
Formal Verification of VLIW Microprocessors
with Speculative Execution1

Abstract. This is a study of the formal verification of a VLIW microprocessor that
imitates the Intel Itanium [9][12][17] in features such as predicated execution, regis-
ter remapping, advanced and speculative loads, and branch prediction. The formal
verification is done with the Burch and Dill flushing technique [5] by exploiting the
properties of Positive Equality [3][4]. The contributions include an extensive use of
conservative approximations in abstracting portions of the processor and a frame-
work for decomposition of the Boolean evaluation of the correctness formula. The
conservative approximations are applied automatically when abstracting a memory
whose forwarding logic is not affected by stalling conditions that preserve the cor-
rectness of the memory semantics for the same memory. These techniques allow a
reduction of more than a factor of 4 in the CPU time for the formal verification of the
most complex processor model examined relative to the monolithic evaluation of the
correctness formula for a version of the same processor where conservative approxi-
mations are not applied.

1 Introduction
VLIW architectures have been adopted recently by microprocessor design companies
in an effort to increase the instruction parallelism and achieve higher instructions-per-
cycle counts. The goal of this work is to make the Burch and Dill flushing technique
[5] scale efficiently and with a high degree of automation for the formal verification of
VLIW processors with speculative execution. The speculative features considered
include predicated execution, register remapping, advanced and speculative loads, and
branch prediction—all of them found in the Intel Itanium [9][12][17], to be fabricated
in the summer of 2000.

The focus of this work is on efficient and automatic scaling that is clearly impos-
sible with theorem-proving approaches, as demonstrated by Sawada and Hunt [16] and
Hosabettu et al. [11]. The former approach was applied to a superscalar processor and
required the proofs of around 4,000 lemmas that could be defined only after months, if
not a year, of manual work by an expert. The latter work examined the formal verifica-
tion of a single-issue pipelined and a dual-issue superscalar processors, each of which
was formally verified after a month of manual work, with the complexity of the man-
ual intervention increasing with the complexity of the verified design. Clearly, meth-
ods that require months of manual work in order to detect a bug will be impractical for
the formal verification of wide VLIW designs with many parallel pipelines and specu-

Miroslav N. Velev

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

1. This research was supported by the SRC under contract 99-DC-684

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 296−311, 2000.
 Springer−Verlag Berlin Heidelberg 2000

lative features that will be fine-tuned constantly during aggressive time-to-market
design cycles.

The most complex VLIW processor examined in this paper has 9 parallel execu-
tion pipelines, all the speculative features listed above, including branch prediction and
multicycle functional units of arbitrary latency. Its exhaustive binary simulation would
require more than 2609 sequences of 5 VLIW instructions each. However, the proposed
techniques allow that processor to be formally verified in less than 8 hours of CPU
time on a 336 MHz SUN4.

2 Background
In this work, the logic of Equality with Uninterpreted Functions and Memories
(EUFM) [5] is used in order to define abstract models for both the implementation and
the specification processors. The syntax of EUFM includes terms and formulas. A
term can be an Uninterpreted Function (UF) applied on a list of argument terms, a
domain variable, or an ITE operator selecting between two argument terms based on a
controlling formula, such that ITE(formula, term1, term2) will evaluate to term1 when
formula = true and to term2 when formula = false. A formula can be an Uninterpreted
Predicate (UP) applied on a list of argument terms, a propositional variable, an ITE
operator selecting between two argument formulas based on a controlling formula, or
an equation (equality comparison) of two terms. Formulas can be negated and con-
nected by Boolean connectives. The syntax for terms can be extended to model memo-
ries by means of the functions read and write, where read takes 2 argument terms
serving as memory and address, respectively, while write takes 3 argument terms serv-
ing as memory, address, and data. Both functions return a term. Also, they can be
viewed as a special class of (partially interpreted) uninterpreted functions in that they
are defined to satisfy the forwarding property of the memory semantics, namely that
read(write(mem, aw, d), ar) = ITE(ar = aw, d, read(mem, ar)), in addition to the prop-
erty of functional consistency. Versions of read and write that extend the syntax for
formulas can be defined similarly, such that the version of read will return a formula
and the version of write will take a formula as its third argument. Both terms and for-
mulas are called expressions.

UFs and UPs are used to abstract away the implementation details of functional
units by replacing them with “black boxes” that satisfy no particular properties other
than that of functional consistency—the same combinations of values to the inputs of
the UF (or UP) produce the same output value. Three possible ways to impose the
property of functional consistency of UFs and UPs are Ackermann constraints [1],
nested ITEs [3][4][19], and “pushing-to-the-leaves” [19].

The correctness criterion is based on the flushing technique [5] and is expressed
by an EUFM formula of the form

m1,0 ∧ m2,0 ... ∧ mn,0 ∨ m1,1 ∧ m2,1 ... ∧ mn,1 ∨ ... ∨ m1,k ∧ m2,k ... ∧ mn,k , (1)

where n is the number of user-visible state elements in the implementation processor, k
is the maximum number of instructions that the processor can fetch in a clock cycle,
and mi,j, 1 ≤ i ≤ n, 0 ≤ j ≤ k, is an EUFM formula expressing the condition that user-
visible state element i is updated by the first j instructions from the ones fetched in a

297Formal Verification of VLIW Microprocessors with Speculative Execution

single clock cycle. (See the electronic version of [19] for a detailed discussion.) The
EUFM formulas m1,j, m2,j, ..., mn,j, 0 ≤ j ≤ k, are conjuncted in order to ensure that the
user-visible state elements are updated in “sync” by the same number of instructions.
The correctness criterion expresses a safety property that the processor completes
between 0 and k of the newly fetched k instructions.

In our previous work [19] we developed a completely automatic tool that exploits
the properties of Positive Equality [3][4], the eij encoding [8], and a number of conser-
vative approximations in order to translate the correctness EUFM formula (1) to a
propositional formula. The implementation processor is verified, i.e., is correct, if the
propositional formula obtained from (1) after replacing each mi,j with its correspond-
ing propositional formula fi,j, obtained after the translation, evaluates to true. This
evaluation can be done with either BDDs [2] or SAT-checkers. Our previous research
[19] showed that BDDs are unmatched by SAT-checkers in the verification of correct
processors. However, we found that SAT-checkers can very quickly generate counter-
examples for buggy designs.

Positive Equality allows the identification of two types of terms in the structure of
an EUFM formula—those which appear only in positive equations and are called
p-terms, and those which can appear in both positive and negative equations and are
called g-terms (for general terms). A positive equation is never negated (or appears
under an even number of negations) and is not part of the controlling formula for an
ITE operator. A negative equation appears under an odd number of negations or as part
of the controlling formula for an ITE operator. The computational efficiency from
exploiting Positive Equality is due to a theorem which states that the truth of an EUFM
formula under a maximally diverse interpretation of the p-terms implies the truth of the
formula under any interpretation. The classification of p-terms vs. g-terms is done
before UFs and UPs are eliminated by nested ITEs, such that if an UF is classified as a
p-term (g-term), the new domain variables generated for its elimination are also con-
sidered to be p-terms (g-terms). After the UFs and the UPs are eliminated, a maximally
diverse interpretation is one where: the equality comparison of two syntactically iden-
tical (i.e., exactly the same) domain variables evaluates to true; the equality compari-
son of a p-term domain variable with a syntactically distinct domain variable evaluates
to false; and the equality comparison of a g-term domain variable with a syntactically
distinct g-term domain variable could evaluate to either true or false and can be
encoded with a dedicated Boolean variable—an eij variable [8].

In order to fully exploit the benefits of Positive Equality, the designer of an
abstract processor model must use a set of suitable abstractions and conservative
approximations. For example, an equality comparison of two data operands, as used to
determine the condition to take a branch-on-equal instruction, must be abstracted with
an UP in both the implementation and the specification, so that the data operand terms
will not appear in negated equations but only as arguments to UPs and UFs and hence
will be classified as p-terms. Similarly, a Finite State Machine (FSM) model of a mem-
ory has to be employed for abstracting the Data Memory in order for the addresses,
which are produced by the ALU and also serve as data operands, to be classified as p-
terms. In the FSM abstraction of a memory, the present memory state is a term that is
stored in a latch. Reads are modeled with an UF fr that depends on the present memory

298 M.N. Velev

state and the address, while producing a term for the read data. Writes are modeled
with an UF fu that depends on the present memory state, the address, and a data term,
producing a term for the new memory state, which is to be stored in the latch. The
result is that data values produced by the Register File, the ALU, and the Data Memory
can be classified as p-terms, while only the register identifiers, whose equations con-
trol forwarding and stalling conditions that can be negated, are classified as g-terms.

We will refer to a transformation on the implementation and specification proces-
sors as a conservative approximation if it omits some properties, making the new pro-
cessor models more general than the original ones. Note that the same transformation
is applied to both the implementation and the specification processors. However, if the
more general model of the implementation is verified against the more general model
of the specification, so would be the detailed implementation against the detailed spec-
ification, whose additional properties were not necessary for the verification.

Proposition 1. The FSM model of a memory is a conservative approximation of a
memory.

Proof. If a processor is verified with the FSM model of a memory where the update
function fu and the read function fr are completely arbitrary uninterpreted functions
that do not satisfy the forwarding property of the memory semantics, then the
processor will be verified for any implementation of fu and fr, including fu ≡ write
and fr ≡ read. ❏

3 VLIW Architecture Verified
The goal of this paper is to formally verify the VLIW processor shown in Fig. 1. On
every clock cycle, the Fetch Engine produces a packet of 9 instructions that are already
matched with one of 9 functional units: 4 integer (Int FU), 2 floating-point (FP FU),
and 3 branch-address (BA FU). There are no data dependencies among the instructions
in a packet, as guaranteed by the compiler. Any number of instructions in a packet can
be valid, i.e., can have the potential to modify user-visible state. Data values are stored
in 4 register files—Integer (Int), Floating-Point (FP), Branch-Address (BA), and Pred-
icate (Pred). A location in the Predicate Register File contains a single bit of data.
Every instruction is predicated with a qualifying predicate register, such that the result
of the instruction is written to user-visible state only if the qualifying predicate register
has a value of 1. The predication is done at compile time.

A Current Frame Marker register (CFM) is used to remap the register identifiers
for accessing the Integer, Floating-Point, and Predicate Register Files. The CFM can
be modified by every instruction in a packet. Two of the Integer Functional Units can
generate addresses for accessing the Data Memory that is used for storing both integer
and floating-point values. An Advanced Load Address Table (ALAT) is used as hard-
ware support for advanced and speculative loads—a compile-time speculation. Every
data address accessed by an advanced/speculative load is stored in the ALAT and is
evicted from there by subsequent store instructions overwriting the same address. Spe-
cial instructions check if an address, that was accessed by an advanced/speculative
load, is still in the ALAT. If not, these instructions perform a branch to code where the
load will be repeated non-speculatively together with any computations that have been

299Formal Verification of VLIW Microprocessors with Speculative Execution

performed on the incorrect speculative data. Both the CFM and the ALAT are user-vis-
ible state elements. A Branch Predictor supplies the Fetch Engine with one prediction
on every clock cycle.

Fig. 1. Block diagram of the VLIW architecture that is formally verified.

The Predicate Register File can be updated with predicate values computed by
each of the 4 integer and 2 floating-point functional units. A predicate result depends
on the instruction Opcode, the integer or floating-point data operands, respectively, and
the value of a source predicate register. The Predicate Register File contents can be
overwritten entirely or partially with the value of a data operand, as determined by an
instruction Opcode for those 6 functional units. Note that each predicate value consists
of a single bit, so that the contents of the Predicate Register File is the concatenation of
these bits for all predicate register identifiers. The Predicate Register File contents can
be moved to a destination integer register by each of the 4 integer functional units.

Integer values from the Integer Register File can be converted to floating-point
values and written to a destination in the Floating-Point Register File by each of the
two floating-point functional units. These functional units can similarly convert a float-
ing-point value to an integer one, which gets written to a destination in the Integer
Register File. The floating-point functional units also perform floating-point computa-
tions on 2 floating-point operands. The 2 floating-point ALUs, the Instruction Mem-
ory, and the Data Memory can each have a multicycle and possibly data-dependent
latency for producing a result.

The value of a register in the Branch-Address Register File can be transferred to a
destination in the Integer Register File by each of the 4 integer functional units. Fur-

Fetch
Engine

Branch
Predictor Instr1

Instr2

Instr3

Instr4

Instr5

Instr6

Instr7

Instr8

Instr9

Int
RegFile

FP
RegFile

BA
RegFile

Pred
RegFile

BA FU3

Data
Memory

CFM

ALAT

Instruction Fetch;
Branch Predict

Register Files
Access;
Register Remap;
CFM Update

Execute Data Memory;
ALAT Access;
Correct Branch
Mispredictions

Write
Back

BA FU1

BA FU2

FP FU1

FP FU2

Int FU3

Int FU4

Int FU1

Int FU2

300 M.N. Velev

thermore, the integer functional units can perform computations for which one of the
operands is supplied by the Branch-Address Register File, the other by the Integer
Register File, with the result being written to a destination in the Branch-Address Reg-
ister File. The values in that register file are used by the 3 branch-address functional
units for computing of branch target addresses, which also depend on the PC of the
VLIW instruction packet and the instruction Opcode for the corresponding functional
unit. A branch is taken if its qualifying predicate evaluates to 1.

The VLIW processor that is formally verified has 5 pipeline stages (see Fig. 1):
Fetch, Register-Files-Access, Execution, Data-Memory-Access, and Write-Back. The
Fetch Engine is implemented as a Program Counter (PC) that accesses a read-only
Instruction Memory in order to produce a VLIW packet of 9 instructions. Forwarding
is employed in the Execution stage in order to avoid read-after-write hazards for data
values read from each of the 4 register files by supplying the latest data to be written to
the corresponding source register by the instructions in the Data-Memory-Access and
Write-Back stages. However, forwarding is not possible for integer and floating-point
values loaded from the Data Memory and used by an instruction in the next packet. In
such cases, the hazards are avoided by stalling the entire packet of the dependent
instruction(s) in the Register-Files-Access stage and inserting a bubble packet in the
Execution stage. Testing a qualifying predicate register for being 1 is done in the Exe-
cution stage after forwarding the most recent update for that predicate register.

The updates of the CFM are done speculatively in the Register-Files-Access stage
in order not to delay the execution of the instructions in subsequent packets. However,
the original value of the CFM is carried down the pipeline together with the packet that
modified it. Should that packet be squashed in a later pipeline stage, then its modifica-
tion of the CFM should not have been done and the original CFM value is restored.

Accounting for all control bits that affect the updating of user-visible state and for
all possible forwarding and stalling conditions, an exhaustive binary simulation need
consider 2609 sequences of 5 VLIW instruction packets each, based on the Burch and
Dill flushing technique. This number increases significantly when also considering
possible mispredictions or correct predictions of branches, and single-/multi- cycle
latencies of the multicycle functional units and memories.

4 Discussion
The above VLIW architecture imitates the Intel Itanium [9][17] in that it has the same
numbers and types of execution pipelines, as well as features such as predicated execu-
tion, register remapping, advanced and speculative loads, and branch prediction. A fur-
ther similarity is that the Instruction Memory, the two Floating-Point ALUs, and the
Data Memory can each take single or multiple cycles in order to produce their results.
The processor also has the same register files as the Itanium, as well as the same capa-
bilities to move data between them. However, two differences should be mentioned.

First, the Register-Files-Access stage is distributed across 3 pipeline stages in the
Intel Itanium [9]. While these 3 stages are very simple, their modeling as separate
stages resulted in an order of magnitude increase in the CPU time for the formal verifi-
cation. This was due to an increase in the number of eij Boolean variables encoding
equalities (see Sect. 2) between the then much larger numbers of source and destina-

301Formal Verification of VLIW Microprocessors with Speculative Execution

tion register identifiers for accessing the Integer and Floating-Point Register Files.
However, the single Register-Files-Access stage can be viewed as an unpipelined
implementation of these 3 stages in the Itanium. It will be the focus of our future
research to prove the correctness of a superpipelining transformation that splits that
single stage into 3 stages. Alternatively, one can prove the correctness of unpipelining
the 3 stages into a single stage. Unpipelining has been previously used for merging
stages in a pipelined processor [13] in order to reduce the formal verification complex-
ity, although that was possible only after extensive manual intervention for defining
induction hypotheses correlating the signals in the two design versions.

Second, the Itanium Fetch Engine also occupies 3 pipeline stages, the last of
which dispatches instructions to the 9 functional units. However, the Fetch stage of the
architecture in Fig. 1 can be viewed as an abstraction of a 3-stage Fetch Engine in that
it has the same communication mechanism with the Execution Engine (the last 4
stages in Fig. 1) as the Fetch Engine in the Itanium. Namely, the Fetch stage will pro-
vide the Execution Engine with the same group of inputs on the next clock cycle if it is
stalled by the Execution Engine in the present clock cycle. The refinement of the single
Fetch stage into a detailed model of the Itanium Fetch Engine will be the focus of our
future research.

On the other hand, the VLIW architecture verified is comparable to, if not more
complex than, the StarCore [10] by Motorola and Lucent. The StarCore is a VLIW
processor that also has a 5-stage pipeline, consisting of exactly the same stages. It sup-
ports predicated execution. However, it has 6 instructions per VLIW packet, does not
implement register remapping, does not support floating-point computations (so that it
does not have a Floating-Point Register File), does not execute advanced and specula-
tive loads, and does not have branch prediction.

5 Exploiting Conservative Approximations
The CFM and the ALAT were abstracted with finite state machines (FSMs), similar to
the Data Memory (see Sect. 2). In the case of the CFM, shown in Fig. 2, the first
instruction in a packet modifies the present state via an UF that depends on the CFM
present state and the Opcode of the instruction. Each subsequent instruction similarly
modifies the latest CFM state obtained after the updates by the preceding instructions
in the packet. The final modified CFM state is written to the CFM latch only if the
instruction packet is valid. In the case of the ALAT, each valid load or store instruction
modifies the present state. The modification is done by an UF that depends on the
present state of the ALAT, the instruction Opcode, and the address for the Data Mem-
ory access. In this way, an arbitrary update is modeled, including the actual update that
takes place only if the Opcode designates an advanced/speculative load or a store
instruction. The special check instructions, that check whether the address of an
advanced/speculative load has been evicted from the ALAT, are modeled with an UP
that depends on the present ALAT state, the instruction Opcode, and the checked
address. That UP produces a Boolean signal indicating whether to take a branch to an
address provided in the instruction encoding in order to redo the speculative computa-
tions done with possibly incorrect data. Because the UFs used in the abstraction of the
CFM and the ALAT do not model any actual properties of these units, the FSM models

302 M.N. Velev

of the CFM and the ALAT are conservative approximations (see Proposition 1). Note
that the ALAT is part of the user-visible state and is used in the non-pipelined specifi-
cation as it provides support for static compile-time speculation—advanced and specu-
lative loads—as opposed to dynamic run-time speculation that is done only in the
implementation processor.

Fig. 2. Abstraction of the CFM. Uninterpreted functions fremap11, ..., fremap1N abstract the func-
tional units that remap register ids provided in an instruction encoding into new register ids to be
used for accessing a register file. The updates of the CFM are abstracted with UF fcfm. The orig-
inal value CFM0 is restored if the packet is squashed in a later stage. The remapping and updat-
ing UFs are shown for only one instruction. Register remapping is a compile-time optimization.

The Predicate Register File was also abstracted with an FSM, as shown in Fig. 3.
The latest updated state of the entire Predicate Register File is available in the Execu-
tion stage, because the VLIW architecture is defined to be able to transfer the entire
contents of the Predicate Register File to a destination in the Integer Register File.

Fig. 3. Abstraction of the Predicate Register File (PRF). Uninterpreted function fprf abstracts
the updating of the PRF in both the FSM model of this register file and its forwarding logic.
Each predicate result in flight gets reflected on the latest PRF state by one application of fprf.
Uninterpreted predicates pvalid1, ..., pvalid9 abstract the testing of a qualifying predicate register
for being 1.

0
1

fremap11RegID11

CFM0

. . .
fremap1NRegID1N

. . .

fcfmOpcode1

Int
RegFile

FP
RegFile

Pred
RegFile

squashValidPacket

fprf

FSM Abstraction
of PRF

fprf fprf

pvalid1

pvalid9

QualPredReg1

QualPredReg9

.

PredDestReg

Execution Stage

PredResult

303Formal Verification of VLIW Microprocessors with Speculative Execution

Each level of forwarding logic for the Predicate Register File is abstracted with an
application of the same UF that is used to update the state of that register file in its
FSM abstraction. The value of a qualifying predicate register identifier is tested for
being true/false by means of an UP that depends on the latest Predicate Register File
state and the qualifying predicate register identifier. Thus, an arbitrary predicate is
modeled, including the actual multiplexor selecting the predicate bit at the location
specified by the qualifying predicate register identifier. The instruction Opcode is
included as an extra input to that UP in order to achieve partial functional non-consis-
tency [18] of the UP across different instructions. Including extra inputs is a conserva-
tive approximation, because if the processor is verified with the more general UP (UF),
it would be correct for any implementation of that UP (UF), including the original one
where the output does not depend on the extra inputs.

The Branch-Address Register File was abstracted automatically. Originally, it was
implemented as a regular memory in the Register-Files-Access stage with regular for-
warding logic in the Execution stage. Then, the following transformations were
applied automatically by the evaluation tool on the EUFM correctness formula, start-
ing from the leaves of the formula:

read(m, a) → fr(m, a) (2)

write(m, a, d) → fu(m, a, d) (3)

ITE(e ∧ (ar = aw), d, fr(m, ar)) → fr(ITE(e, fu(m, aw, d), m), ar) (4)

Transformations (2) and (3) are the same as those used in the abstraction of the Data
Memory, described in Sect. 2. Transformation (4) occurs in the cases when one level of
forwarding logic is used to update the data read from address ar of the previous state m
for the memory, where function read is already abstracted with UF fr. Accounting for
the forwarding property of the memory semantics that was satisfied before function
read was abstracted with UF fr, the left handside of (4) is equivalent to a read from
address ar of the state of memory m after a write to address aw with data d is done
under the condition that formula e is true. On the right handside of (4), functions read
and write are again abstracted with fr and fu after accounting for the forwarding prop-
erty. Multiple levels of forwarding are abstracted by recursive applications of (4), start-
ing from the leaves of the correctness formula. Uninterpreted functions fu and fr can be
automatically made unique for every memory, where a memory is identified by a
unique domain variable serving as the memory argument at the leaves of a term that
represents memory state. Hence, fu and fr will no longer be functionally consistent
across memories—yet another conservative approximation.

After all memories are automatically abstracted as presented above, the tool
checks if an address term for an abstracted memory is used in a negated equation out-
side the abstracted memories, i.e., is a g-term. If so, then the abstractions for all such
memories are undone. Hence, abstraction is performed automatically only for a mem-
ory whose addresses are p-terms outside the memory and the forwarding logic for it.
From Proposition 1, it follows that such an abstraction is a conservative approxima-
tion. The fact that address terms of abstracted memories are used only as p-terms out-
side the abstracted memories avoids false negatives that might result when a (negated)
equation of two address terms will imply that a write to one of the addresses will (not)

304 M.N. Velev

affect a read from the other address in the equation when that read is performed later—
a property that is lost in the abstraction with UFs. In the examined architecture, the
Integer and Floating-Point Register Files end up having g-term addresses after abstrac-
tion because of the stalling logic that enforces a load interlock avoiding the data hazard
when a load provides data for an immediately following dependent instruction. Hence,
only the Branch-Address Register File, that is not affected by load interlocks, is
abstracted automatically. The Data Memory was abstracted manually with an FSM in
order to define its UFs for reading and updating to have the Opcode as an extra input in
order to model byte-level memory accesses, as well as to achieve partial functional
non-consistency. However, if the Opcode is not used as an extra input and the Data
Memory is defined as a regular memory, then the algorithm will automatically achieve
conservative approximation of the Data Memory by applying transformations (2) and
(3) only.

Note that the abstraction of the Branch-Address and Predicate Register Files
helps avoid the introduction of eij Boolean variables that would have been required
otherwise in order to encode the equality comparisons of branch-address and predicate
register identifiers, respectively, as would have been needed by unabstracted memories
and forwarding logic.

An UF was used as a “translation box” for the new PC value before it is written to
the PC latch, similar to our previous work [20]. That UF models an arbitrary modifica-
tion of the new PC values. Therefore, this transformation is a conservative approxima-
tion in that if a processor is verified with a translation box, it would be correct for any
implementation of that UF, including the identity function that simply connects the
input to the output—the case before inserting the translation box. However, that UF
results in common subexpression substitution, reducing the complexity of the PC val-
ues, and hence of the final equality comparisons for the state of the PC as used in the
correctness formula.

6 Decomposing the Computation of the Correctness Criterion
The problem that was encountered in formally verifying variants of the VLIW archi-
tecture presented in Sect. 3 is that the monolithic evaluation of the propositional for-
mula obtained from (1) does not scale well with increasing the design complexity. The
solution is to propose a framework for decomposing the monolithic evaluation into a
set of simpler evaluations, each of which depends on a subset of the propositional for-
mulas fi,j obtained after the translation of the EUFM formulas mi,j in (1) to proposi-
tional logic. Furthermore, these simpler evaluations are not dependent on each other,
so that they can be performed in parallel. Some terminology first.

A literal is an instance of a Boolean variable or its complement. Any Boolean
function that depends on n Boolean variables can be expresses as a sum of products
(disjunction of conjuncts) of n literals, called the minterms of the function. Equiva-
lently, a Boolean function can be interpreted as the set of its minterms. Then, the dis-
junction and the conjunction of two Boolean functions are the union and intersection
of their minterm sets, respectively. Stating that a ⊆ b, where a and b are two Boolean
functions, is equivalent to say that the set of minterms of b includes the minterms of a,
while a ⊂ b means that b includes extra minterms in addition to the minterms of a. We

305Formal Verification of VLIW Microprocessors with Speculative Execution

will say that the k+1 Boolean functions, b0, b1, ..., bk, form a base, if they cover the
entire Boolean space, i.e., b0 ∨ b1 ∨ ... ∨ bk ≡ true, and are pair-wise disjoint, i.e.,
bi ∧ bj ≡ false for all i ≠ j, 0 ≤ i, j ≤ k. We will refer to functions bi, 0 ≤ i ≤ k, that form
a base as base functions. The definition of base functions is identical to that of disjoint
window functions in Partitioned-ROBDDs [14].

Proposition 2. If the Boolean functions b0, b1, ..., bk form a base, and
b0 ∧ a0 ∨ b1 ∧ a1 ∨ ... ∨ bi ∧ ai ∨ ... ∨ bk ∧ ak ≡ true, where ai, 0 ≤ i ≤ k, are Bool-
ean functions, then bi ⊆ ai for all i, 0 ≤ i ≤ k.

Proof. The proposition is proved by contradiction. Let bj ⊆/ aj for some j, 0 ≤ j ≤ k.
Then aj does not contain at least one minterm of bj, so that bj ∧ aj ⊂ bj since the con-
junction of two Boolean functions can be interpreted as the intersection of their min-
term sets. Furthermore, since bi ∧ ai ⊆ bi for i ≠ j, 0 ≤ i ≤ k, it follows that
b0 ∧ a0 ∨ b1 ∧ a1 ∨ ... ∨ bj ∧ aj ∨ ... ∨ bk ∧ ak ⊆ b0 ∨ b1 ∨ ... ∨ bj ∧ aj ∨ ... ∨ bk
⊂ b0 ∨ b1 ∨ ... ∨ bj ∨ ... ∨ bk ≡ true. Hence, b0 ∧ a0 ∨ b1 ∧ a1 ∨ ... ∨ bi ∧ ai ∨
... ∨ bk ∧ ak ≡/ true, which is a contradiction to the assumption in the proposition. ❏

Proposition 3. If the Boolean functions b0, b1, ..., bk form a base, and b0 ∨ ... ∨ bi-1
∨ ai ∨ bi+1 ∨ ... ∨ bk ≡ true, 0 ≤ i ≤ k, (i.e., replacing one bi with a Boolean function
ai does not change the value of the disjunction) then bi ⊆ ai.

Proof. The proposition is proved by contradiction. Let bi ⊆/ ai. Then ai does not contain
at least one minterm of bi and since that minterm is not contained in any other bj, j ≠ i,
0 ≤ j ≤ k, as the base functions are pair-wise disjoint, it follows that b0 ∨ ... ∨ bi-1 ∨ ai
∨ bi+1 ∨ ... ∨ bk ⊂ b0 ∨ ... ∨ bi-1 ∨ bi ∨ bi+1 ∨ ... ∨ bk ≡ true. Therefore,
b0 ∨ ... ∨ bi-1 ∨ ai ∨ bi+1 ∨ ... ∨ bk ≡/ true, which is a contradiction to the assump-
tion in the proposition. ❏

Proposition 4. If the Boolean functions b0, b1, ..., bk form a base, and bi ⊆ ai, for some
i, 0 ≤ i ≤ k, where ai is a Boolean function, then b0 ∨ ... ∨ bi-1 ∨ bi ∧ ai ∨ bi+1 ∨ ...
∨ bk ≡ true.

Proof. If bi ⊆ ai then bi ∧ ai ≡ bi. Therefore, b0 ∨ ... ∨ bi-1 ∨ bi ∧ ai ∨ bi+1 ∨ ... ∨ bk
≡ b0 ∨ ... ∨ bi-1 ∨ bi ∨ bi+1 ∨ ... ∨ bk ≡ true. ❏

Propositions 2 – 4 allow us to decompose the evaluation of the propositional for-
mula for the correctness criterion. First, we have to find a set of Boolean functions b0,
b1, ..., bk that form a base, where each bi is selected as the conjunction of a subset of
the Boolean functions f1,i, f2,i, ..., fn,i, which are conjuncted together in the proposi-
tional translation of (1). Then, for each fj,i, 1 ≤ j ≤ n, not used in forming bi, we have to
prove that its set of minterms is a superset of the minterms of bi by using either Propo-
sition 2 or Proposition 3. Then, by Proposition 4, we can compose the results, proving
that the monolithic Boolean formula for the processor correctness evaluates to true
without actually evaluating it.

As an example, let’s consider a pipelined processor that can fetch either 0 or 1
new instructions on every clock cycle and that has 3 user-visible state elements—PC,
Data Memory (DM), and Register File (RF). In order for the processor to be correct,

306 M.N. Velev

we will have to prove that a Boolean formula of the form PC0 ∧ RF0 ∧ DM0 ∨
PC1 ∧ RF1 ∧ DM1 evaluates to true. However, instead of evaluating the monolithic
Boolean formula, we can prove that PC0 and PC1 form a base, i.e., PC0 ∨ PC1 ≡ true
and PC0 ∧ PC1 ≡ false. Additionally, we can prove that, for example:

1. PC0 ∧ DM0 ∨ PC1 ∧ DM1 ≡ true, which implies that PC0 ⊆ DM0 and
PC1 ⊆ DM1 by Proposition 2;

2. RF0 ∨ PC1 ≡ true, which implies that PC0 ⊆ RF0 by Proposition 3; and,

3. PC0 ∨ RF1 ≡ true, which implies that PC1 ⊆ RF1 by Proposition 3.

Then, by Proposition 4, it follows that:

PC0 ∧ RF0 ∧ DM0 ∨ PC1 ∧ RF1 ∧ DM1 ≡ true.

If computing resources are available, we can run a redundant set of computations
in parallel, i.e., using multiple sets of Boolean functions as bases, and exploiting both
propositions 2 and 3. Note that Proposition 2 can be applied in a version where only
one of the base functions bi, 0 ≤ i ≤ k, is conjuncted with a Boolean function ai by set-
ting aj = true for all j ≠ i, 0 ≤ j ≤ k. Also note that both propositions 2 and 3 hold when
ai, 0 ≤ i ≤ k, is the conjunction of several Boolean functions. Furthermore, we can use
both BDDs and SAT-checkers. All computations that are still running can be stopped
as soon as enough containment properties have been proved, so that they can be com-
posed by Proposition 4 in order to imply that the monolithic Boolean formula for the
correctness criterion will evaluate to true. Additionally, the simpler Boolean computa-
tions will speed up the generation of counterexamples for buggy designs.

Note that the proposed decomposition of the Boolean evaluation of the correct-
ness formula does not require much expertise and can be done automatically. Namely,
the Boolean functions that form a base can be selected automatically by choosing such
fi,j from the propositional translation of (1) that have the smallest number of Boolean
variables before their BDD is built or, alternatively, the smallest number of nodes in
their EUFM representation. The base functions serve as automatic case-splitting
expressions. In his work, Burch had to manually identify 28 case-splitting expressions
[6]. He also had to manually decompose the commutative diagram for the correctness
criterion into three diagrams. That decomposition required the intervention of an
expert user, and was sufficiently subtle to warrant publication of its correctness proof
as a separate paper [21].

7 Modeling Multicycle Functional Units and Branch Prediction
Multicycle functional units are abstracted with “place holders” [20], where an UF
abstracts the function of the unit, while a new Boolean variable is produced by a gener-
ator of arbitrary values on every clock cycle in order to express the completion of the
multicycle computation in the present cycle. Under this scheme, however, a multicycle
computation will never finish under the assignments where the Boolean variables
expressing completion evaluate to false. This is avoided by forcing the completion sig-
nal to true during the flushing of the processor, based on the observation [6] that the
logic of the processor can be modified during flushing as all it does is completing the
instructions in flight. A mistake in this modification can only result in a false negative.

307Formal Verification of VLIW Microprocessors with Speculative Execution

The correct semantics of the multicycle functional unit is modeled in the non-pipelined
specification only by the UF used to abstract the functionality. The place holder for a
multicycle memory is defined similarly, except that a regular memory or an FSM
abstraction of a memory is used instead of the UF.

The Branch Predictor in the implementation processor is abstracted with a gener-
ator of arbitrary values [20], producing arbitrary predictions for both the taken/not-
taken direction (represented with a new Boolean variable) and the target (a new
domain variable) of a branch. What is verified is that if the implementation processor
updates speculatively the PC according to a branch prediction made in an early stage
of the pipeline and the prediction is incorrect as determined when the actual direction
and target become available, then the processor has mechanisms to correct the mispre-
diction. The non-pipelined specification does not include a Branch Predictor, which is
not part of the user-visible state and is irrelevant for defining the correct instruction
semantics. Note that if an implementation processor is verified with completely arbi-
trary predictions for the direction and target of a branch, that processor will be correct
for any actual implementation of the Branch Predictor.

8 Experimental Results
The base benchmark, 9×VLIW, implements all of the features of the VLIW architec-
ture presented in Sect. 3 except for branch prediction and multicycle functional units.
Conservative approximations were used for modeling the Predicate Register File, the
CFM, and the ALAT (see Sect. 5). The Branch-Address Register File was abstracted
automatically, as described in Sect. 5. In order to measure the benefit of using conser-
vative approximations, 9×VLIW was formally verified with unabstracted Branch-
Address Register File that was left as a regular memory with regular forwarding
logic—9×VLIW.uBARF. The base benchmark was extended with branch prediction
in order to create 9×VLIW-BP, which was then extended with multicycle functional
units—the Instruction Memory, the 2 floating-point ALUs, and the Data Memory—in
order to build 9×VLIW-BP-MC. These models were verified against the same non-
pipelined VLIW specification, whose semantics was defined in terms of VLIW
instruction packets. Because of that, there was no need to impose constraints that the
instructions in a packet do not have data dependencies between each other.

The VLIW implementation processors were described in 3,200 – 3,700 lines of
our HDL that supports the constructs of the logic of EUFM, while the non-pipelined
VLIW specification processor was described in 730 lines of the same HDL. This HDL
is very similar to Verilog, so that the abstract description of the implementation proces-
sor can be viewed as a level in a hierarchical Verilog description of the processor. At
that level, functional units and memories are left as modules (black boxes), while the
control logic that glues these modules together is described entirely in terms of logic
gates, equality comparators, and multiplexors (the constructs of EUFM). Then, based
on information provided in the description and identifying whether a module is either a
single-cycle or multicycle functional unit or memory, each of the modules can be auto-
matically replaced by an UF, or an abstract memory, or a place holder for a multicycle
functional unit or memory. Similarly, modules like the ALAT (see Sect. 5) can be auto-
matically replaced with an FSM-based abstraction. Hence, the abstract description of

308 M.N. Velev

the implementation processor can be generated automatically.
The results are presented in Table 1. The experiments were performed on a 336

MHz Sun4 with 1.2 GB of memory. The Colorado University BDD package [7] and
the sifting BDD variable reordering heuristic [15] were used to evaluate the final prop-
ositional formulas. Burch’s controlled flushing [6] was employed for all of the designs.

Decomposition of the Boolean evaluation of the correctness formula accelerated
almost 4 times the verification of the most complex benchmark, 9×VLIW-BP-MC.
Furthermore, the CPU time ratio would have been much higher than 3.97 if it were cal-
culated relative to the CPU time for the monolithic verification of a version of that pro-
cessor where conservative approximations are not used to abstract the Branch-Address
and Predicate Register Files and their forwarding logic. Indeed, the CPU time ratio for
the monolithic verification of 9×VLIW.uBARF (where only the Branch-Address Reg-
ister File is not abstracted) vs. the CPU time for the decomposed verification of
9×VLIW is 7.86. Note that with faster new computers, the CPU times for the formal
verification will decrease, while the CPU time ratio of monolithic vs. decomposed
computation can be expected to stay relatively constant for the same benchmarks.

Although decomposition always reduced the number of BDD variables—with up
to 35%, compared to the monolithic evaluation—some of the simpler computations
required almost 5 times as many BDD nodes and more than 3 times as much memory

Processor
Correctness

Computation

BDD Variables Max.
BDD
Nodes

×106

Memory
[MB]

CPU
Time
[h]

CPU
Time
Ratioeij Other Total

9×VLIW.uBARF monolithic 1,816 236 2,052 4.8 122 13.68 2.6

decomposed sufficient 1,176 174 1,350 2.9 77 5.28

max. 1,194 170 1,364 3.3 90

9×VLIW monolithic 1,468 236 1,704 1.6 53 6.26 3.58

decomposed sufficient 1,176 174 1,350 1.2 45 1.75

max. 1,194 170 1,364 1.9 57

9×VLIW-BP monolithic 1,886 246 2,132 1.8 59 9.45 3.72

decomposed sufficient 1,191 175 1,366 1.3 43 2.54

max. 1,209 175 1,384 9.0 200

9×VLIW-BP-MC monolithic 2,356 259 2,615 6.8 163 31.57 3.97

decomposed sufficient 1,469 214 1,683 2.5 74 7.96

max. 1,469 214 1,683 4.2 97

Table 1. BDD-based Boolean evaluation of the correctness formula. The BDD and memory
statistics for the decomposed computations are reported as: “sufficient”—the maximum in each
category across the computations that were sufficient to prove that the monolithic Boolean
formula is a tautology; “max.”—the maximum in each category across all computations run. The
CPU time reported for the decomposed computations is the minimum that was required for
proving a sufficient set of Boolean containment properties that would imply the monolithic
Boolean correctness formula is a tautology.

309Formal Verification of VLIW Microprocessors with Speculative Execution

as the monolithic computation. This was due to differences in the structures of the
evaluated Boolean formulas, some of which proved to be difficult for the sifting
dynamic BDD variable reordering heuristic. However, the computations that were suf-
ficient to prove that the monolithic formula is a tautology always required fewer
resources than the monolithic computation.

The examined processors had 8 user-visible state elements: PC; 4 register files—
Integer, Floating-Point, Predicate, and Branch-Address; CFM; ALAT; and Data Mem-
ory. The Boolean formulas that form a base were selected to be the ones from the
equality comparisons for the state of the CFM, which has a relatively simple updating
logic (see Sect. 5). Proving that these functions form a base took between 6 seconds in
the case of 9×VLIW and 54 seconds in the case of 9×VLIW-BP-MC, while the number
of BDD nodes varied between 10,622 and 52,372, and the number of BDD variables
was between 255 and 411.

The relatively simple Boolean formulas formed from the equality comparisons
for the state of the ALAT were used in order to perturb the structure of the evaluated
Boolean formulas. Specifically, instead of proving only that CFMi ⊆ fi for some i (i.e.,
the base function CFMi is contained in fi), where fi is the Boolean formula formed from
the equality comparison for the state of some user-visible state element, a simulta-
neous proof was run for CFMi ⊆ fi ∧ ALATi. This strategy resulted in additional Bool-
ean formulas with slightly different structure, without a significant increase in the
number of Boolean variables. Note that the number of Boolean variables in a formula
is not indicative of the time that it would take to build the BDD for the formula. Some-
times the structural variations helped the sifting heuristic for dynamic BDD variable
reordering to speed up the BDD-based evaluation. Applied only for Proposition 2, this
strategy reduced the formal verification time for 9×VLIW-BP-MC with around half an
hour—from 8.44 hours, that would have been required otherwise, to 7.96 hours.

Decompositions based on Proposition 2 usually required less time to prove the
same containment properties, compared to decompositions with Proposition 3. How-
ever, Proposition 2 alone would have required 9.64 hours in order to prove a sufficient
set of containment properties for the most complex model, 9×VLIW-BP-MC. Given
sufficient computing resources, a winning approach will be to run a large set of com-
putations in parallel, exploiting different structural variations in the Boolean formulas
in order to achieve a performance gain for the BDD variable reordering heuristic.

9 Conclusions
A VLIW microprocessor was formally verified. Its Execution Engine imitates that of
the Intel Itanium [9][16], while its Fetch Engine is simpler. The modeled features are
comparable to, if not more complex than, those of the StarCore [10] microprocessor by
Motorola and Lucent. Efficient formal verification was possible after an extensive use
of conservative approximations—some of them applied automatically—in defining the
abstract implementation and specification processors, in addition to exploiting a
decomposed Boolean evaluation of the correctness formula.

Acknowledgments
The author thanks his advisor, Prof. Randy Bryant, for comments on the paper.

310 M.N. Velev

References
[1] W. Ackermann, Solvable Cases of the Decision Problem, North-Holland, Amsterdam, 1954.
[2] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Com-

puting Surveys, Vol. 24, No. 3 (September 1992), pp. 293-318.
[3] R.E. Bryant, S. German, and M.N. Velev, “Exploiting Positive Equality in a Logic of Equality with

Uninterpreted Functions,”2 Computer-Aided Verification (CAV’99), N. Halbwachs and D. Peled, eds.,
LNCS 1633, Springer-Verlag, June 1999, pp. 470-482.

[4] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using Efficient Reductions of the
Logic of Uninterpreted Functions to Propositional Logic,”2 Technical Report CMU-CS-99-115, Carn-
egie Mellon University, 1999.

[5] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Microprocessor Control,” Computer-
Aided Verification (CAV‘94), D.L. Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[6] J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” 33rd Design Automation Confer-
ence (DAC’96), June 1996, pp. 552-557.

[7] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[8] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory of Equality

with Uninterpreted Functions,” Computer-Aided Verification (CAV‘98), A.J. Hu and M.Y. Vardi, eds.,
LNCS 1427, Springer-Verlag, June 1998, pp. 244-255.

[9] L. Gwennap, “Merced Shows Innovative Design,” Microprocessor Report, Vol. 13, No. 13 (October 6,
1999), pp. 1-10.

[10] T.R. Halfhill, “StarCore Reveals Its First DSP,” Microprocessor Report, Vol. 13, No. 6 (May 10, 1999),
pp. 13-16.

[11] R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Decomposing the Proof of Correctness of Pipelined
Microprocessors,” Computer-Aided Verification (CAV‘98), A.J. Hu and M.Y. Vardi, eds., LNCS 1427,
Springer-Verlag, June 1998, pp. 122-134.

[12] IA-64 Application Developer’s Architecture Guide,3 Intel Corporation, May 1999.
[13] J.R. Levitt, Formal Verification Techniques for Digital Systems, Ph.D. Thesis, Department of Electrical

Engineering, Stanford University, December 1998.
[14] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli, “Partitioned ROBDDs—A Compact,

Canonical and Efficient Manipulable Representation for Boolean Functions,” International Conference
on Computer-Aided Design (ICCAD’96), November 1996, pp. 547-554.

[15] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” International Con-
ference on Computer-Aided Design (ICCAD’93), November 1993, pp. 42-47.

[16] J. Sawada, and W.A. Hunt, Jr., “Processor Verification with Precise Exceptions and Speculative Execu-
tion,” Computer-Aided Verification (CAV‘98), A.J. Hu and M.Y. Vardi, eds., LNCS 1427, Springer-
Verlag, June 1998, pp. 135-146.

[17] H. Sharangpani, “Intel Itanium Processor Michroarchitecture Overview,”3 Microprocessor Forum,
October 1999.

[18] M.N. Velev, and R.E. Bryant, “Exploiting Positive Equality and Partial Non-Consistency in the Formal
Verification of Pipelined Microprocessors,”2 36th Design Automation Conference (DAC ‘99), June
1999, pp. 397-401.

[19] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using Efficient Reductions of the
Logic of Equality with Uninterpreted Functions to Propositional Logic,”2 Correct Hardware Design
and Verification Methods (CHARME ‘99), L. Pierre and T. Kropf, eds., LNCS 1703, Springer-Verlag,
September 1999, pp. 37-53.

[20] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with Multicycle
Functional Units, Exceptions, and Branch Prediction,”2 37th Design Automation Conference
(DAC ‘00), June 2000.

[21] P.J. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automatic Verification
Tool,” Formal Methods in Computer-Aided Design (FMCAD’96), M. Srivas and A. Camilleri, eds.,
LNCS 1166, Springer-Verlag, November 1996, pp. 362-376.

2. Available from: http://www.ece.cmu.edu/~mvelev
3. Available from: http://developer.intel.com/design/ia-64/architecture.htm

311Formal Verification of VLIW Microprocessors with Speculative Execution

	Introduction
	Background
	VLIW Architecture Verified
	Discussion
	Exploiting Conservative Approximations
	Decomposing the Computation of the Correctness Criterion
	Modeling Multicycle Functional Units and Branch Prediction
	Experimental Results
	Conclusions

