with a play profile.
We are interested in valuations where all play profiles ϕ(v) (v ∈ V ) are

induced by the same pair of strategies. An initial vertex v and two strategies
σ for player 0 and τ for player 1 determine a unique play πv,σ,τ . For a pair of
strategies (σ, τ) we can define the valuation induced by (σ, τ) to be the function
ϕ which maps v ∈ V to the play profile of πv,σ,τ . This valuation ϕ assigns to
each vertex the play profile of the play starting in v played with respect to σ
and τ . To refer to the components of a play profile ϕ(v) = (u, P, e) we write ϕ0,
ϕ1 and ϕ2, where ϕ0(v) = u, ϕ1(v) = P and ϕ2(v) = e. We call u the most
relevant vertex of play profile ϕ(v) (or of v, if ϕ is clear from the context).

The play profiles in a valuation induced by a strategy pair are related as
follows: Let σ, τ be strategies and ϕ their corresponding valuation. Let x, y ∈ V
be two vertices with σ(x) = y or τ(x) = y, i.e., in a play induced by σ and τ a
move proceeds from x to y. It follows immediately that ϕ0(x) = ϕ0(y). We can
distinguish the following cases:

1. Case x < ϕ0(x): Then ϕ1(x) = ϕ1(y) and ϕ2(x) = ϕ2(y) + 1.
2. Case x = ϕ0(x): By definition of ϕ we have: ϕ1(x) = ∅ and ϕ2(x) = 0.

Furthermore ϕ1(y) = ∅, because there are no vertices on the loop through x
that are more relevant than x.

3. Case x > ϕ0(x): Then ϕ1(x) = {x} ∪̇ϕ1(y) and ϕ2(x) = ϕ2(y) + 1.
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These conditions define what we call the ϕ-progress relation �ϕ. If an edge
leads from x to y then x �ϕ y will mean that the ϕ-value is correctly updated
when passing from x to y in a play. Formally we define for x, y ∈ V , assuming
ϕ(x) = (u, P, e), ϕ(y) = (v, Q, f):

x �ϕ y ⇐⇒ u = v ∧ (
(x = u ∧ P = Q = ∅ ∧ e = 0)

∨ (x < u ∧ P = Q ∧ e = f + 1)
∨ (x > u ∧ P = Q ∪̇ {x} ∧ e = f + 1)

)

The following proposition is straightforward.

Proposition 1. Let ϕ be a valuation, and let v �ϕ σ(v) and v �ϕ τ(v), for all
v ∈ V . Then (σ, τ) induces ϕ.

Note that a valuation ϕ may be induced by several pairs (σ, τ) of strategies
so that several plays starting in v with play profile ϕ(v) may exist. We now
characterize those valuations which are induced by some strategy pair (σ, τ).
A valuation ϕ is called locally progressive if

∀u ∈ V ∃v ∈ V : uEv ∧ u �ϕ v.

The next proposition follows immediately from definitions.

Proposition 2. Let G = (V0, V1, E, c) be a game graph. Let ϕ be a valuation
for G. Then ϕ is a locally progressive valuation iff there exists a strategy σ for
player 0 and a strategy τ for player 1 such that ϕ is a valuation induced by (σ, τ).

We call a strategy ρ : Vi → V1−i (i ∈ {0, 1}) compatible with the valuation ϕ if
∀v ∈ Vi : v �ϕ ρ(v). From Proposition 2 it follows that for a locally progressive
valuation ϕ at least one strategy for each player is compatible with ϕ.

3.3 Optimal Valuations

A valuation ϕ is called optimal for player 0 if the ϕ-progress relation x�ϕ y only
applies to edges xEy where the value ϕ(y) is �-maximal among the E-successors
of x (i.e., among the values ϕ(z) with xEz). However, a weaker requirement is
made if x is the most relevant vertex associated to x via ϕ (i.e., ϕ0(x) = x). In
this case we discard the distance component ϕ2; formally, we replace � by �x.
(Recall that (u, P, e) ≺x (v, Q, f) holds if u ≺ v holds, or u = v and P ≺x Q, i.e.,
e and f are not taken into account.) Formally, ϕ is called optimal for player 0 if
for all x ∈ V0 and y ∈ V1 with an edge xEy:

x �ϕ y ⇐⇒ ∀z ∈ V1 : xEz ⇒ ϕ(z) � ϕ(y) ∨ (
ϕ0(x) = x ∧ ϕ(z) �x ϕ(y)

)

In the last case, the vertex y succeeds x in the loop of a play given by a strategy
pair (σ, τ) which is compatible with ϕ; of course, there may be several such y
with x�ϕ y. Similarly ϕ is called optimal for player 1 if for all x ∈ V1 and y ∈ V0
with an edge xEy:

x �ϕ y ⇐⇒ ∀z ∈ V0 : xEz ⇒ ϕ(y) � ϕ(z) ∨ (
ϕ0(x) = x ∧ ϕ(y) �x ϕ(z)

)
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A valuation that is optimal for both players is called optimal valuation.
It is useful to note the following fact: If ϕ is optimal for player 0, then (since

�x is coarser than �) x �ϕ y implies ϕ(z) �x ϕ(y) for xEz. Similarly if ϕ is
optimal for player 1 then x �ϕ y implies ϕ(y) �x ϕ(z) for xEz.

The optimal valuations are closely related to the desired solution of a game,
namely a pair of winning strategies. Consider a valuation ϕ which is optimal for
player 0, and let W1 be the set of vertices u whose ϕ-value ϕ(u) is in D1 (i.e., the
most relevant vertex ϕ0(u) associated to u is in V−, signalling a win of player 1).
Any strategy for player 1 compatible with ϕ turns out to be a winning strategy
for him on W1, whatever strategy player 0 chooses independently of ϕ. Applying
this symmetrically for both players we shall obtain a pair of winning strategies.

Lemma 1. Let G = (V0, V1, E, c) be a game graph. Let i ∈ {0, 1} and ϕ be
a locally progressive valuation of G which is optimal for player i. Let W1−i =
{v ∈ V |ϕ(v) ∈ D1−i}. Then the strategies for player 1− i compatible with ϕ are
winning strategies on W1−i (against an arbitrary strategy of player i).

Applying this lemma symmetricly for both players leads to the following.

Theorem 1. Let G = (V0, V1, E, c) be a game graph. Let ϕ be an optimal locally
progressive valuation of G. Then all strategies compatible with ϕ are winning
strategies.

3.4 Improving Valuations

Given two locally progressive valuations ϕ and ϕ′, we call ϕ′ improved for player 0
with respect to ϕ if

∀x ∈ V0 ∃y ∈ V : xEy ∧ x �ϕ′ y ∧ ∀z ∈ V1 : xEz ⇒ ϕ(z) � ϕ(y).

A locally progressive valuation ϕ′, which is improved for player 0 with respect
to ϕ, can be constructed from a given locally progressive valuation ϕ by extrac-
ting a strategy σ : V0 → V1 for player 0 that chooses maximal E-successors with
respect to ϕ and constructing a locally progressive valuation ϕ′ such that σ is
compatible with ϕ′.

Lemma 2. Let G = (V0, V1, E, c) be a game graph. Let ϕ be a locally progressive
valuation optimal for player 1 and ϕ′ a locally progressive valuation that is im-
proved for player 0 with respect to ϕ. Then for all v ∈ V , we have ϕ(v) � ϕ′(v).

4 The Algorithm

In this section we give an algorithm for constructing an optimal locally progres-
sive valuation for a given parity game graph. This will lead to winning strategies
for the game. The algorithm is split into three functions: main(), valuation(),
and subvaluation().
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In the function main() a sequence of strategies for player 0 is generated and
for each of these strategies a locally progressive valuation is computed by calling
valuation(). This valuation is constructed such that the strategy of player 0 is
compatible with it and that it is optimal for player 1. The first strategy for
player 0 is chosen randomly. Subsequent strategies for player 0 are chosen such
that they are optimal with respect to the previous valuation. The main loop
terminates if the strategy chosen for player 0 is the same as in the previous
iteration. Finally a strategy for player 1 is extracted from the last computed
valuation.

main(G):
1. for each v ∈ V0 {Select initial strategy for player 0.}
2. select σ(v) ∈ V1 with v EG σ(v)
3. repeat
4. Gσ = (V0, V1, E

′, c), where ∀u, v ∈ V :
uE′v ⇐⇒ (σ(u) = v ∧ u ∈ V0) ∨ (uEGv ∧ u ∈ V1)

5. ϕ = valuation(Gσ)
6. σ′ = σ {Store σ under name σ′}
7. for each v ∈ V0 {Optimize σ locally according to ϕ}
8. if ϕ(σ(v)) ≺ max≺{d ∈ D|∃v′ ∈ V : v EG v′ ∧ d = ϕ(v′)} then
9. select σ(v) ∈ V1

with ϕ(σ(v)) = max≺{d ∈ D|∃v′ ∈ V : v EG v′ ∧ d = ϕ(v′)}
10. until σ = σ′

11. for each v ∈ V1

12. select τ(v) ∈ V0

with ϕ(τ(v)) = min≺{d ∈ D|∃v′ ∈ V : v EG v′ ∧ d = ϕ(v′)}
13. W0 = {v ∈ V | ϕ0(v) ∈ V+}
14. W1 = {v ∈ V | ϕ0(v) ∈ V−}
15. return W0, W1, σ, τ

Fig. 1. This function computes the winning sets and a winning strategy for each player
from a given game graph.

In the functions valuation() and subvaluation(), we use the functions reach(G,
u), minimal distances(G, u), maximal distances(G, u). The functions work on the
graph G and perform a backward search on the graph starting in vertex u.

– The function reach(G, u) produces the set of all vertices from which the
vertex u can be reached in G (done by a backward depth first search).

– The function minimal distances(G, u) computes a vector δ : VG → {0, . . . ,
|VG| − 1} where δ(v) is the length of the shortest path from v to u (done by
a backward breadth first search starting from u).

– The function maximal distances(G, u) yields a vector δ : VG → {0, . . . , |VG|−
1} where δ(v) is the length of the longest path from v to u that does not
contain u as an intermediate vertex. This is done by a backward search
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starting from u where a new vertex is visited if all its successors are visited
before. This algorithm only works if every cycle in the graph contains u.

The valuation(H)-function produces a locally progressive valuation for the
graph H that is optimal for player 1. It does this by splitting the graph into
a set of subgraphs for which subvaluation() can compute a locally progressive
valuation of this kind.

The function searches a loop and then the set of vertices R from which
this loop can be reached. Computing the locally progressive valuation for the
subgraph induced by R is done by subvaluation(). The rest of the graph (i.e.,
the subgraph induced by VH \ R) is recursively treated in the same way.

valuation(H):
1. for each v ∈ V do
2. ϕ(v) = ⊥.
3. for each w ∈ V (ascending order with respect to ≺) do
4. if ϕ(w) = ⊥ then
5. L = reach(H|{v∈V |v≤w}, w)
6. if EH ∩ {w} × L 6= ∅ then
7. R = reach(H, w)
8. ϕ|R = subvaluation(H|R, w)
9. EH = EH \ (R × (V \ R))

10. return ϕ

Fig. 2. This function computes for graph H a locally progressive valuation that is
optimal for player 1.

The algorithm valuation(H) is given in Fig. 2. It works as follows:

1. ϕ is set ‘undefined’ for all v.
2. In ascending reward order those vertices w are found which belong to a

loop L consisting of solely of ≤-smaller vertices. Then, for a fixed w, the
set Rw of all vertices is determined from which this loop (and hence w) is
reachable (excluding vertices which have been used in sets Rw′ for previously
considered w′). The valuation is updated on the set Rw.
The new valuation is determined as follows. By backward depth-first se-
arch from w the vertices v in Rw are scanned, and edges leading outside
Rw deleted, in order to prohibit entrance to Rw by a later search (from a
different w′).
In subvaluation(H) the role of vertices v in Rw w.r.t. ≺w is analyzed. We
shall have ϕ0(v) = w for them. One proceeds in decreasing relevance order:

– If u happens to be w, a backward breadth first search is done and only
the distance decreasing edges are kept.
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– Otherwise one distinguishes whether u is positive or negative. If u is
positive, one computes the set U of vertices from where w can be reached
while avoiding u, and for those v from which a visit to u is unavoidable,
add u to ϕ1(v), and delete edges from v to vertices in U .

– If u is negative then let U be the set of vertices v, such that u can be
visited on a path from v to w. We add u to ϕ1(v) for all v ∈ U , and we
remove edges leading from U \ {u} to V \ U .

The function subvaluation(H) is given in Fig. 3. It computes the paths to
w that have minimal reward with respect to ≺w and stores for each vertex the
resulting path in ϕ-value. Edges that belong to paths with costs that are not
minimal are removed successively.

subvaluation(K, w):
1. for each v ∈ VK do
2. ϕ0(v) = w
3. ϕ1(v) = ∅
4. for each u ∈ {v ∈ VK | v > w} (descending order with respect to <) do
5. if u ∈ V+ then
6. U = reach(K|VK\{u}, w)
7. for each v ∈ VK \ U do
8. ϕ1(v) = ϕ1(v) ∪ {u}
9. EK = EK \ ((U ∪ {u}) × (V \ U))

10. else
11. U = reach(K|VK\{w}, u)
12. for each v ∈ U do
13. ϕ1(v) = ϕ1(v) ∪ {u}
14. EK = EK \ ((U \ {u}) × (V \ U))
15. if w ∈ V+ then
16. ϕ2 = maximal distances(K, w)
17. else
18. ϕ2 = minimal distances(K, w)
19. return ϕ

Fig. 3. This function computes a locally progressive valuation for a subgraph K with
most relevant vertex w.

5 Time Complexity

In the analysis of the running time of a strategy improvement algorithm there
are two parameters of major interest:

1. the time needed to perform a single strategy improvement step,
2. the number of strategy improvement steps needed.

We argue that our discrete strategy improvement algorithm for parity games
achieves a satisfactory bound on the former parameter. Let n be the number of
vertices, and let m be the number of edges in the game graph.
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Proposition 3. A single strategy improvement step, i.e., lines 4.-9. in Figure 1,
is carried out in time O(nm).

A satisfactory analysis of the latter parameter is missing in our work. Despite
the long history of strategy improvement algorithms for stochastic and payoff ga-
mes [8,4,15] very little is known about the number of strategy improvement steps
needed. The best upper bounds are exponential [4,15] but to our best knowledge
no examples are known which require more than linear number of improvement
steps. We believe that our purely discrete description of strategy improvement
gives new insights into the behaviour of the algorithm in the special case of pa-
rity games. The two long standing questions: whether there is a polynomial time
algorithm for solving parity games [7], and, more concretely, whether a strategy
improvement algorithm for parity games terminates in polynomial time [4,15],
remain open. Below we discuss some disjoint observations we have come up with
so far, and some questions which we believe are worth pursuing.

We say that a vertex is switchable if the condition in line 8. of the algorithm
in Figure 1 is satisfied; we say that a vertex is switched in line 9. of Figure 1.
Note that switching an arbitrary non-empty subset of the set of switchable ver-
tices in every strategy improvement step gives a correct strategy improvement
algorithm for parity games. Therefore, one can view our algorithm as a gene-
ric algorithm which can be instantiated to a fully deterministic algorithm by
providing a policy for choosing the set of vertices to switch in every strategy im-
provement step. Melekopoglou and Condon [13] exhibit families of examples on
which several natural policies switching only one switchable vertex in every stra-
tegy improvement step require an exponential number of strategy improvement
steps. It is open whether there are families of examples of parity games on which
there are policies requiring super-polynomial number of strategy improvement
steps. On the other hand, for every parity game and every initial strategy, there
exists a policy requiring only linear number of strategy improvement steps.

Proposition 4. For every parity game and initial strategy, there is a policy for
which the strategy improvement algorithm switches every vertex at most once,
and therefore it terminates after at most n strategy improvement steps.

This contrasts with an algorithm for solving parity games based on progress
measures [10], for which there are families of examples on which every policy
requires an exponential number of steps.

Examples of Melekopoglou and Condon [13] are Markov decision processes,
i.e., one-player simple stochastic games [3]. It is an open question whether the
strategy improvement algorithm using the standard policy, i.e., switching all
switchable vertices in every strategy improvement step, works in polynomial
time for one-player simple stochastic games [13]. In contrast, our discrete stra-
tegy improvement algorithm terminates in polynomial time for one-player parity
games.

Proposition 5. The discrete strategy improvement algorithm terminates after
O(n3) strategy improvement steps for one-player parity games.
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Most algorithms for solving parity games studied in literature have O
(
(n/d)d

)
or O

(
(n/d)d/2

)
worst-case running time bounds (see [10] and references therein),

where d is the number of different priorities assigned to vertices. The best upper
bound we can give at the moment for the number of strategy improvement steps
needed by our discrete strategy improvement algorithm is the trivial one, i.e.,
the number of different strategies for player 0, which can be 2Ω(n).

Proposition 6. The discrete strategy improvement algorithm terminates after∏
v∈V0

out-deg(v) many strategy improvement steps.

There is, however, a variation of the strategy improvement algorithm for pa-
rity games, for which the number of strategy improvement steps is bounded by
O

(
(n/d)d

)
.

Proposition 7. There is a strategy improvement algorithm for parity games
which terminates after O

(
(n/d)d

)
improvement steps, and a single strategy im-

provement step can be performed in nO(1) time.

Note that in every strategy improvement step the current valuation strictly
improves in at least one vertex. We say that a strategy improvement step is sub-
stantial if in the current valuation the first component of a profile of some vertex
strictly improves. Observe that there can be at most O(n2) substantial strategy
improvement steps. It follows that in search for superpolynomial examples one
has to manufacture gadgets allowing long sequences of non-substantial strategy
improvement steps.

We have collected a little experimental evidence that in practice most impro-
vement steps are non-substantial. There are few interesting scalable families of
hard examples of parity games known in literature. Using an implementation of
our discrete strategy improvement algorithm due to the first author [16] we have
run some experiments on families of examples taken from [2] and from [10], and
on a family of examples mentioned in [10] which make Zielonka’s version [20] of
the McNaughton’s algorithm [11] work in exponential time. For all these families
only linear number of strategy improvement steps were needed and, interestingly,
the number of non-substantial strategy improvement steps was in all cases con-
stant, i.e., not dependent of the size of the game graph.
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