Efficient Biichi Automata from LTL Formulae*

Fabio Somenzi and Roderick Bloem

Department of Electrical and Computer Engineering
University of Colorado, Boulder, CO, 80309-0425
{Fabio,Roderick.Bloem}@Colorado.EDU

Abstract. We present an algorithm to generate small Biichi automata for LTL
formulae. We describe a heuristic approach consisting of three phases: rewriting of
the formula, an optimized translation procedure, and simplification of the resulting
automaton. We present a translation procedure that is optimal within a certain class
of translation procedures. The simplification algorithm can be used for Biichi
automata in general. It reduces the number of states and transitions, as well as
the number and size of the accepting sets—possibly reducing the strength of the
resulting automaton. This leads to more efficient model checking of linear-time
logic formulae. We compare our method to previous work, and show that it is
significantly more efficient for both random formulae, and formulae in common
use and from the literature.

1 Introduction

The standard approach to LTL model checking [[18/14] consists of translating the negation
of a given LTL formula into a Biichi automaton, and checking the product of the property
automaton and the model for language emptiness. The quality of the translation affects
the resources required by the model checking experiment. This motivates the search for
algorithms that generate efficient automata, i.e., automata with few states, few transitions,
and simple acceptance conditions.

The initial approaches to translation of LTL formulae were not designed to yield
small automata. The process of [I8] always yields the worst-case result of O(2") states,
where n is the length of the formula. The approach of [11]] was the first to produce
automata that were not necessarily of worst-case size. In [J], a more efficient algorithm
was proposed that works on-the-fly. A further improvement over this algorithm, based
on syntactic simplification, was discussed in [5].

We present an approach to the generation of Biichi automata from LTL formulae that
extends the work of [9l5] in three ways:

1. It applies rewriting rules to the formula before translation.

2. It reduces the number of states generated by the translation by applying boolean
optimization techniques.

3. It simplifies both the transition structure and the acceptance conditions of the resul-
ting Biichi automaton.

* This work was supported in part by SRC contract 98-DJ-620 and NSF grant CCR-99-71195.

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 248-263] 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Efficient Biichi Automata from LTL Formulae 249

The last phase of our algorithm is independent of LTL, and can be applied whenever one
is interested in simplifying a Biichi automaton. Our algorithm is not designed to work
on-the-fly, since the automata generated by the algorithm are typically much smaller
than the model.

Both explicit and implicit model checking algorithms benefit from the simplification
of the Buichi automata. Explicit techniques check emptiness of the product automata in
time proportional to the size of the property automaton. Symbolic algorithms need, in
general, a number of symbolic operations that is quadratic in the size of the property
automaton [4,12]. We can hence expect appreciable speedups in emptiness checks using
either technique if we can reduce the size of the automaton significantly.

The strength of a Biichi automaton [13)2]] relates to the complexity of the proce-
dure required to symbolically model check the corresponding property. For a strong
automaton, an emptiness check requires the computation of a p-calculus formula of
alternation depth 2, which takes a number of preimage computations quadratic in the
size of the automaton. A weak automaton requires an alternation-free greatest fixpoint
computation, and hence only linearly many preimage computations. Finally, a terminal
automaton only requires reachability analysis, and is therefore amenable to on-the-fly
model checking. Our procedure tends to produce results of lesser strength than results
of previous algorithms.

We compare our technique to those of [9] and [5)]. The comparison is based on both
random formulae, and a set of formulae that are either in common use or found in the
literature. In both cases, it is significantly more efficient in terms of number of states,
transitions, acceptance conditions, and strength of the resulting automaton.

Etessami and Holzmann [§] have independently developed a similar approach. In
their approach, like ours, rewriting is followed by translation and simulation-based op-
timization. Etessami and Holzmann perform rewriting using a set of rules that is incom-
parable to ours. They do not expand on the translation stage. In the minimization stage
backward simulation is not employed. Their technique is geared towards non-generalized
automata.

The flow of this paper is as follows. Section 2l presents the preliminaries. Section Bl
covers rewriting of the LTL formulae. Section [describes how boolean optimization
can be used to make the translation into automata more efficient. Then, Sections [Sland
describe the simplification of the automaton by deleting arcs and states, and pruning
acceptance conditions. Finally, Section[7]presents the experimental results, and Section
concludes the paper.

2 Preliminaries

There are several variants of Biichi automata. We adopt automata with multiple accep-
tance conditions and with labels on the states (as opposed to labels on the arcs) as in

1.
Definition 1. A labeled, generalized Biichi automaton is a six-tuple

A: <QaQ0a5af7D7£>7

250 F. Somenzi and R. Bloem

where Q is the finite set of states, Qo C Q is the set of initial states, § : Q — 29 is
the transition relation, F C 29 is the set of acceptance conditions (or fair sets), D is a
finite domain, and L : Q — 2P is the labeling function.

A run of A is an infinite sequence p = pg, p1,--. over Q, such that py € Qq, and
foralli >0, piy1 € 8(p;). A run p is accepting if for each F; € F there exists q; € F;
that appears infinitely often in p.

The automaton accepts an infinite word o = oq, 01, ... in D% if there exists an
accepting run p such that, for all i > 0, o; € L(p;). The language of A, denoted by
L(A), is the subset of D¥ accepted by A.

We write A1 for the labeled, generalized Biichi automaton (Q,{q},d,F, D, L).

Notice that with labels on the states we must allow multiple initial states. Multiple
acceptance conditions, although not strictly necessary, simplify the translation. We will
refer to a labeled generalized Biichi automaton simply as a Biichi automaton.

The temporal logic LTL is obtained from propositional logic by adding three temporal
operators: U (until), R (releases, the dual of U), and X (next). The familiar G and F
are defined as abbreviations, as are T (true) and F (false). Translation of an LTL formula
(into a Buichi automaton is accomplished by application of expansion rules also known
as tableau rules:

Y1 Uapg = 1ha V (Y1 AX (Y1 Uha)) 1 Rapg = o A (1 V X (Y1 Rp))

The rules are applied to ¢ until the resulting expression is a propositional formula in
terms of elementary subformulae of . An elementary formula is a constant, an atomic
proposition, or a formula starting with X. The expanded formula, put in disjunctive
normal form (DNF), is an elementary cover of . Each term of the cover identifies a
state of the automaton. The atomic propositions and their negations in the term define the
label of the state, that is, the conditions that the input word must satisfy in that state. The
remaining elementary subformulae of the term form the next part of the term; they are
LTL formulae that identify the obligations that must be fulfilled to obtain an accepting
run; they determine the transitions out of the state as well as the acceptance conditions.

The expansion process is applied to the next part of each state, creating new covers
until no new obligations are produced. In this way, a closed set of elementary covers is
obtained. The set is closed in the sense that there is an elementary cover in the set for the
next part of each term of each cover in the set. The automaton is obtained by connecting
each state to the states in the cover for its next part. The states in the elementary cover
of ¢ are the initial states. Acceptance conditions are added to the automaton for each
elementary subformula of the form X (¢); U v3). The acceptance condition contains all
the states s such that the label of s does not imply ¢; U 15 or the label of s implies 5.

3 Rewriting the Formula

The first step towards an efficient translation is rewriting, a cheap, simple, and effective
way to minimize result of the translation. Prior to generation of the Biichi automaton, a
formula is put in positive normal form. Then we use the following identities and their
duals to rewrite the formula, always replacing the left-hand side by the right-hand side.

Efficient Biichi Automata from LTL Formulae 251

p<Y=>(pAY)=¢p GFoVGFy=GF(pV)
p<9Y=(pAy)=F FXp=XFop

Xep) U (X¢) X(pU) p<¢Y=pU@Ur)=yUr
(e RY) A (p)E(pR(z/J/\r) GGFp=GFyp
(eRT)VWRr)=(pVY)RT FGFo=GFop
(Xp) A (Xep) =X (e AY) XGFp=GFy

XT=T F(e AGF¢) = (Fo) A (GF)
pUF=F G(pVGFyY)=(Gy)V (GF)
p<y=(pUy) =9 X(@eNGFy) = (Xp) A (GFY)
P <p=(pUy)=(TUY) X(pVGFy)=(Xp) Vv (GFy)

The rewriting rules have been chosen to eliminate redundancies and to reduce the size
of the resulting automaton. Checking for ¢ <) is hard in general. Hence, we just look
for simple cases that can be detected by purely syntactic means. We use the following
set of rules and their duals.

p< x<¢=x<(pUv)
p<T (<X)ANW<xX)=(pUy) <x
(<PYIA(p<x) =< (W AX) (P<xX)N(@W<s)=(pUy) < (xUs)

(<x)VW<x)=> (@eAY) <x.

The first two rules are the terminal cases of a recursive procedure in which one applies
the remaining ones to decompose the problem.

Example 1. The rewriting rules transform the formula (Xp U X¢q) V =X (p U ¢) into
T. The automaton produced by our algorithm when rewriting is disabled is shown in
Figure[Il The optimal automaton obviously has only one state with a self-loop.

Fig. 1. Sub-optimal automaton for (X p U X ¢) V=X (p U ¢). Each node is annotated with its label,
(first line), and the fair sets to which it belongs (second line). In the label, an overline indicates
negation, and concatenation indicates conjunction.

4 Reducing the Number of States via Boolean Optimization

The LTL formula produced by rewriting is the input to the second phase of the procedure,
which produces a closed set of elementary covers and constructs the Biichi automaton
from it. We refer to the covers in this set as the elementary covers of the automaton. An

252 F. Somenzi and R. Bloem

LTL formula has infinitely many elementary covers; which one is chosen affects the size
of the resulting automaton by directly affecting what states are added to the automaton,
and by determining what covers will belong to the closed set.

By regarding each elementary formula as a literal, one can apply boolean opti-
mization techniques to minimize the cost of the elementary covers. (In this case, the
implication tests required to compute the fair sets must also be carried out with boolean
techniques.) However, the best result is not always obtained by computing a minimum
cost cover for each formula. The following example illustrates this case.

Example 2. Consider translating the LTL formula ¢ = F p A F —p into a Biichi automa-
ton. The algorithm of [S]] produces the automaton on the left of Figure 2] Applying the

Fig. 2. Biichi automata for F p A F —p: without (left) and with (right) boolean optimization.

tableau rules to ¢ yields (p AXF =p) V (=p AXF p)V (XF p AXF =p). The three terms
of this cover correspond to the three initial states of the left automaton of Figure 2l (n1,
ns, and ng3). The third term of the disjunctive normal form is the consensus of the first
two; hence, it can be dropped. As a result, State nl is removed. Applying the tableau
rules to Fp and F —p yields Fp = pV XFp and F —p = —p V XF —p, from which the
remaining five states of the automaton on the left of Figure R]are produced. Notice, ho-
wever, that the alternative expansion Fp = pV (—-pAXFp), F—p = —pV (p AXF —=p),
though it requires more literals, prevents the creation of States n4 and ns, leading to the
automaton on the right of Figure

We can formulate the choice of the optimum covers as a 0-1 ILP as follows. We define
one set of formulae & (1)), and a set of terms I"(¢)p) such that the automaton for ¢y will
be obtained from elementary covers for a subset of the formulae in & (), and will have
states corresponding to a subset of I'(¢)g). We then impose constraints that guarantee
that the automaton will recognize exactly the models of the LTL formula.

Definition 2. For an LTL formula o, let E(p) be the expansion of ¢ in terms of ele-
mentary subformulae. Let M (o) be the set of minterms of E(p), and P(y) be the
set of prime implicants of E(p). Finally, for vy a term of an elementary cover, let
N(v) = A{v : X4 is a literal of v} be its next part.

Efficient Biichi Automata from LTL Formulae 253

The sets P(1)y) and I'(1)g) are the smallest sets that satisfy the following constraints:

Yo € 2(¢o) W C P() = P(ANY) C I'(¢o) ,
v € I'(Yo) = N(v) € P(to) -

We associate 0-1 variables to the elements of ®(1)y) and I'(¢)g) as follows: y; = 1 if
and only if an elementary cover of v; is a cover of the automaton; x; = 1 if and only if
~; is a state of the automaton. We then search for min » _ z;, subject to:

oA NGy NV @Al < <) A N G Vyiwe)

P, €D ,LL]‘GIW(I,/H) Y€ vyi €l

where I(1);) = j. The intuition behind this formulation is that constructing the automa-
ton corresponds to finding DNF formulae for a set of boolean functions. (Each function
is an elementary cover for some LTL formula.) It is well known that the solution consists
of prime implicants of intersections of subsets of the functions in the set [15]]. A function
needs to be in the set if it is the expansion of the given LTL formula, or if it is the
expansion of the next part of a term in the elementary cover chosen for a function that
is in the set. This situation gives rise to closure constraints analogous to those found in
the minimization of incompletely specified finite state machines [[10]. Notice that we do
not guarantee the optimum Biichi automaton for the given LTL formula (cf. Example B
in Section[@)); rather, we guarantee that no closed set of elementary covers can be found
that has fewer terms, and such that each elementary cover can be generated from the
formula it covers by exclusive application of the tableau rules and the laws of boolean
algebra. Note that prior research on translation algorithms has focused on this class of
algorithms.

Example 3. Continuing Example[Z] let g = F p A F —p. We find:

Yo=FpAF-p = ~y=pAXF-p, 71 =-pAXFp, 7 =XFpAXF-p
Y1 =Fp = 13=p, 74 = XFp
Yo =F-p = Y5 =D, 76 = XF-p.

Since 19 = 11 A1), no further formulae and terms are generated by considering subsets
of ®(1)p). The minterms of the formulae in @(1)g) are:

M (tpo) = {p AXFp AXF—p,pA=XFpAXF-p,
—p AXFpAXF=p,—p AXFpA-=XF-p}

M) ={p AXFpAXF=p,p AXFpA—=XF=p,pA-XFpAXF-p,
pA=XFpA—=XF=p,=pAXFpAXF-p,-pAXFpA-=XF-p}

M(tp2) = {~p AXFpAXF=p,—pAXFpA-=XF-=p,—-pA-XFpAXF-p,
“pA-XFpA-XF-p,pAXFpAXF-p,pA=-XFpAXF-p} .

254 F. Somenzi and R. Bloem

The constraint is:

Yo A

[7yo V (zo Vz2) Axo A (1 V 22) Az1] A

[~y1 V (xoV z2 VasVaa) A(z3sVaa) A(zoVas) Azs A (z1Vae Ve A(z1 Vag)A
[~y2 V (z1Vx2 Vas Vas) A(z1Vas) A(xs Vag) Azs A (zo Vxe Vae) A (zo V ze)A
(m@o Vy2) A (@1 Vi) A (=22 Vo) A (-2 V) A (mae V y2)

which simplifies to yo Ay1 Ay2 Axg Az Azs Axs. The feasible assignment that minimizes
Zogigexi iSSyo=1y1 =yo =39 =1 = T3 = T5 = 1, 1o = 14 = 1 = 0. This
assignment corresponds to the solution found in Example 2| The fifth state of Figure
is required because N (p) = N(—p) = T.

Solving the 0-1 ILP exactly is expensive, and, as we just observed, only guarantees
optimality within a class of algorithms; therefore, we adopt a heuristic approach. In
choosing the elementary cover for a formula, we first obtain a prime and irredundant
cover from the one produced by the approach of [5]]. Then, we look for existing states
that imply the new terms. If we find a state that exactly matches a new term, we do not
need to create a new state for the latter. If we find an existing state that implies the new
term, we try to reduce [3] the new term to the existing one. That is, we check whether
the replacement of the new term by the existing one changes the function represented
by the cover. For instance, in Example 2] the initial cover for F p, p V XF p, is reduced
to p V (—p A XF p), because the second term already appears in the cover for ¢.

If, on the other hand, we find a term that is implied by the new term, we check whether
it can be reduced to the new term in all covers in which it already appears. We impose
the constraint that the reduction only add atomic propositions or their negations. This
constraint leaves the next part of the reduced term unchanged, and does not invalidate
the covers obtained up to that point.

5 Simplifying Biichi Automata Using Simulations

The Biichi automata produced by our translation algorithm are not necessarily optimal.
In this section we examine criteria that allow us to remove states from an automaton,
while retaining its language. The techniques presented in this section can be used to
simplify arbitrary Biichi automata. They do not always find the smallest possible Biichi
automaton. Rather, they minimize the number of states and transitions heuristically. We
deal with the simplification of the acceptance conditions in Section[Gl.

Our results derive from the notions of direct and reverse simulation. Direct simulation
relations for Biichi automata have been studied in [6]], and used in [[I] for state-space
minimization. Raimi [[17] uses both direct and reverse simulations to minimize the state
space, but does not take fairness into account.

In Subsection [5.3] we contrast simulation with language containment. Intuitively,
simulation takes care of correspondence of acceptance conditions, which is one of the
reasons why it is stronger than language containment. We show that this means that the
conditions under which we can use simulation to reduce the number of states are more
general than the conditions under which we can use language containment.

Efficient Biichi Automata from LTL Formulae 255

It is clear that we can remove all states that are not reachable from at least one initial
state. Such states are not produced by the translation procedure, but they do occur as a
result of other optimizations. It is equally obvious that we can remove any state ¢ with
L(q) =0 ord(q) =0.

Definition 3. A direct simulation relation over the states of a Biichi automaton A is any
relation <C Q) x Q that satisfies the following property:

L(p)CLg), FEF=[peF=qeF]

p-<qlmplles{seé(p)éﬂteé(q):sjt.

The largest direct simulation relation is denoted by <p. If both p <p q and ¢ <p p,
then p and q are direct-simulation equivalent (p ~p q).

A reverse simulation relation over the states of A is any relation <C Q x Q that
satisfies the following property:

o (L) S L), peEQu=qeQy, FEF=[peF=qcF]
p = q implies {5651(p)é3t€61(q):sjt.

The largest reverse simulation relation is denoted by <. If both p <r q and q <gr p,
then p and q are reverse-simulation equivalent (p ~p q).

The largest direct and reverse simulation relations can be found in polynomial time as
the greatest fixpoints of the recursive definitions. Our definition of direct simulation
corresponds to that of BSR-aa of [6]]. If p <p ¢ in A, then L(AP) C L(A%) [T6J6].

5.1 Direct Simulation

A simulation relation between two states may allow us to remove a transition without
disturbing the simulation relation.

Theorem 1. Let A be a Biichi automaton. For p,q € Q, p # q, assume that p <p q.

Let M =(Q, Qonm, 0m, F, D, L), where Qorr = Qo \ {p} if ¢ € Qo, and Qonr = Qo
otherwise, and §r is defined as follows:

Sa1(s) = {2@ \{p} ifq ()

(s) otherwise.

Then for all s,t € Q, s <p tin Aifand only if s <p t in M. Also, any state in A is
simulation-equivalent to the state of the same name in M.

Proof. (Sketch.) For the first statement, one can prove that the largest simulation relation
on A is a simulation relation on M, using Definition Bland transitivity of <p. In the
same manner, one can prove that the largest simulation relation on M is a simulation
relation on A. This proves that s <p t in A if and only if s <p ¢ in M. The second
statement can also be proved by direct application of Definition[3l O

256 F. Somenzi and R. Bloem

The following corollary holds because simulation implies language equivalence.
Corollary 1. Let A and M be as in Theorem[ll Then, L(A) = L(M).

Theorem [I obviously works in both directions. Hence, we can also add an arc from
rtopif ¢ € §(r) and p <p g. Repeated application of this transformation gives us
the following corollary, which implies that we can remove one of any two simulation-
equivalent states.

Corollary 2. Let A be a Biichi automaton. Let p,q € Q, p # q, and assume that
p=~p q. Let M = (Q,Qon, 00, F, D, L), where Qonr = (Qo \ {p}) U{q} ifp € Qo,
and Qopr = Qo otherwise, and dy; coincides with 8, except that, for all s, if p € 6(s),
O (s) = (8(s)\{p})U{q}. Then L(A) = L(M), and for all s,t € Q, we have s <p t
in Aifand only if s <p t in M.

5.2 Reverse Simulation

In this subsection, we present techniques similar to the one in the last subsection, but
pertaining to reverse similarity.

Theorem 2. Let A be a Biichi automaton. For p,q € Q, p # q, assume that p <g q.
Let M = (Q,Qo,0n,F, D, L), where §p; coincides with §, except that §p;(p) =
0(p)\0(q). Thenforall s,t € Q, s < tin Aifand only if s < t in M, and any state
in A is reverse-simulation equivalent to the state of the same name in M.

Corollary 3. Let A and M be as in Theorem[2 Then, L(A) = L(M).

Proof. (Sketch.) For any accepting run p of A, we can construct an accepting run p’
of M. We can do this because for every i, we can choose a state p} in M such that
pi =R P, i € Qo fori =0, and p} € 6(p;_,) fori > 0. O

In analogy to direct simulation, we only need to retain one state in every reverse-similarity
equivalence class.

Corollary 4. Let A be a Biichi automaton. Let p,q € Q, p # q, and assume that
p =g q Let M =(Q,Qu,dm, F, D, L), where dp1(p) = 0, 0r(q) = 6(p) Ud(q), and
O (s) = 0(s) for s ¢ {p,q}. Then L(A) = L(M), and for all s,t €0 we have s < t
in Aifanonly if s <g t in M.

5.3 Language Containment

In this section we consider the more general case of language containment, and contrast
it with simulation relations. The techniques in this section are not used in the algorithm,
since language inclusion can not be checked easily, and because the minimization re-
quires stricter conditions in the case of language containment. Indeed, we cannot simply
substitute L(AP) C L(A?) for p <p ¢ in Theorem/[I] as evidenced by the following
example.

Efficient Biichi Automata from LTL Formulae 257

Fig. 3. Automaton showing that L(AP) = L(.A?) is not sufficient to allow simplification.

Example 4. Consider the automaton of Figure Bl The languages L(.AP) and L(.A9) are
the same (they correspond to the formula G F a). State s is a common predecessor of p
and q. However, we cannot remove the arc from s to p without making the language of
the automaton empty. The problem is that the accepting runs starting at ¢ must use the
arc that we want to remove in order to reach the accepting state. Notice that ¢ does not
direct simulate p.

The next theorem is analogous to Corollary [l for direct simulation. It allows us
to remove an arc from a state r to a successor p if r has another successor ¢ with
L(AP) C L(A7). We impose a condition sufficient to guarantee that the L(.A9) is not
changed by removal of the arc.

Theorem 3. Let A be a Biichi automaton. For p,q € Q, p # q, assume that L(AP) C
L(AY). Let M = (Q, Qom,0m,F, D, L), where Qorr = Qo \ {p} if ¢ € Qo, and
Qom = Qo otherwise, and 6y coincides with 0, except that for all v € @ such that
q € 6(r) and r is not reachable from q, 6p1(r) = 6(r) \ {p}. Then L(A) = L(M).

By repeated application of Theorem[3] we can also prove that we can merge two language-
equivalent states p and ¢, as long as ¢ cannot reach any predecessors of p, in analogy to
Corollary[2.

6 Pruning the Fair Sets

The automata produced by the algorithm of Section@lhave as many accepting conditions
as there are until subformulae in the LTL formula. In this section we show how to shrink
some fair sets or drop them altogether. Simplifying the fair sets has several benefits. First
of all, it may lead to a reduction in strength of the resulting automaton. (For instance,
if the automaton is reduced to terminal, model checking requires a simple reachability
analysis.) Even if the strength of the automaton is not reduced, fewer, smaller fair sets
usually lead to faster convergence of the language emptiness check. Simplifying the
acceptance conditions may also enable further reductions in the number of states or
transitions. Finally, the resulting automaton is often easier to understand.

The pruning of the fair sets is based on the analysis of the strongly connected com-
ponents (SCCs) of the state graph.

Definition 4. An SCC of a Biichi automaton A is fair if it is non-trivial and it intersects
all fair sets. Let O 4 be the union of all fair SCCs of A; © 4 is called the final set of A.

258 F. Somenzi and R. Bloem

Every accepting run of an automaton is eventually contained in a fair SCC. Hence, states
not in @4 can be removed from the accepting sets. Furthermore, states with no paths
to @4 can be removed altogether: their language is empty. Fair sets that contain © 4, or
that include another fair set, can be dropped without changing the language accepted by
the automaton. It is not uncommon for one fair sets to become included in another once
a few states are dropped from it, as a consequence, for instance, of the application of the
following results.

When one fair set is contained in another we can remove states from the latter if they
do not appear in the former. We can extend this result by focusing on a single SCC.

Theorem 4. Let A = (Q, Qo,0,F, D, L) be a Biichi automaton and let v be an SCC
of A. Suppose that there exist F,F' € F such that FN~vy C F' ' N~v. Let M =
<Q7 Q07 67]:]\/17 D7 £>’ where

Fu = (FNAF}) U{Fy), with
Fy = F'\(y\ F).
Then L(A) = L(M).

The next theorem, which shows that a state can be removed from a fair set if there is
a suitable ‘detour’, will be followed by an example.

Theorem 5. Let A = (Q, Qo, 9, F, D, L) be a Biichi automaton. Let F be a fair set
in F, and p, q distinct states in F such that L(p) C L(q), 6(p) C 6(q), and §~1(p) C
57 1(q). Let M = (Q,Qo, 5, Fur, D, L), where Fpr = (F\ {F})U{F\ {p}}. Then
L(A) = L(M).

Example 5. Two automata for G (F p A F ¢) are shown in Figure[dl Theorem[3 applies to

Fig. 4. Biichi automata for G (F p A F ¢) illustrating the application of Theorem 5

State nq of the automaton on the left. After its removal from the two fair sets, State n,
can be merged with State 7,4. The resulting automaton is shown on the right of Figure[4]
It is worth pointing out that the automaton on the left is constructed from a minimum

Efficient Biichi Automata from LTL Formulae 259

cost elementary cover of G (Fp A Fg). Since there is no elementary cover with fewer
than four terms, there is no way to generate the three-state solution by direct application
of the translation algorithm of Section[d]

Definition 5. Let p <. q be like p < q, but without the condition on the fair sets.

Theorem 6. Let A = (Q,Qo,d,F, D, L) be a Biichi automaton. Let v C @ be an
SCC, and q € ~ a state. Suppose that for all p € v we have p =, ¢, §(p) C 6(q), and

q € 6(p). Let M = (Q, Qo,0ar, F, D, L) with dpr(s) = 5(s) \ (v \ {q}) for s € 7,
s # q, and dpr(s) = §(s) otherwise. Then, L(A) = L(M).

Proof. Clearly, L(A) 2 L(M). Let p be an accepting run for ¢ € D* in A. If p does
not go through +, it is also an accepting run for ¢ in M. If p enters and exits -, let (s, p)
be the last arc of p before it leaves «y. If s ¢ -, p does not use any arc internal to -.
Hence, it is also an accepting run for o in M. If s € v, s <, ¢. (This is not changed by
the removal of arcs internal to v.) Hence, there is a run p); in M that reaches ¢ when p
reaches s, goes to p (also a successor of ¢) next, and then continues identical to p.

If p dwells in v forever (inf(p) C «), v is a fair SCC (it intersects all fair sets).
For each F; € F, choose s; € (F; Ninf(p)). We can build a run pps such that every
occurrence of s; is followed by an occurrence of $(;11)mod|#|- This can be done by
going from s; to g, waiting in g until p g0es t0 S(;11)mod ||, and then going to that state.
We may “skip a beat” if $(;11)mod || follows immediately s; in p, but we shall just take
the next occurrence of 5(;41)mod|#|- Since p =, g forall p € v, L(p) € L(q); hence,
PN accepts o. O

Thanks to Theorem [6] we can remove the arcs out of States no and ns in the right
automaton of Figure[d] except those going to State ny4. It is also possible to remove 74
and ng from the set of initial states, though this is not covered by the theorem.

The next result is based on the observation that, in determining what states of an
SCC should belong to a fair set, we can ignore the arcs out of the SCC.

Theorem 7. Let A = (Q, Qo, 0, F, D, L) be a Biichi automaton. Let v be an SCC of A,
and p a state in 7y such that, when the arcs out of -y are removed, q € -y implies ¢ <p p
and q <, p. Let M = (Q, Qo, 0, Fr, D, L), where Fpy = {F \ {p}|F € F}. Then
L(A) = L(M).

If every cycle through a state p visits a fair set in some other state, we do not need
to include p in that fair set.

Theorem 8. Let A = (Q, Qo, 6, F, D, L) be a Biichi automaton. Let F € F, and p a
state in F' such that every cycle through p intersects F' in a state different from p. Let
M =(Q,Qo,9d, Fr, D, L), where Fpy = (F\F)U{F \ {p}}. Then L(A) = L(M).

After application of the results presented in this section, a Biichi automaton may still have
multiple fair sets. It is well-known that we can always reduce the number of acceptance
conditions to one by introducing a counter. This is not usually done because the algorithm
of Emerson and Lei [[/] deals with multiple acceptance conditions. However, for weak
and terminal automata, we do not need to resort to the counter to reduce the number of
fair sets to one.

260 F. Somenzi and R. Bloem

Definition 6. A Biichi automaton is weak if and only if for each SCC ~, either for each
fair set F, v C F, or there exists a fair set F' such that v N F' = (). A Biichi automaton
is terminal if and only if it is weak, there is no arc from a fair SCC to a non-fair SCC,
and for every state s in a fair SCC, | J{L(t) : t € §(s)} = D.

Theorem 9. Let A = (Q, Qo, 0, F, D, L) be a weak (generalized) Biichi automaton.
Let M = (Q,Qo,6, {04}, D, £). Then L(A) = L(M).

States that are not in @ 4 can be added to fair sets as long as © 4 is not changed by the
addition. In particular, states in trivial SCCs are “don’t care” states when it comes to
checking the conditions on JF in Definition[3l

The automaton simplification procedure prunes the fair sets a first time before ap-
plying simulation-based simplification, because smaller fair sets tend to produce larger
simulation relations. The simulation-based techniques may break up SCCs because they
remove arcs. Hence, pruning is performed a second time after they are applied. This can
be iterated until a fixpoint is reached, but the benefits are minor and the extra CPU time
comparatively large.

7 Experimental Results

In this section we report the results obtained with a translator from LTL to Biichi automata
named Wring and based on the results discussed thus far. Wring is written in Perl. Based
on our experience, we estimate that speed could be increased by at least an order of
magnitude by coding the algorithms in C. However, CPU times are modest, and even a
relatively slow implementation is more than adequate.

Table[d] shows a comparison to the algorithms analyzed in [5] on common formu-
lae and formulae found in the literature. It should be noted that the outcomes of the
translation algorithms depend on the order in which sub-formulae are examined. Hence,
different implementations may produce different results. Rewriting of the formula (see
Section[3)) is most effective in detecting tautologies and contradictions. The transforma-
tions discussed in Section[flare quite effective in reducing the number of fair sets.

Table[2] shows results for randomly generated formulae [3]], showing the effects of
each of the three major extensions that we propose. It should be noted that working on
simpler formulae and smaller automata offsets most of the additional cost of minimiza-
tion. One can see from Table[2 that the reduction in transitions and fair sets corresponds
to an increase in the number of terminal automata. Though we do not present a detailed
analysis of the dependence of the results on the statistics of the formulae (number of
nodes, number of atomic propositions, and percentage of temporal operators), we have
observed the same trends reported in [S].

8 Conclusions and Future Work

We have presented a heuristic algorithm for the generation of small Biichi automata from
LTL formulae. It works in three stages: rewriting of the formula, boolean optimization

Efficient Biichi Automata from LTL Formulae 261

Table 1. Comparison to our implementation of the algorithms analyzed in [5)]. For each formula
and each method, the numbers of states, transitions, and accepting conditions are given. The letters
in the accepting sets columns indicate whether the automata are strong (s), weak (w), or terminal

(0.

GPVW GPVW+ LTL2AUT Wring
Formula St. |tran. |acc.| st. |tran. |acc.| st. |tran.|acc.| st. |tran.|acc.
pUgq 304 |1t |3 4 [1t|3] 4 |[1t]|3 | 4|1t
pU(gUr) 6|10 |2t 6|10 [2t| 4 | 7 |2t 4] 7 |1t
=(pU(qUr)) 7115 |0w| 7| 15 |0w| 7 |15 |0w| 6 | 10 |Ow
GFp— GFgq 9 (15 |2s|5| 8 |2s|5 |11 |2s| 4| 7 |1s
FpUGgq 815 (2w | 8 | 15 (2w| 6 | 17 |2w| 3 | 4 |1w
GpUgq 5016 |[lw|5| 6 |[Iw|5] 6 |[Iw|5]| 6 |1w
—(FFp+ Fp) 12 16 | 2t | 1 1 |2t]1 1 |2t] 0] 0 |Ot
-(GFp— GFgq) 10[28 |2s| 6|16 |2s| 6|24 (28| 3| 6 |Is
—-(GFp <+ GFgq) 20| 56 | 4s [12| 32 [4s| 12| 48 |4s| 5| 11 | 1s
pR(pVaq) 5|11 |0Ow| 5|11 |[OwW| 4| 8 |Ow| 3 | 4 |Ow
X(p)UX(q))vV—-X(pUygq) O 13 (1w 9| 13 |Iw| 9 | 13 |1lw| 1 | I |Ot
X(P)Uq)V-X(pU(pAg) [10]21 [1w|10] 21 [1w| 9 | 17 [1w| 7| 12 |1w
G(p— Fg)A
(X(p)Uq)V-X(@U(PAQ))) [29]149|2s [23|118|2s |17 | 56 |2s |10 |23 | Is
G(p— Fgn
(X(p)UX(q))V-X(pUgq) |26]93 |2s]24]78 |2s]20] 51 25|38 |1s
G(p—Fq) S| 17 |1s| 5|17 |1s| 3| 8 |Is| 3| 8 |1s
-G(p = X(qR7)) 51 8 |2w| 5| 8 [2w| 5| 8 [2w| 5| 8 | It
-(GFpVFGg) 1028 [2s| 6| 16 [2s| 6|24 |2s| 3| 6 | 1s
G(FpAFq) 4116 |2s| 4|16 |2s| 840|253]| 9 |2s
FpAF—p 11|21 |2t 8|14 |2t 8|14 |2t|5]| 7 |1t
(X(q) Ar)R
X(((sUp)Rr)U (sRr)) 130{1013| 2s |78 | 483 | 2s | 64 |378 | 2s | 8 | 13 |1w
(G(gVGFp)AG(rvVGF-p))
VGqVGr 33132025 (23234 |2s | 14| 71 |2s| 4| 6 |2s
(G(gVFGp)AG(rVFG—p))
VGqVGr 51(368 (2w |29 (170 (2w |10| 29 [2w| 2 | 2 |Ow
—~((G(gV GFp)AG(rV GF-p))
VGqVGr) 132|428 | 6w [106| 310 | 6w | 64 [230 |[6wW | 11| 26 | 1w
~((G(¢VFGp)AG(rVFG-p))
VGqV Gr) 114478 | 6s |78 | 288 | 6s | 66| 289 | 6s |21 | 32 | 1s
G(gVXGp)AG(rvXG-p) 16| 40 |Ow| 12| 28 |Ow| 10| 20 |[Ow| 5 | 7 |Ow
G(gV XpAX-p)) 202 fow| 1| 1 [Ow| 1| 1 |OwW|1]| 1 |Ow
(pUp)V(qgUp) 9113 (25| 7 [2t|5| 7 |2t|3|3 |1t
Total 6813204 51 |484(1940| 51 |372{1397| 51 122|231 | 22

262 F. Somenzi and R. Bloem

Table 2. Results for 1000 random formulae with parse graphs of 15 nodes, using 3 atomic pro-
positions, and uniform distribution of the operators (V, A, X, U, R) for the internal nodes.
In the designation of the method, ‘r’ stands for rewriting, ‘b’ stands for boolean optimization,
and ‘s’ stands for automaton simplification. Method Wring is equivalent to LTL2AUT+rbs. The
experiments were run on an IBM Intellistation with a 400 MHz Pentium II CPU.

Method states|transitions|fair sets|initial states|weak|terminal|{CPU time (s)
GPVW 34216 137565| 1555 4388| 743 87 1195.0
GPVW+ 29231| 114146, 1555 4246| 745 95 1016.1
LTL2AUT 19424 62370 1555 3803| 718 136 640.5
LTL2AUT+r | 9430 25722 747 2117] 511 374 209.7
LTL2AUT+b [13213 29573| 1555 3161| 738 162 1047.4
LTL2AUT+s | 6063 11300 637 1628| 362 552 1229.8
LTL2AUT+rb| 7632 16124 747 1998| 532 385 439.9
LTL2AUT+rs | 5800 10624 491 1569| 382 531 527.6
LTL2AUT+bs| 5834 10525 620 1553| 354 568 1292.2
Wring 5648 10053 492 1535| 390 537 631.4

to reduce the number of states in the translation procedure, and simplification of the
automaton. Rewriting is a cheap, simple, and effective technique to shrink the formula
and reduce redundancy. The boolean optimization technique that we have presented
yields the smallest translation of any procedure in its class. We do not know of any
translation procedures that do not fall within this class, its most important characteristic
being the use of the given expansion functions. Since the optimal algorithm is expensive,
we have implemented a heuristic approximation. Finally, the simplification step uses
direct and reverse simulation to minimize the number of states and transitions in the
formula, and it prunes the acceptance conditions to make the emptiness check easier.

We have shown that our algorithm outperforms previously published algorithms on
both random formulae, and formulae in common use and from the literature.

We are investigating weaker relations that allow for state minimization, and can
still be computed efficiently. In particular, we are working on combinations of direct
and reverse simulation, and simulation with less strict conditions on the acceptance
conditions such as BSR-Ic of [6]. Another area of investigation is the use of semantic
information about the literals in the simplification of elementary covers. For symbolic
model checking, the automata must be given binary encodings. A careful choice of the
state encodings and the use of don’t care conditions derived from simulation relations and
from the analysis of the SCCs of the graph should help reduce the cost of the language
emptiness check.

Acknowledgment

The authors thank Kavita Ravi for stimulating discussions on language containment and
for her many comments on various drafts of this manuscript.

Efficient Biichi Automata from LTL Formulae 263

References

(1]

(2]

(3]

(4]
(5]

[6

—_

(7]

[8

—_—

[9

[

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

A. Aziz, V. Singhal, G. M. Swamy, and R. K. Brayton. Minimizing interacting finite state
machines. In Proceedings of the International Conference on Computer Design, pages
255-261, Cambridge, MA, October 1994.

R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking of
linear time logic properties. In N. Halbwachs and D. Peled, editors, Eleventh Conference
on Computer Aided Verification (CAV’99), pages 222-235. Springer-Verlag, Berlin, 1999.
LNCS 1633.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, Mas-
sachusetts, 1984.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98:142-170, 1992.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for linear time
temporal logic. In N. Halbwachs and D. Peled, editors, Eleventh Conference on Computer
Aided Verification (CAV’99), pages 249-260. Springer-Verlag, Berlin, 1999. LNCS 1633.
D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion using simula-
tion relations. In K. G. Larsen and A. Skou, editors, Third Workshop on Computer Aided
Verification (CAV’91), pages 255-265. Springer, Berlin, July 1991. LNCS 575.

E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proceedings of the First Annual Symposium of Logic in Computer Science,
pages 267-278, June 1986.

K. Etessami and G. Holzmann. Optimizing Biichi automata. Submitted for publication,
2000.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In Protocol Specification, Testing, and Verification, pages 3—18.
Chapman & Hall, 1995.

A. Grasselli and F. Luccio. A method for minimizing the number of internal states in
incompletely specified sequential networks. IEEE Transactions on Electronic Computers,
EC-14(3):350-359, June 1965.

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. Checking that finite-state concurrent
programs satisfy their linear specification. In Proceedings of the 11th ACM Symposium on
Principles of Programming Languages, pages 97-107, 1984.

Y. Kesten, A. Pnueli, and L.-o. Raviv. Algorithmic verification of linear temporal logic
specifications. In International Colloquium on Automata, Languages, and Programming
(ICALP-98), pages 1-16, Berlin, 1998. Springer. LNCS 1443.

O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From linear-time to
branching-time. In Proc. 13th IEEE Symposium on Logic in Computer Science, June 1998.
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proceedings of the Twelfth Annual ACM Symposium on Principles
of Programming Languages, New Orleans, January 1985.

E. J. McCluskey, Jr. Minimization of boolean functions. Bell Syst. Technical Journal,
35:1417-1444, November 1956.

R. Milner. An algebraic definition of simulation between programs. Proc. 2nd Int. Joint
Conf. on Artificial Intelligence, pages 481-489, 1971.

R. S. Raimi. Environment Modeling and Efficient State Reachability Checking. PhD thesis,
University of Texas at Austin, 1999.

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation paths. In
Proceedings of the 24th IEEE Symposyium on Foundations of Computer Science, pages
185-194, 1983.

	Introduction
	Preliminaries
	Rewriting the Formula
	Reducing the Number of States via Boolean Optimization
	Simplifying Büchi Automata Using Simulations
	Direct Simulation
	Reverse Simulation
	Language Containment

	Pruning the Fair Sets
	Experimental Results
	Conclusions and Future Work

