
Model Checking Continuous-Time Markov
Chains

by Transient Analysis

Christel Baier1, Boudewijn Haverkort2,
Holger Hermanns3, and Joost-Pieter Katoen3,�

1 Institut für Informatik I, University of Bonn
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Abstract. The verification of continuous-time Markov chains (CTMCs)
against continuous stochastic logic (CSL) [3,6], a stochastic branching-
time temporal logic, is considered. CSL facilitates among others the spe-
cification of steady-state properties and the specification of probabilistic
timing properties of the form P��p(Φ1 UI Φ2), for state formulas Φ1 and
Φ2, comparison operator ��, probability p, and real interval I. The main
result of this paper is that model checking probabilistic timing properties
can be reduced to the problem of computing transient state probabilities
for CTMCs. This allows us to verify such properties by using efficient
techniques for transient analysis of CTMCs such as uniformisation. A
second result is that a variant of ordinary lumping equivalence (i.e., bi-
simulation), a well-known notion for aggregating CTMCs, preserves the
validity of all CSL-formulas.

1 Introduction

Continuous-time Markov chains (CTMCs) have been widely used to determine
important system performance and reliability characteristics. To mention just
a few applications, these models have been used to quantify the throughput of
production lines, to determine the mean time between failure in safety-critical
systems, or to identify bottlenecks in communication networks. Due to the ra-
pidly increasing size and complexity of systems, obtaining such models in a
direct way becomes more and more cumbersome and error-prone. An effective
solution to this problem is to generate CTMCs from higher-level specifications,
like queueing networks, stochastic Petri nets [1], or stochastic process algebras
[20,24].

Although these approaches have shown to be rather valuable — several (in-
dustrial) case studies have been carried out and mature tool-support is available
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[19,21] — the specification of the measure of interest is mostly done informally.
The analysis of the CTMC most often boils down to the determination of steady-
state and transient state probabilities. Steady-state probabilities refer to the sy-
stem behaviour on the “long run” while the transient probabilities consider the
system at a fixed time instant t.

In [3] measures of interest of CTMCs are specified in a branching-time logic
CSL (continuous stochastic logic) that includes aTCTL-like time-bounded until
operator UI , where I is a time-interval, and a probabilistic operator P��p(·) to
reason about the probabilities of timing properties. As in the logic PCTL [17],
a probabilistic variant of CTL interpreted over DTMCs, the operator P��p(ϕ)
replaces the usual CTL path quantifiers ∀ and ∃ and refers to the probability
for the event specified by the path formula ϕ. The subscript �� p (where ��
is a comparison operator and p ∈ [0, 1]) specifies a lower or upper bound for
the “allowed” probabilities. The combination of the probabilistic operator with
the temporal operator ✸[t,t] (which can be derived from the time-bounded until
operator) analyses the quantitative behaviour at time instant t and can be used
to reason about transient probabilities. For instance, P�0.001(✸[4,4]error) asserts
that the probability for a system error at time instant 4 is at most 10−3.

In [6], CSL was extended by the usual next step and until operator and
by a novel steady-state operator, e.g. the formula S�0.98(up) asserts that the
steady-state probability for the system “being up” is at least 0.98. Moreover,
[6] presented a model checking algorithm for the extended version of CSL that
uses a variant of multi-terminal BDDs [12,4]; thus, obtaining a single framework
that combines the traditional approach of steady-state and transient analysis of
CTMCs with the symbolic BDD-based model checking approach for temporal
logics.

While [6] focuses on model checking with techniques that have been proven to
be very efficient for non-stochastic systems, viz. BDDs, in this paper we investi-
gate the complementary question and present a CSL model checking algorithm
that operates with well-understood efficient techniques for analyzing CTMCs,
namely transient analysis of CTMCs represented by sparse matrices. The main
difficulty is the treatment of P��p(ϕ) applied to a path formula ϕ of the form
Φ1 UI Φ2.1 Our main result states that, for a given CTMC M and state s in
M, the measure ProbM(s, ϕ) for the event that ϕ holds when the system starts
in state s, can be calculated by means of a transient analysis of the CTMC
M′, which can easily be derived from M. This allows us to adopt efficient tech-
niques for performing transient analysis of CTMCs, like uniformisation [15,16,
25,27], for model checking probabilistic timing properties. In addition, we show
that (ordinary) lumping-equivalence — a notion on Markov chains to aggregate
state spaces [10,24] that can be viewed as a continuous variant of probabilistic
bisimulation [26] — preserves the validity of all CSL-formulas. This allows us
to switch from the original state space to the (possibly much smaller) quotient
1 The steady-state operator and the probabilistic operator applied to next step or (un-

bounded) until require essentially matrix operations like multiplication and solving
linear equation systems that can be treated by standard tools for sparse matrices.
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space under lumping equivalence. Using this property, we indicate how the state
space for checking probabilistic timing properties on the derived CTMC M′ can
be obtained.

Organisation of the paper. Section 2 introduces CTMCs and CSL. Section 3
presents a reduction of the model checking problem for time-bounded until to
a transient analysis on CTMCs. Section 4 discusses lumping equivalence and
preservation of CSL-properties. Section 5 reports on the checking of properties
on a large plain-old telephone system [21]. Section 6 concludes the paper.

2 CTMCs and CSL

In this section, we briefly recall the basic concepts of CTMCs [28] and the logic
CSL [3,6]. We slightly depart from the standard notations for CTMCs and
consider a CTMC as an ordinary transition system (Kripke structure) where the
edges are equipped with probabilistic timing information. Let AP be a fixed,
finite set of atomic propositions.

CTMCs. A (labelled) CTMC M is a tuple (S,R, L) where S is a finite set
of states, R : S × S → IR�0 the rate matrix2, and L : S → 2AP the labelling
function which assigns to each state s ∈ S the set L(s) of atomic propositions
a ∈ AP that are valid in s. A state s is called absorbing iff R(s, s′) = 0 for all
states s′. We assume that for any state s, AP contains an atomic proposition as

which is characteristic for s, i.e., as ∈ L(s) and as /∈ L(s′) for any s′ �= s.
Intuitively, R(s, s′) > 0 iff there is a transition from s to s′; 1− e−R(s,s′)·t is

the probability that the transition s → s′ can be triggered within t time units.
Thus, the delay of transition s → s′ is governed by an exponential distribution
with rate R(s, s′). If R(s, s′) > 0 for more than one state s′, a competition
between the transitions originating in s exists, known as the race condition. The
probability to move from non-absorbing state s to a particular state s′ within t
time units, i.e., s → s′ wins the race, is given by

P(s, s′, t) =
R(s, s′)
E(s)

·
(
1− e−E(s)·t

)

where E(s) =
∑

s′∈S R(s, s′) denotes the total rate at which any transition em-
anating from state s is taken. More precisely, E(s) specifies that the probability
of leaving s within t time-units is 1− e−E(s)·t, due to the fact that the minimum
of exponential distributions (competing in a race) is characterised by the sum of
their rates. Consequently, the probability of moving from a non-absorbing state
s to s′ by a single transition, denoted P(s, s′), is determined by the probability
that the delay of going from s to s′ finishes before the delays of other outgoing
2 We do not set R(s, s) = − ∑

s′ �=s R(s, s′), as is usual for CTMCs. In our setting,
self-loops at a state s are possible and can be modelled by R(s, s) > 0. The inclusion
of self-loops does neither alter the transient nor the steady-state behaviour of the
CTMC, but allows the usual interpretation of linear-time temporal operators like
next step and unbounded or time-bounded until.
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edges from s; formally, P(s, s′) = R(s, s′)/E(s). For an absorbing state s, the
total rate E(s) is 0. (In this case, we have P(s, s′) = 0 for any state s′.)

The initial state probabilities of M = (S,R, L) are given by an initial distri-
bution α : S → [0, 1] with

∑
s∈S α(s) = 1. In case we have a unique initial state

s, the initial distribution is denoted α1
s, where α

1
s(s) = 1 and α1(s′) = 0 for any

s′ �= s.

Example 1. As a running example we address a triple modular redundant system
(TMR) taken from [18], a fault-tolerant computer system consisting of three
processors and a single (majority) voter that we model by a CTMC where state
si,j models that i processors and j voters are operational. Initially all components
are functioning correctly (i.e., α = α1

s3,1
). The failure rate of a processor is λ and

of the voter ν failures per hour (fph). The expected repair time of a processor
is 1/µ and of the voter 1/δ hours. The system is operational if at least two
processors and the voter are functioning correctly. If the voter fails, the entire
system is assumed to have failed, and after a repair (with rate δ) the system is
assumed to start “as good as new”. The details of the CTMC are:

s3,1 s2,1

s1,1s0,1

s0,0

up3 up2

ν

ν
ν

3λ

µ

λ

2λ

ν

down
δ

µ

µ

up1up0

R =




0 3λ 0 0 ν
µ 0 2λ 0 ν
0 µ 0 λ ν
0 0 µ 0 ν
δ 0 0 0 0




and E =




3λ+ν
2λ+µ+ν
λ+µ+ν
µ+ν
δ




We have e.g., P(s2,1, s3,1) = µ/(µ+2λ+ν) and P(s0,1, s0,0) = ν/(µ+ν).

Paths. A path σ is a finite or infinite sequence s0, t0, s1, t1, s2, t2, . . . with, for
i ∈ IN , si ∈ S and ti ∈ IR>0 such that R(si, si+1) > 0, if σ is infinite. For an
infinite path σ and i ∈ IN let σ[i] = si, the i-th state of σ, and δ(σ, i) = ti, the
time spent in si. For t ∈ IR�0 and i the smallest index i with t �

∑i
j=0 tj let

σ@t = σ[i], the state of σ at time t. If σ is finite and ends in sl, we require that
sl is absorbing, and R(si, si+1) > 0 for all i < l. For finite σ, σ[i] and δ(σ, i)
are defined for i � l in the above way, whereas δ(σ, l) = ∞, and σ@t = sl for
t >

∑l−1
j=0 tj . Let Path denote the set of paths in M, Path(s) the set of paths

starting in s.

Borel space. An initial distribution α yields a probability measure Prα on
paths as follows. Let s0, . . . , sk ∈ S with R(si, si+1) > 0, (0 � i < k), and
I0, . . . , Ik−1 non-empty intervals in IR�0. Then, C(s0, I0, . . . , Ik−1, sk) denotes
the cylinder set consisting of all paths σ ∈ Path(s0) such that σ[i] = si (i � k),
and δ(σ, i) ∈ Ii (i < k). Let F(Path) be the smallest σ-algebra on Path which
contains all sets C(s, I0, . . . , Ik−1, sk) where s0, . . . , sk ranges over all state-
sequences with s = s0, R(si, si+1) > 0 (0 � i < k), and I0, . . . , Ik−1 ranges over
all sequences of non-empty intervals in IR�0. The probability measure Prα on
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F(Path) is the unique measure defined by induction on k by Prα(C(s0)) = α(s0)
and for k � 0:

Pr
α
(C(s0, . . . , sk, I

′, s′) = Pr
α
(C(s0, . . . , sk)) ·P(sk, s

′) ·
(
e−E(sk)·a − e−E(sk)·b

)

where a = inf I ′ and b = sup I ′. (For b = ∞ and λ > 0 let e−λ·∞ = 0.)

Remark 1. For an infinite path σ = s0, t0, s1, t1, . . . we do not assume time
divergence. Although

∑
j�0 tj might converge, in which case σ represents an

“unrealistic” computation where infinitely many transitions are taken in a finite
amount of time, the probability measure of such non-time-divergent paths is 0
(independent of α). This allows a lazy treatment of the notation σ@t in the
description of measurable sets of paths for which we just refer to the probability
measure.

Steady state and transient probabilities. For a CTMC two major types of
state probabilities are distinguished: steady-state probabilities where the system
is considered “on the long run” i.e., when an equilibrium has been reached, and
transient probabilities where the system is considered at a given time instant t.
Formally, the transient probability

πM(α, s′, t) = Pr
α

{σ ∈ Path | σ@t = s′}

stands for the probability to be in state s′ at time t given the initial distribution
α. Steady-state probabilities are defined as πM(α, s′) = limt→∞ πM(α, s′, t).
This limit always exists for finite CTMCs. For S′ ⊆ S, let πM(α, S′) =

∑
s′∈S′

πM(α, s′) denote the steady-state probability for S′ given α, i.e.,

πM(α, S′) = lim
t→∞ Pr

α
{σ ∈ Path | σ@t ∈ S′ }.

We let πM(α,∅) = 0. We often omit the superscript M if the CTMC M is clear
from the context. In case of a unique initial state s, i.e., α = α1

s, we write Prs
for Prα, π(s, s′, t) for π(α, s′, t), and π(s, s′) for π(α, s′).

Syntax of CSL. CSL is a branching-time temporal logic where the state-
formulas are interpreted over states of a CTMC [3,6]. As in [6] we consider the
extension of CSL of [3] with S��p(·) to reason about steady-state probabilities.
We generalise CSL as defined in [6] with a time-bounded until operator that
is parametrized by an arbitrary time-interval I. Let a ∈ AP, p ∈ [0, 1] and
�� ∈ {�,� }. The state-formulas of CSL are defined by:

Φ ::= tt
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S��p(Φ)
∣∣∣ P��p(ϕ)

where, for interval I ⊆ IR�0, path-formulas are defined by:

ϕ ::= XΦ
∣∣∣ ΦU Φ

∣∣∣ ΦUI Φ.
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The other boolean connectives are derived in the usual way, i.e. ff = ¬tt,
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), and Φ1 → Φ2 = ¬Φ1 ∨ Φ2. The meaning of U (“un-
til”) and X (“next step”) is standard. The temporal operator UI is the ti-
med variant of U ; Φ1 UI Φ2 asserts that Φ2 will be satisfied at some time
instant in the interval I and that at all preceding time instants Φ1 holds.
S��p(Φ) asserts that the steady-state probability for a Φ-state falls in the in-
terval I��p = { q ∈ [0, 1] | q �� p }. P��p(ϕ) asserts that the probability measure
of the paths satisfying ϕ meets the bound given by �� p.

Temporal operators like ✸, ✷ and their real-time variants ✸I or ✷I can be
derived, e.g. P��p(✸I Φ) = P��p(ttUI Φ) and P�p(✷Φ) = P�1−p(✸¬Φ).
Example 2. Let AP = { upi | 0 � i < 4 } ∪ {down } and consider the CTMC of
Example 1. P�10−5(✸[0,10] down) denotes that the probability of a failure of the
voter within the next 10 hours is at most 10−5; the formula S�0.99(up3 ∨ up2)
asserts that with 0.99 probability the system is operational, when the system is
in equilibrium.

Semantics of CSL. The state-formulas are interpreted over the states of a
CTMC. Let M = (S,R, L) with labels in AP. The definition of the satisfaction
relation |= ⊆ S ×CSL is as follows. Let Sat(Φ) = { s ∈ S | s |= Φ }.

s |= tt for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬Φ iff s �|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φi, i=1, 2
s |= S��p(Φ) iff π(s,Sat(Φ)) ∈ I��p

s |= P��p(ϕ) iff ProbM(s, ϕ) ∈ I��p.

Here, ProbM(s, ϕ) denotes the probability measure of all paths σ ∈ Path satis-
fying ϕ when the system starts in state s, i.e.,ProbM(s, ϕ) = Prs{σ ∈ Path |
σ |= ϕ }.3 The satisfaction relation for the path-formulas is defined as:

σ |= XΦ iff σ[1] is defined and σ[1] |= Φ
σ |= Φ1 U Φ2 iff ∃k � 0. (σ[k] |= Φ2 ∧ ∀0 � i < k. σ[i] |= Φ1)
σ |= Φ1 UI Φ2 iff ∃t ∈ I. (σ@t |= Φ2 ∧ ∀u ∈ [0, t[. σ@u |= Φ1)

We note that for I = ∅ the formula Φ1 UI Φ2 is not satisfiable and that Φ1 U Φ2
can be interpreted as an abbreviation of Φ1 U [0,∞) Φ2.

Remark 2. Although CSL does not contain an explicit transient state ope-
rator, it is possible to reason about transient state probabilities as we have:
π(s, s′, t) = Prob(s,✸[t,t]as′). Thus, whereas the steady-state operator S��p(Φ)
cannot be derived from the other operators, a transient-state operator T @t

��p (Φ) =
P��p(✸[t,t]Φ) can be defined. It states that the probability for a Φ-state at time
point t meets the bound �� p.

3 Model Checking UI by Transient Analysis

In [6], we presented aCSLmodel checking algorithm that essentially relies on the
following ideas. The steady-state operator requires the computation of steady-
state probabilities which can be obtained by a graph analysis and by solving
3 The fact that the set { σ ∈ Path | σ |= ϕ } is measurable can be easily verified.
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a linear equation system. The basis for calculating the probabilities Prob(s, ϕ)
are the following results. For the temporal operators next X and until U (that
abstract from the amount of time spent in states but just refer to the states that
are passed in an execution), we have the same characterizations for the values
Prob(s,XΦ) and Prob(s, Φ1 U Φ2) as in the case of DTMCs [17]:

Prob(s,XΦ) =
∑

s′|=ΦP(s, s
′) and

Prob(s, Φ1 U Φ2) =



1 if s |= Φ2∑

s′∈S P(s, s
′) · Prob(s′, Φ1 U Φ2) if s |= Φ1 ∧ ¬Φ2

0 otherwise.

This amounts to matrix/vector-multiplication for next and solving a linear equa-
tion system for until.

For the time-bounded until operator, [6] suggested an iterative method which
relies on the observation that the function (s, t, t′) �→ Prob(s, Φ1 U [t,t′] Φ2) can be
characterized as the least fixed point of a higher-order operator Ω where Ω(F )
is defined by means of Volterra integrals. This fixed-point characterization then
serves as a basis for an iterative method that uses numerical integration techni-
ques. First experiments in a non-symbolic setting have shown that this approach
can be rather time-consuming and that numerical stability is hard to achieve [22].
[6] suggested a symbolic approach by combining (MT)BDD-techniques [9,12,4]
with an operator for solving integrals by quadrature formulas. Here, we propose
an alternative strategy that reduces the model checking problem for the time-
bounded until operator to the problem of calculating transient probabilities in
CTMCs. This observation allows us to implement CSL model checking on the
basis of well-established transient analysis techniques for CTMCs (see below).

Four correctness-preserving transformations. We first observe that it suf-
fices to consider time bounds specified by compact intervals, since:

Prob(s, Φ1 UI Φ2) = Prob(s, Φ1 Ucl(I) Φ2)

where cl(I) denotes the closure of I. Secondly, unbounded time intervals [t,∞)
can be treated by combining time-bounded until and unbounded until, since:

Prob(s, Φ1 U [t,∞) Φ2) =
∑
s′∈S

Prob(s, Φ1 U [t,t] as′) · Prob(s′, Φ1 U Φ2).

In the sequel, we treat 4 types of time-bounded until-formulas with a compact
interval I and show how they all can be reduced to instances of two simple base
cases. For CTMC M = (S,R, L) and CSL-state formula Φ let CTMC M[Φ]
result from M by making all Φ-states in M absorbing; i.e., M[Φ] = (S,R′, L)
where R′(s, s′) = R(s, s′) if s �|= Φ and 0 otherwise. Note that M[Φ1][Φ2] =
M[Φ1 ∨ Φ2].

Case A: Bounded until for absorbing Φ2-states. Let ϕ = Φ1 U [0,t] Φ2 and assume
that all Φ2-states are absorbing, i.e., once a Φ2-state is reached it will not be
left anymore. We first observe that once a (¬Φ1 ∧ ¬Φ2)-state is reached, ϕ will
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be invalid, regardless of the future evolution of the system. As a result, we may
switch from M to M[¬Φ1 ∧ ¬Φ2] and consider the property on the obtained
CTMC. The assumption that all Φ2-states are absorbing allows us to conclude
that ϕ is satisfied once a Φ2-state is reached at time t. Thus,

Lemma 1. If all Φ2-states are absorbing in M (i.e., M = M[Φ2]) then:

ProbM(s, Φ1 U [0,t] Φ2) = ProbM′
(s,✸[t,t] Φ2) =

∑
s′′|=Φ2

πM′
(s, s′′, t)

for M′ = M[¬Φ1 ∧ ¬Φ2].

Case B: Point-interval until for Φ2 → Φ1. Let ϕ = Φ1 U [t,t] Φ2 and assume
Φ2 → Φ1. Note that such implication holds in case of ✸-properties. With the
same motivation as for the previous case, we make (¬Φ1 ∧ ¬Φ2)-states absorbing.
Since Φ2 → Φ1 it follows that Prob(s, ϕ) equals the probability to be in a Φ2-
state at time t in the obtained CTMC:

Lemma 2. If Φ2 → Φ1 we have for any CTMC M:

ProbM(s, Φ1 U [t,t] Φ2) = ProbM′
(s,✸[t,t] Φ2) =

∑
s′′|=Φ2

πM′
(s, s′′, t).

for M′ = M[¬Φ1 ∧ ¬Φ2].

Case C: Bounded until. Let ϕ = Φ1 U [0,t] Φ2 and consider an arbitrary CTMC
M. This property is fulfilled if a Φ2-state is reached before (or at) time t via
some Φ1-path. Once such Φ2-state has been reached, the future behaviour of
the CTMC is irrelevant for the validity of ϕ. Accordingly, the Φ2-states can be
safely made absorbing without affecting the validity of ϕ. As a result, it suffices
to consider the probability of being in a Φ2-state at time t for M[Φ2], thus
reducing to the case in Lemma 1. As M[Φ2][¬Φ1 ∧ ¬Φ2] = M[¬Φ1 ∨ Φ2] we
obtain:

Theorem 1. For any CTMC M:

ProbM(s, Φ1 U [0,t] Φ2) = ProbM[Φ2](s, Φ1 U [0,t] Φ2)

=
∑

s′′|=Φ2

πM[¬Φ1∨Φ2](s, s′′, t).

Case D: Interval-until. Let ϕ = Φ1 U [t,t′] Φ2 with 0 < t � t′ and let M be
an arbitrary CTMC4. We first observe that for any path σ with σ |= ϕ: (i) Φ1
continuously holds in the interval [0, t](i.e., σ |= ✷[0,t]Φ1), in particular, s′ = σ@t
is a Φ1-state, and (ii) σ′ ∈ Path(s′), the suffix of σ that starts at time t, fulfills
the path formula Φ1 U [0,t′−t]Φ2.5 Let the intermediate state s′ ∈ Sat(Φ1) and
consider the set Σ(s′) of paths σ ∈ Path(s) where σ@t = s′ and σ |= ϕ. Then
4 Note that Prob(s, Φ1 U [t,t′] Φ2) �= Prob(s, Φ1 U [0,t′] Φ2) − Prob(s, Φ1 U [0,t] Φ2).
5 Formally, σ′ is the unique path with σ′@x = σ@(t+x) for any positive real x.
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Prs(Σ(s′)) equals Prob(s, Φ1 U [t,t] as′) times Prob(s′, Φ1 U [0,t′−t] Φ2). As the sets
Σ(s′) for s′ ∈ Sat(Φ1) are pairwise disjoint we obtain:

Prob(s, Φ1 U [t,t′] Φ2) =
∑

s′|=Φ1

Prob(s, Φ1 U [t,t] as′) · Prob(s′, Φ1 U [0,t′−t] Φ2).

To compute the probabilities Prob(s, Φ1 U [t,t] as′) for s′ |= Φ1 we use Lemma 2,
i.e., we switch from M to M1 = M[¬Φ1] and compute the transient probabilities
for any Φ1-state s′ at time t in M1. The probabilities Prob(s′, Φ1 U [0,t′−t] Φ2)
can be obtained as in Theorem 1. This yields the following result:

Theorem 2. For any CTMC M and 0 < t � t′:

ProbM(s, Φ1 U [t,t′] Φ2) =
∑

s′|=Φ1

∑
s′′|=Φ2

πM[¬Φ1](s, s′, t) · πM[¬Φ1∨Φ2](s′, s′′, t′−t).

With Theorem 2 we can calculate the values ProbM(s, ϕ), using one of the
following two methods. Let M2 = M[¬Φ1∨Φ2]. Either we calculate the matrices

A = (πM1(s, s′, t))s∈S,s′∈Sat(Φ1),
B = (πM2(s′, s′′, t′−t))s′∈Sat(Φ1),s′′∈Sat(Φ2)

and then take the product A · B. Or, we first calculate the distributions αs

for s ∈ S, given by αs(s′) = πM1(s, s′, t) and then compute ProbM(s, ϕ) =∑
s′′|=Φ2

πM2(αs, s
′′, t′−t). This alternative is based on the observation

∑
s′|=Φ1

αs(s′) · πM2(s′, s′′, t′−t) = πM2(αs, s
′′, t′−t)

for any Φ2-state s′′.6

Example 3. Consider our TMR with initial distribution α = α1
s3,1

and let Φ =
P�0.15(Φ1 U [3,7] Φ2) for Φ1 = up3 ∨ up2 and Φ2 = up2 ∨ up1. According to Theo-
rem 2 model checking Φ boils down to first computing the transient probabilities
at time 3, i.e., α2 = (πM1(s3,1, 3))s∈S in CTMC M1 of Fig. 1(a) where all ¬Φ1-
states are made absorbing. We obtain α2 = (0.968, 0.0272, 0.011, 0, 0.003) with a
precision of ε = 10−6 for λ = 0.01, ν = 0.001, µ = 1.0 and δ = 0.2. In the second
phase, we compute the transient probabilities at time 4 in CTMC M2 of Fig. 1(b)
starting from initial distribution α2, i.e., computing

∑
s′′|=up2

πM2(α2, s
′′, 4) ≈

0.1365. Thus, the property Φ is violated.

Uniformisation. Based on the general principle of uniformisation [25], efficient
techniques to compute transient state probabilities for CTMCs have been pro-
posed [16,15]. With uniformisation, the transient probabilities of a CTMC are
6 For both alternatives, in the worst case, for any state s, we need a transient analysis

in M1 (with initial state s) and M2 (with initial distribution αs). The second
alternative might be preferable if there are only a few different distributions αs.
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Fig. 1. CTMCs to be analysed for checking P�0.15((up3 ∨ up2) U [3,7] (up2 ∨ up1))

computed via a so-called uniformised DTMC which characterises the CTMC at
state transition epochs.

Denoting with π(α, t) the vector of state probabilities at time t, i.e., π(α, t) =
(π(α, s1, t), · · · , π(α, sN , t)) (with N = |S| the number of states), the Chapman-
Kolmogorov differential equations characterise the transient behaviour: π′(α, t)
= π(α, t) · Q, where Q = R − diag(E). A formal solution is then given by the
Taylor-series expansion:

π(α, t) = α · eQ·t = α ·
∞∑

i=0

(Q · t)i
i!

.

This solution, however, should not be used as the basis for a numerical algorithm
since: (i) it suffers from numerical instability due to the fact that Q contains
both positive and negative entries; (ii) the matrix powers will become less and
less sparse for large i, thus requiring O(N2) storage; (iii) it is difficult to find a
proper truncation criterion for the infinite summation.

Instead, by choosing q = maxi{E(si)}, we construct the uniformised DTMC
with transition probability matrix P = I + Q/q. By the choice of q, P is a
stochastic matrix. Substituting Q = q(P− I) in the above solution, we obtain

π(α, t) = α ·
∞∑

i=0

e−q·t (q · t)i
i!

Pi,

which can be rewritten as

π(α, t) =
∞∑

i=0

PP (i) · πi,

where PP (i) = e−q·t (q·t)i

i! is the i-th Poisson probability with parameter qt, and
πi = πi−1P and π0 = α. The Poisson probabilities can be computed in a stable
way with the algorithm of Fox and Glynn [14]. There is no need to compute ex-
plicit powers of the matrix P. Furthermore, since the terms in the summation are
all between 0 and 1, the number of terms to be taken given a required accuracy,
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can be computed a priori. For large values of qt, this number is of order O(qt).
Notice, however, that for large values of qt, the DTMC described by P might
even have reached steady-state, so that a further reduction in computational
complexity is reached. For further details, see [28,18].

Regarding storage complexity, we note that we require O(3N) storage for the
probability vectors and O(ηN) for the matrix P, where η denotes the (average)
number of transitions originating from a single state in the DTMC (typically
η << N). Regarding computational complexity, to compute π(α, t) we require
the sum of O(qt) vectors, each of which is the result of a matrix-vector multi-
plication. Given a sparse implementation of the latter, we require O(ηN) scalar
multiplications for that, so that we have an overall computational complexity of
O(qt · ηN).

4 Abstraction with Bisimulation (Lumping) Equivalence

In this section, we discuss some techniques to reduce the state space of a CTMC.
These techniques are mainly based on the observation that (a slight variant
of) ordinary lumping equivalence (i.e., bisimulation) preserves all CSL-formulas.
This result is in the spirit of [8] where bisimilar states of an ordinary transition
system are shown to satisfy the same CTL-formulas. Similar results have been
established for many types of transition systems and branching-time logics; e.g.,
in the probabilistic setting, [2] shows that probabilistic bisimulation on DTMCs
preserves PCTL [17]. Our result below can be considered as the continuous
version of that result. Let M = (S,R, L) be a CTMC, F a set of CSL-formulas,
and LF : S → 2F a labelling defined by LF (s) = {Φ ∈ F | s |= Φ }.
Definition 1. An F -bisimulation on M = (S,R, L) is an equivalence R on S
such that whenever (s, s′) ∈ R then LF (s) = LF (s′) and R(s, C) = R(s′, C) for
all C ∈ S/R. States s and s′ are F -bisimilar iff there exists an F -bisimulation
R that contains (s, s′).

Here, S/R denotes the quotient space and R(s, C) abbreviates
∑

s′∈C R(s, s′).
F -bisimulation is a slight variant of Markovian bisimulation (which is defined
on CTMCs with action-labelled transitions) on CTMCs with labelled states.
Markovian bisimulation coincides with (ordinary) lumping equivalence [11], a
well-known notion to aggregate CTMCs.

For s ∈ S, let [s]R denote the equivalence class of s under R. For M =
(S,R, L) we define the CTMC M/R = (S/R,RR, LR) with RR([s]R, C) =
R(s, C) and LR([s]R) = LF (s). That is, M/R results from M by building the
quotient space under R and labelling states with F (rather than AP). M/R
can be computed by a modified version of the partition refinement algorithm
for ordinary bisimulation without an increase of the worst case complexity [23].
Let CSLF denote the smallest set of CSL-formulas that includes F and that is
closed under allCSL-operators. In the following we write |=M for the satisfaction
relation |= (on CSL) on M.
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Theorem 3. Let R be an F -bisimulation on M and s a state in M. Then:

(a) For all CSLF -formulas Φ: s |=M Φ iff [s]R |=M/R Φ

(b) For all CSLF path-formulas ϕ: ProbM(s, ϕ) = ProbM/R([s]R, ϕ).

In particular, F -bisimilar states satisfy the same CSLF formulas.

Proof. Straightforward by structural induction on Φ and ϕ.

Theorem 3 allows to verify CSL-formulas on the possibly much smaller M/R
rather than on M, for AP-bisimulation R.

In addition, we can exploit the above result to our transformations of the
previous section by using the following observation. ¿From Theorem 3(b) and
Remark 2 it follows:

∑
s′|=M Φ

πM(s, s′, t) =
∑

S′|=M/R Φ

πM/R([s]R, S′, t) (1)

for any CSLF formula Φ and F -bisimulation R. This observation allows us to
simplify the CTMCs M[. . . ] that occur in the cases A–D of our model checking
procedure presented in the previous section in the following way. For cases C
and D, we compute the transient probabilities for Φ2-states in the CTMC M′ =
M[¬Φ1 ∨ Φ2]. Let F = { ¬Φ1 ∧ ¬Φ2, Φ2 } and R be the smallest equivalence on
the state space S of M′ that identifies all Φ2-states and all (¬Φ1 ∧ ¬Φ2)-states.
Clearly, R is an F -bisimulation on M′. The state space of M′/R is

S/R = Sat(Φ1 ∧ ¬Φ2) ∪ [Sat(Φ2)]R ∪ [Sat(¬Φ1 ∧ ¬Φ2)]R

Since Φ2 is a CSLF -formula, equation (1) yields
∑

s′′|=Φ2

πM′
(s, s′′, t) = πM′/R(s, [Sat(Φ2)]R, t)

for any state s ∈ Sat(Φ1 ∧ ¬Φ2). Similar arguments are applicable to case A
and B. As a result, the sets [Sat(¬Φ1 ∧ ¬Φ2)]R and [Sat(Φ2)]R in cases A–D
can be considered as single states. This may yield a substantial reduction of the
state space of the CTMC under consideration. ¿From a computational point of
view, the switch from M to the modified M[. . . ]/R is quite simple as we just
collapse certain states into a single absorbing state. The generator matrix RR

for M[. . . ]/R can be obtained by simple manipulations of the generator matrix
R for M (matrix multiplication).

Example 4. According to the above observations, in the CTMC of Fig. 1(a) we
may aggregate states [Sat(Φ1)]R = { s0,1, s0,0, s1,1 } into a single state. This new
state is reachable from s3,1 with rate ν and from s2,1 with rate 2λ+ν. In the
CTMC of Fig. 1(b) we may collapse [Sat(Φ2)]R = { s2,1, s1,1 } and [Sat(¬Φ1 ∧
¬Φ2)]R = { s0,0, s0,1 } into single states.
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5 Model Checking a Telephone System

In this section, we report on model checking the stochastic behaviour of an in-
stance of the plain-old telephone system (POTS), where two users concurrently
try to get connected to each other. In [21], we have shown how a formal spe-
cification of the POTS (in LOTOS) can be augmented with stochastic timing
constraints, leading to a model of more than 107 states. We aggregated this mo-
del compositionally using appropriate stochastic extensions of (strong and weak)
bisimulation [23], to come up with a lumped CTMC M of 720 states. Here we
model check the resulting CTMC using transient analysis. In short, the following
atomic propositions are used: conn characterises states where both partners are
connected to each other, and conversation is running. fed up characterises states
where either of the user is hooking the phone because he is apparently out of
luck, unable to reach his conversation partner. Our basic time unit is 1 minute.
The following properties are checked:

– P��p(✸[0,t]conn), the probability of being connected within t minutes.
– P��p(✸[t,t]conn), the probability of being connected after exactly t minutes.
– P��p(✸[100,100+t]conn), the probability of being connected at some time bet-
ween 100 and 100+t minutes.

– P��p(¬fed upU [t,100+t]conn), the probability of a running conversation bet-
ween t and 100 + t minutes, without failing to get connected beforehand.

Note that only the first property can be checked with the current implemen-
tation [22] of the non-symbolic model checking algorithm based on numerical
integration [6]. We do not instantiate p, as the execution times and computed
probabilities will be the same for all p ∈ ]0, 1[. Statistics of the computation
time needed to check these formulas globally, i.e., for all states, are depicted in
Table 1. They have been obtained by means of a trial implementation of the
uniformisation method written in C, running on a 300 MHz SUN Ultra 5 work-
station with 256 MB memory under the Solaris 2.6 operating system. (In all
cases reported below, the memory requirements are less than 20 MB.)

t P��p(✸[0,t]conn) P��p(✸[t,t]conn) P��p(✸[100,100+t]conn) P��p(¬fed up U [t,100+t]conn)
MV-mult. time MV-mult. time MV-mult. time MV-mult. time

0.1 59 7.75 138 41.91 15,325 3,549.70 5,234 351.75
1 102 10.75 267 75.04 15,368 3,552.69 5,349 378.05

10 583 38.40 1,714 416.38 15,848 3,580.27 6,795 747.21
100 5,081 303.33 15,265 3,541.84 20,347 3,845.27 20,347 3,956.01

1000 8,901 619.51 39,155 8,835.01 24,167 4,161.41 151,815 34,405.14
10000 8,901 624.68 39,155 8,902.41 24,167 4,166.52 151,815 34,567.23

Table 1. Computation time (in sec) and number of matrix-vector multiplications
(times 103) needed for checking CSL properties by means of uniformisation

From these statistics, we draw the following conclusions. (1) We observe a roug-
hly linear dependency between the time bound t and the run-time of uniformi-
sation, due to the fact that the (precomputed) number of iterations needed by
uniformisation is O(t). (2) The number of iterations needed for t � 1000 is con-
stant, due to the fact that our algorithm has a built-in steady-state detection.
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In other words, the chain at time 1000 is already behaving close to equilibrium,
up to a truncation error ε (set to 10−6 in all experiments). For time-bounds lar-
ger than 1000, transient analysis could in fact be replaced by a (much cheaper)
steady-state analysis. (3) The times needed to check P��p(✸[t,t]conn) are appro-
ximately one order of magnitude higher than those needed for P��p(✸[0,t]conn).
This is a consequence of the fact that the pruning of transitions in M[conn] (cf.
Theorem 1) leads to a CTMC containing mutually unreachable parts, and for
each state we perform transient analysis only on the reachable (lumped) CTMC.
On average, this chain has only 62 states, explaining the order of magnitude dif-
ference. Note that according to Lemma 2, transient analysis can take the original
chain (with 720 states) unchanged to check P��p(✸[t,t]conn), since conn → tt.
The two rightmost formulas involve more than one (iterative) transient solution,
on different lumped CTMCs (cf. Theorem 2). Their time consumption is mainly
determined by the size of the lower time bound (an observation that does not
hold in general).

6 Concluding Remarks

The main result of this paper is that the verification problem for probabilistic
timing properties, i.e., CSL-formulas of the form P��p(Φ1 U IΦ2), is reducible to
a transient analysis of CTMCs. Thus, efficient techniques for transient analy-
sis, such as uniformisation, can be adopted for model checking these formulas.
In addition, we showed that a slight variant of (ordinary) lumpability on CT-
MCs preserves all CSL-formulas. We illustrated these results by analysing a
plain-old telephone system. Future work includes the adaption of partial unifor-
misation [27] to our setting (thus allowing a partial search of the state space) and
considering a symbolic variant of our presented approach using multi-terminal
BDDs [4,12] in order to compare this approach with the symbolic (numerical
integration) approach in [6]. The extension of our approach towards Markov
reward models is reported in [7].
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