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Abstract. We present an algorithm that constructs a finite state “ab-
stract” program from a given, possibly infinite state, “concrete” program
by means of a syntactic program transformation. Starting with an initial
set of predicates from a specification, the algorithm iteratively computes
the predicates required for the abstraction relative to that specification.
These predicates are represented by boolean variables in the abstract
program. We show that the method is sound, in that the abstract pro-
gram is always guaranteed to simulate the original. We also show that the
method is complete, in that, if the concrete program has a finite abstrac-
tion with respect to simulation (bisimulation) equivalence, the algorithm
can produce a finite simulation-equivalent (bisimulation-equivalent) ab-
stract program. Syntactic abstraction has two key advantages: it can be
applied to infinite state programs or programs with large data paths, and
it permits the effective application of other reduction methods for model
checking. We show that our method generalizes several known algorithms
for analyzing syntactically restricted, data-insensitive programs.

1 Introduction

Model Checking [CE81,QS82] is a fully automatic method for checking that a
finite state program satisfies a propositional temporal specification. It has pro-
ved to be quite useful for the analysis of concurrent hardware and software
systems; there are several academic and commercial model checking tools. The
main obstacle to the wider application of model checking is the exponential gro-
wth in the size of the state space with increasing program size: current tools are
typically limited to programs with a few hundred boolean state variables. There
are two main approaches to ameliorating this state-explosion problem: composi-
tional verification, where one manually constructs a proof outline that exploits
the compositional structure of the program, while model-checking sufficiently
small components, and abstraction, where one constructs a smaller abstract pro-
gram in a manner which ensures that the specification holds for the original
program if it holds for the abstract program.

Abstraction is often carried out manually and justified only informally. For
large programs, such manual abstraction is error-prone and often infeasible. Our
focus in this paper, therefore, is on automating the abstraction process. We
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present an algorithm that constructs a finite state “abstract” program from a
given, possibly infinite state, “concrete” program by means of a syntactic pro-
gram transformation. The abstract program represents predicates of the concrete
program by boolean variables. Starting with the atomic predicates from a speci-
fication or statement of a property that is to be verified, the algorithm iteratively
computes the predicates required for the abstraction relative to that specifica-
tion, as well as the necessary updates to the corresponding boolean variables.
This is achieved by a syntactic analysis that does not construct the explicit tran-
sition graph either of the original or of the abstract program, each of which may
be too large to compute.

We show that the algorithm is sound, in that the abstract program is always
guaranteed to be a conservative approximation of (i.e., simulates) the original,
with respect to the set of specification predicates, AP . Under certain conditions,
the algorithm produces an exact (i.e., bisimular) abstraction of the original pro-
gram. The soundness result implies that a temporal property in ACTL∗ over AP
holds for the original program if it holds for the abstraction. For an exact ab-
straction, this is true for properties written in the full µ−calculus. We also show
that the algorithm is complete in the sense that, if the state transition graph
of the original program has a finite simulation (bisimulation) quotient, then the
algorithm can produce a finite simulation-equivalent (bisimulation-equivalent)
abstract program.

Syntactic abstraction has several advantages:

– The algorithm produces an implicit (syntactic) description of the abstract
program. Hence, other methods for model checking, such as symbolic (BDD-
based) model checking and partial-order reduction, can be applied to the
abstract program.

– It supports the abstraction of data-insensitive programs with large or infinite
data paths. Our method generalizes several earlier algorithms for analyzing
data-insensitive programs and may also be used in other cases, such as sym-
metric programs, where large reductions can be achieved through bisimula-
tion minimization.

– It can often be substantially more efficient than the symbolic minimization
algorithms of [BFH90,LY92,HHK95] as, unlike these methods, our algorithm
does not construct the explicit transition graph of the minimized system,
which could be quite large.

– For programs with bounded non-determinacy, our algorithm is able to con-
struct abstractions without the manual application of theorem-provers, as
proposed for other predicate abstraction methods (cf. [GS97,BLO98]).

The paper is structured as follows. In Section 2, we provide some background
on simulation, bisimulation, temporal logic and model checking. We describe the
basic algorithm in Section 3 and prove the soundness and completeness claims. In
Section 4, we present some useful extensions to the basic algorithm. In Section 5,
we describe several applications of the algorithm. Section 6 concludes the paper
with a discussion of related work.
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2 Background

We provide some background on abstraction and model checking, and present a
simple program syntax on which the analyses of the algorithm are defined.

2.1 Labeled Transition Systems

The state transition graph of a program is represented by a Transition System
(TS, for short) [Kel76] which is a tuple (S, ∆, I, AP, L), where
• S is the set of states,
• ∆ ⊆ S × S, is the (left-total) transition relation. We write s −→ t instead of
(s, t) ∈ ∆ for clarity.
• I ⊆ S is the set of initial states,
• AP is the set of atomic propositions, and
• L : S → 2AP is the state labeling function, which maps each state to the set
of atomic propositions that hold at that state.

A computation σ of the TS is an infinite sequence of states such that σ0 ∈ I,
and for each i, σi −→ σi+1. A TS is often constrained by a fairness condition,
expressed as a boolean combination of basic fairness conditions “infinitely often
p”, where p is a set of state pairs 1. A fair computation of the TS is a computation
that satisfies the fairness condition, where the basic fairness formula above is
satisfied iff transitions from p appear infinitely often on the sequence.

2.2 The µ-Calculus

The µ-calculus [Koz83] is a branching-time temporal logic, where formulas are
built from atomic propositions, boolean connectives, the least-fixpoint operator,
and the modality 〈〉φ (“there is a successor satisfying φ”). For a state s in a
TS M and a µ-calculus formula φ over the atomic propositions of M , we write
M, s |= φ to mean that “φ is true at state s in model M”. The sub-logic Aµ
consists of those µ-calculus formulae where every 〈〉 operator is under an odd
number of negations. It is possible [EL86] to encode a number of temporal logics,
including CTL, CTL∗ [CES86,EH86] and LTL [Pnu77] into the µ-calculus.

2.3 Simulation and Bisimulation

The correctness of any abstraction method is determined by the nature of the
relationship between the concrete and the abstract program. A typical relati-
onship is that the abstract program is able to match every computation of the
concrete program. This is formalized in the definitions below.

Definition 0 (Simulation Relation) [Mil71] A relation R ⊆ S×S is a simu-
lation relation on a TS M = (S, ∆, I, AP, L) iff for any (s, t) ∈ R, L(s) = L(t)
and for any u such that s −→ u, there exists v such that t −→ v and (u, v) ∈ R.
1 The usual unconditional, weak and strong fairness conditions can be written as

boolean combinations of basic fairness conditions.
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Definition 1 (Bisimulation Relation) [Par81] A relation R is a bisimulation
on TS M iff R is symmetric and a simulation relation on M .

State t simulates a state s iff (s, t) is in the greatest simulation, which exists
as simulations are closed under arbitrary union. States s and t are simulation-
equivalent (written as s ∼ t) iff they simulate each other. States s and t are
bisimular in M (written as s ≈ t) iff (s, t) is contained in the greatest bisimula-
tion relation on M . The connection between model checking and these notions
of program equivalence is as follows.

Theorem 0 For a TS M and states s, t in M ,

1. (cf.[GL94]) For any Aµ formula f on AP , if t simulates s then M, t |= f
implies M, s |= f .

2. (cf. [BCG88]) For any µ-calculus formula f on AP , if s ≈ t then M, s |= f
iff M, t |= f . �

As ∼ (≈ ) is an equivalence relation, it induces a quotient TS whose states
are the equivalence classes of M w.r.t. ∼ (≈ ), the initial set of states is the
equivalence classes of the initial states of M , and there is a transition (C, a, D)
iff (∃s, t : s ∈ C ∧ t ∈ D : s

a−→ t).

2.4 Program Syntax

Our algorithms transform one program text to another. For our purposes, instead
of specifying a particular program syntax, it suffices to consider a program as
being defined on a set of variables, and being specified once an initial condition,
a transition relation and a fairness constraint are defined. These are specified
syntactically as predicates: a predicate is a quantifier-free formula of a first-
order logic. The relation symbols form the atomic predicates. Some relation and
function symbols may have fixed interpretations, for instance =,≤,+.

Definition 2 (Program) A program is specified by a tuple (X, I, T, F ), where

– X is a finite, non-empty set of variables. Each variable x has an associated
domain of values, dom(x).

– I(X) is the initial condition, specified as a predicate on X.
– T (X, X ′) is the transition relation, specified as a predicate on X ∪X ′, where

X ′ is a set of “next-state” variables that is in 1-1 correspondence with X.
– F (X, X ′) is the fairness condition, specified as a boolean combination of the

basic fairness condition “infinitely-often p”, for a predicate p over X ∪X ′.

The semantics of such a program is given by a TS defined as follows. The
state space is the Cartesian product of the domains of the variables. The value of
an expression e in state s is denoted by e(s); this can be defined by induction on
the expression syntax. An initial state is one for which the initial state predicate
evaluates to true. The transition relation is defined as follows: there is a transition
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s −→ t iff T (s, t) is true. The state labeling function L is defined by: for each
atomic predicate P , P ∈ L(s) iff P (s) = true. The fairness condition of the fair
TS is obtained in a straightforward manner from the condition F .

We develop our algorithm under the assumption that the set of predicates
is effectively closed under the application of the “weakest liberal precondition”
transformer [Dij75], denoted by wlp(P ) (in terms of the µ-calculus, wlp(P ) =
¬〈〉(¬P )).

Typical programming constructs can be rewritten into the program syntax
presented above. For example, a guarded command [Dij75], which has the form
g(X) ↪→ U := e(X), defines the transition relation (g(X) ∧ (

∧
i : xi ∈ U :

x′
i = ei(X)) ∧ (

∧
i : xi ∈ X\U : x′

i = xi). For guarded commands, wlp(P )
can be calculated by simple substitution as (g(X) ⇒ P [U ← e(X)]), where
P [U ← e(X)] is the predicate obtained by replacing each occurrence of xi ∈ U
by ei in P , for all i. Programs with external, non-deterministic inputs can be
defined by partitioning the set of variables X into the input variables Y , which
are unconstrained, and state variables Z, whose next-state values are constrained
by the transition relation. Using the syntax [Y ] : g(X) ↪→ U := e(X) for
describing such transitions, wlp(P ) is given by (∀Y :: g(X) ⇒ P [U ← e(X)]).
In this case, it may be necessary to use a quantifier-elimination procedure, such
as that for Presburger arithmetic, to re-write wlp(P ) as a predicate.

3 The Abstraction Algorithm

We motivate and describe our algorithm for the simpler case of programs that
exhibit bounded non-determinism. For such programs, the transition relation
T (X, X ′) is equivalent to a bounded disjunction (

∨
i :: Ti(X, X ′)), where each

Ti is deterministic, i.e., for any state s, there is at most one state t such that
Ti(s, t) holds. We assume that the transition relation is given in this form and
refer to each Ti as an action. The key property that we exploit is that for a
deterministic action a, wlpa distributes over all boolean operators 2.

We do not consider fairness conditions in this section. The extensions needed
to handle fairness and unbounded nondeterminism are described in Section 4.
The results established here carry over, essentially unchanged, to the general
case.

3.1 A Motivating Example: the 2-Process Bakery Protocol

Consider the 2-process “Bakery” mutual exclusion protocol [Lam74] presented
in Figure 1 as a finite collection of guarded commands. The specification of
mutual exclusion in CTL is AG(¬(st1 = C ∧ st2 = C)). To verify this property,
an abstraction of the protocol needs to preserve at least the atomic predicates
st1 = C and st2 = C, as well as those in the initial condition: st1 = N , st2 = N ,
y1 = 0, y2 = 0. We may choose to retain the variables st1, st2, as they have
2 In the case of negation, wlpa(¬P ) ≡ wlpa(false) ∨ ¬wlpa(P )
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var st1, st2 : {N, W, C}
(* N=“Non-critical”, W=“Waiting”, C=“Critical” *)
var y1, y2 : natural
initially (st1 = N) ∧ (y1 = 0) ∧ (st2 = N) ∧ (y2 = 0)

action wait1 st1 = N ↪→ st1, y1 := W, y2 + 1
action enter1 st1 = W ∧ (y2 = 0 ∨ y1 ≤ y2) ↪→ st1 := C
action release1 st1 = C ↪→ st1, y1 := N, 0

action wait2 st2 = N ↪→ st2, y2 := W, y1 + 1
action enter2 st2 = W ∧ (y1 = 0 ∨ y2 < y1) ↪→ st2 := C
action release2 st2 = C ↪→ st1, y2 := N, 0

Fig. 1. The 2-process Bakery mutual exclusion algorithm.

small finite domains, but we would want to abstract y1, y2, as they have infinite
domains, retaining only those predicates on y1, y2 which are necessary to preserve
the control flow of the protocol. We do so by introducing auxiliary boolean
variables b1 and b2 which represent y1 = 0 and y2 = 0, respectively. The initial
condition can now be expressed as (st1 = N) ∧ b1 ∧ (st2 = N) ∧ b2.

To preserve the correspondence between b1 and y1 = 0, we need to compute
an update to b1 for each action. For a deterministic action a, b1 is true after an
update to y1 exactly if wlpa(y1 = 0) is true before the update. For the action
wait1 , the syntactic wlp calculation yields ((st1 = N) ⇒ (y2 + 1 = 0)). Now,
however, we have a new predicate (y2 + 1 = 0), which can be simplified to false,
as y2 is a natural number. Hence, the modified action is:

action wait1 st1 = N ↪→ st1, y1, b1 := W, y2 + 1, (st1 = N ⇒ false)
We may simplify this further by replacing occurrences of the guard expression

by true in the assignment, to get:
action wait1 st1 = N ↪→ st1, y1, b1 := W, y2 + 1, false
The result of wlpenter1

(y1 = 0) is ((st1 = W ∧ (y2 = 0 ∨ y1 ≤ y2)) ⇒ (y1 =
0)). In this case, we have a new atomic predicate, y1 ≤ y2, which must therefore
be tracked by a new boolean variable, b3. Repeating the steps above, we get:

action enter1 st1 = W ∧ (b2 ∨ b3) ↪→ st1, b1 := C, b1

This iterative process of computing weakest preconditions and collecting new
predicates terminates for our example program; i.e., after a finite number of ite-
rations, no new predicates are generated. Hence, it suffices to consider only these
predicates to verify the property. As the auxiliary boolean variables track the
predicates exactly, the infinite-domain variables y1 and y2 are unnecessary and
can be removed, resulting in the finite-state abstraction shown in Figure 2, which
is bisimulation-equivalent to the original with respect to the initial predicate set
{st1 = C, st2 = C}. From Theorem 0, the mutual exclusion property is true of
the original program if and only if it is true of the abstraction.
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var st1, st2 : {N, W, C}
(* N=“Non-critical”, W=“Waiting”, C=“Critical” *)
var b1, b2, b3 : boolean
(* b1 = (y1 = 0), b2 = (y2 = 0), b3 = (y1 ≤ y2) *)
initially (st1 = N) ∧ b1 ∧ (st2 = N) ∧ b2 ∧ b3

action wait1 st1 = N ↪→ st1, b1, b2, b3 := W, false, b2, false
action enter1 st1 = W ∧ (b2 ∨ b3) ↪→ st1, b1, b2, b3 := C, b1, b2, b3

action release1 st1 = C ↪→ st1, b1, b2, b3 := N, true, b2, true

action wait2 st2 = N ↪→ st2, b1, b2, b3 := W, b1, false, true
action enter2 st2 = W ∧ (b1 ∨ ¬b3) ↪→ st2, b1, b2, b3 := C, b1, b2, b3

action release2 st2 = C ↪→ st1, b1, b2, b3 := N, b1, true, b1

Fig. 2. Abstraction of the 2-process Bakery mutual exclusion algorithm.

3.2 The Algorithm

The Bakery example introduced the key ingredients of our algorithm: starting
from the atomic predicates in the specification formula, predicates of the ori-
ginal program are represented by boolean variables in the abstraction, exact
updates for these boolean variables are computed by a syntactic wlp computa-
tion, possibly introducing new predicates to be examined, and simplifications are
performed to avoid introducing new predicates that are syntactically distinct but
semantically identical to predicates generated earlier. The algorithm is presented
in its entirety in Figure 3.

The algorithm maintains a correspondence table, C, which relates syntactic
atomic predicates to corresponding boolean variables. The algorithm also main-
tains two sets of atomic predicates: oldPred , which consists of those predicates
for which wlp has been calculated, and newPred , which consists of the unex-
amined predicates. Initially (step 1), oldPred is empty, and newPred contains
the atomic predicates of the specification formula, the initial condition, and the
actions. In each iteration (steps 2a-2c), wlp is calculated for each predicate in
newPred and the result is massaged (described below) to extract new predicates,
for which new boolean variables are introduced. In steps 3, the abstract transi-
tion relation is defined by updating each boolean variable with the expression
formed by massaging wlp for the corresponding predicate.

Although the process of generating new predicates terminates for the Bakery
example, in general, it may not terminate. To ensure termination, we iterate
this process for K steps, where K is a parameter to the algorithm. After K
iterations, however, the predicates in newPred have not been processed by a
wlp computation. Boolean input variables are introduced for these predicates,
which are constrained by Φ to valuations that are consistent relative to their
corresponding predicates. Similarly, Ψ constrains the initial values of boolean
variables corresponding to the predicates in oldPred . In the definition of TA, the
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wlp operator is applied only to predicates from oldPred , so the result is in terms
of oldPred ∪ newPred and gets massaged into an expression on XA.

It is not necessary to add Φ and Ψ to obtain a program that is a conservative
approximation; these are needed only to establish the completeness results. If
the atomic predicates come from a class with quantifier elimination (such as
Presburger arithmetic), Φ and Ψ can be computed syntactically. In general, the
computability of Φ and Ψ is equivalent to the decidability of satisfiability for
predicates – in the worst case, Φ (similarly, Ψ) can be computed by checking the
predicate in the scope of the (∃X) quantifier for satisfiability for each valuation
of the boolean free variables. The decidability of this satisfiability question is
also assumed for the symbolic minimization algorithms [BFH90,LY92,HHK95].

The massaging step (massage : (e, C) 7→ (e,newC , fP)) simplifies the ex-
pression e and replaces atomic predicates by corresponding boolean variables,
defining new boolean variables for predicates not already in C. These new pre-
dicates are collected in fP , and C is updated to newC by adding the new
predicate-variable correspondences. The resulting expression is denoted by e.
We also use this notation to let S represent the set of boolean variables corre-
sponding to the atomic predicates in set S. The simplifications accelerate the
convergence of the algorithm and are thus necessary in practice, but not in
theory, as shown in Theorems 3 and 4. Examples of simplification rules are:
((if c then e else f ) ≤ g) = if c then (e ≤ g) else (f ≤ g), (true ∧ x) = true,
(x = x) = true, (x + y) ≤ (x + z) = (y ≤ z), (if c then e else c) = (c ∧ e).
For example, if the expression e is (if x = u then y else x ) = u and the current
correspondence table is {(x = u, b)}, the massaging step produces the new table
{(x = u, b), (y = u, c)} and the massaged expression e = (b ∧ c).

There are several interesting claims that can be made about the algorithm,
despite its simplicity. The algorithm is sound, in that the abstract program is
guaranteed to simulate the original, with respect to the initial set of atomic
predicates, AP . A more interesting fact is that the algorithm is also complete,
in that, if the TS of the original program has a finite simulation (bisimulation)
quotient, then iterating the main loop (step 2) of the algorithm sufficiently many
times (i.e., with a large enough value for K) results in an abstract program whose
TS is simulation-equivalent (bisimulation-equivalent) to the original with respect
to AP . These propositions are stated precisely below. Due to space limitations,
we present only a sketch of the proof. We use the following notation: for an
abstract state t (which is always defined over oldPred), ↑ t (read as “up t”)
denotes the set of concrete states that agree with t on the valuations of the atomic
predicates in oldPred ; precisely, ↑t = {s|(∀P : P ∈ oldPred : P (s) ≡ P (t))}. Let
A be the TS of the abstract program, and C the TS of the concrete program.

Lemma 0 (Invariance Lemma) For every state t of A, ↑t is a non-empty set
of concrete states.

Proof Sketch. The formula Ψ ensures this for initial states, while Φ and the
wlp computation ensure that the invariant holds. �
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1. The initial set of atomic predicates consists of those in the specification formula,
the initial condition of the program, and the transition relation. This forms the
set of unexamined predicates, newPred . The set oldPred , of already examined
predicates is initially empty. The initial correspondence table C is empty.

2. While newPred is non-empty, and the iteration bound K is not reached,
a) Initialize freshPred to the empty set
b) For each predicate P in newPred and each action a, compute

(e, C, fP ) := massage(wlpa(P ), C), and add the predicates
in fP to freshPred .

c) Compute newPred , oldPred := freshPred , oldPred ∪ newPred
3. The abstract program (XA, IA, TA, FA) is formed as follows.

– XA = b∪ c, where b is the set of boolean variables corresponding to oldPred ,
and c is the set of boolean variables corresponding to newPred .

– IA(b) is defined as massage(I, C) ∧ Ψ , where
Ψ = (∃X :: I(X) ∧ (

∧
i : Pi ∈ oldPred : bi ≡ Pi(X))).

– TA(bc, b′c′) is defined as
(
∨

a :: Φ ∧ (
∧

i : Pi ∈ oldPred : b′
i ≡ massage(wlpa(Pi), C))), where Φ =

(∃X :: (
∧

i : Qi ∈ newPred : ci ≡ Qi(X))).
– As we are not considering fairness, both F and FA are true.

Fig. 3. The abstraction algorithm

Theorem 1 (Simulation Theorem) The finite state abstract program simu-
lates the concrete program w.r.t. the set of predicates AP .

Proof Sketch. The claim is proved by showing that the relation R defined by
(s, t) ∈ R iff s ∈↑t is a simulation relation from C to A. As AP ⊆ oldPred , this
relation preserves the values of the predicates in AP . �

Theorem 2 (Bisimulation Theorem) If newPred = ∅ on termination of
step 2 of the abstraction algorithm, then the finite state abstract program is
bisimulation-equivalent to the concrete program w.r.t. the set of predicates AP .

Proof Sketch. If newPred = ∅ upon termination then, for each atomic pre-
dicate P in oldPred and each action a of the concrete program, wlpa(P ) is a
predicate over oldPred . As each action a is deterministic, for each predicate P ,
the transition P

′
= massage(wlpa(P ), C) (step 3) exactly captures the change

to P after execution of action a. Let B be the relation on the disjoint union
of the abstract and concrete programs defined by (s, t) ∈ B iff s ∈↑t ∨ t ∈↑s.
The claim is proved by showing that B is a bisimulation, under the condition
newPred = ∅. �

Theorem 3 (Bisimulation Completeness) If the concrete program has a
finite reachable bisimulation quotient, there is an appropriate choice for the ite-
ration bound K such that the abstract program produced by the algorithm is
bisimulation-equivalent to the concrete program w.r.t. AP .
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Proof Sketch. Suppose that the concrete program has a finite reachable bisi-
mulation quotient. By the results in [BFH90,LY92], the states of this quotient
can be calculated as a finite partition Π by a symbolic partition refinement al-
gorithm. The classes of Π are defined by boolean combinations of a finite set of
atomic predicates, P, that includes AP . The minimization algorithm computes
the formulae defining these classes by repeated wlp computations. As wlp dis-
tributes over all boolean operators, these wlp computations may be rewritten to
apply wlp only to atomic predicates, which is what our algorithm does. Since
the unexamined predicate set newPred is obtained through wlp computations in
a breadth-first manner, the algorithm eventually generates every predicate ne-
cessary for describing the classes of Π. Let K be the least iteration after which
P ⊆ oldPred holds.

While the classes of the quotient can be described using a finite number
of atomic predicates, our algorithm considers each predicate individually, not
as part of a class formula. Hence, it is possible for our algorithm to generate
new predicates (even semantically new predicates) beyond the Kth iteration. If
newPred is empty after K iterations, the claim follows by Theorem 2. Otherwise,
define the relation R by (s, t) ∈ R iff the concrete state s and the set of concrete
states ↑ t are both included in the same class of Π. As the extra predicates
in oldPred\P are unnecessary, the relation B defined by sBt iff (sRt ∨ tRs)
can be shown to be a bisimulation between C and A. As AP ⊆ oldPred , this
bisimulation preserves the predicates in AP . �

Theorem 4 (Simulation Completeness) If the concrete program has a finite
simulation quotient, there is an appropriate choice for the iteration bound K such
that the abstract program produced by the algorithm is simulation-equivalent to
the concrete program w.r.t. AP .

Proof Sketch. There is a partition refinement algorithm [HHK95] to compute
the greatest simulation relation that also employs wlp computations in a manner
similar to the bisimulation minimization algorithms. The claim then follows from
arguments similar to those in the proof of Theorem 3. �

4 Extensions to the Algorithm

4.1 Retaining a Set of Finite-Domain Control Variables

The algorithm can be easily modified to retain a set of finite-domain control va-
riables V while abstracting out the rest (X\V ). We assume that V is closed un-
der next-state dependencies; formally that, for any predicate P (V ), wlpa(P (V ))
does not introduce any atomic predicates over X\V other than those already
present in the action a. During the massaging process, atomic predicates over V
are not replaced with corresponding boolean variables. After step 2 terminates,
the concrete program transitions for the V -variables are massaged and copied
over to the abstract program. This modification was used in the Bakery example
to retain the variables st1, st2. It is particularly useful when data variables are
to be abstracted while retaining control variables.
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4.2 Handling Fairness

There are two ways in which fairness may be specified. In the first type, one
may specify fairness constraints on the actions of the program. Since the ab-
stract program is strongly similar (bisimular) to the original, Aµ (µ) properties
over fair computations that hold in the abstract program also hold of the origi-
nal. If fairness is specified instead by constraints on program states, we can add
the atomic predicates from these constraints to newPred in step 1 of the algo-
rithm and, in step 3, massage the fairness conditions to get the corresponding
conditions for the abstract program.

4.3 Abstracting Programs with Unbounded Nondeterminacy

We presented our algorithm for programs with bounded non-determinacy, which
was exploited by considering each deterministic action individually. For transi-
tion relations that exhibit unbounded nondeterminacy, this partitioning is not
possible, so we adopt a slightly different strategy. The key idea is to replace the
computation (in step 2) of wlp for individual predicates with a computation of
wlp for all clauses formed out of oldPred ∪newPred (a clause is disjunction of li-
terals, where each literal is an atomic predicate or its negation). This algorithm
is both sound and complete, in the sense used earlier; however, it is probably
impractical as an exponential number of clauses is generated in each iteration
of step 2. We present below a simpler algorithm which is sound but not com-
plete; however, as shown in the next section, it generalizes existing algorithms
for data-insensitive programs.

Consider a partitioning of the transition relation into actions of the form [W ] :
g(V, W ) ↪→ V := e(V, W ), where W is a set of unbounded input variables,
and V is a set of state variables. Hence, wlpa(P (V )) is (∀W :: wlpV

a (P )), where
wlpV

a (P ) is g(V, W ) ⇒ P (W, e(V, W )). The expression wlpV
a (P ) may contain

two types of predicates: state predicates over V and “mixed” predicates over
V ∪W . Step 2 of the original algorithm is replaced with the following.

1. Compute wlpV
a (P ) repeatedly with only the state predicates in newPred until

no new state predicates are generated or the iteration bound K is reached.
2. If the iteration bound K is reached, proceed as before. Otherwise, define a

boolean input variable ci for each mixed predicate Pi in newPred ∪ oldPred ,
and compute F = (∃W :: (

∧
i :: ci = Pi(W, V ))), which is the condition for a

c-valuation to be consistent. Quantifier-elimination results in a definition of
F as a predicate on V ∪{ci}. If there are new state predicates in F , add those
to newPred and return to the first step, otherwise conjoin massage(F, C) to
the abstract transition relation.

Theorem 5 (i) The modified algorithm always produces a conservative abstrac-
tion. (ii) If the algorithm terminates at step 2 with newPred = ∅, the abstract
program is bisimular to the concrete program w.r.t. AP .�
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5 Applications

From the completeness results, our method can be applied to any program that
has a finite quotient relative to the atomic predicates in the specification. Specific
types of programs are particularly amenable to the application of this algorithm.

5.1 Data-Insensitive Programs

We define data-insensitive programs as those that have a finite simulation quo-
tient that preserves the values of all control variables. Hence, the control-flow is
dependent on only a finite number of data predicates. Several papers describe
restrictions on program syntax to ensure data-insensitivity, and provide abstrac-
tion algorithms which replace data domains by small finite domains, keeping
the program actions unchanged [Wol86,HB95,ID96,Laz99]. This is justified by
showing a bisimulation between the large- and small-domain instances.

Our program transformation method terminates for each of the above classes
of programs. For instance, in [ID96], the only atomic predicate is =, and every
assignment has the form X := Y . As there are n2 distinct atomic equality
predicates over the n variables xi ∈ X, our algorithm terminates in at most n2

steps, creating a bisimulation-equivalent abstraction by Theorem 5. The trans-
formation of [ID96] replaces each data domain with [0 . . . n], hence the abstract
state is represented by n ∗ log(n) bits. In contrast, if only a few combinations of
equality predicates are necessary, our method will result in states representable
with fewer than n ∗ log(n) bits 3. One may also show the following theorem.

Theorem 6 For programs without unbounded inputs where assignments are of
the form X := Y , our abstraction algorithm terminates with a bisimulation-
equivalent abstract program.

Our algorithm also terminates for showing that the program below has an
infinite computation, which is not possible to show with a finite domain method
(cf. [HB95]). Thus, our algorithm is strictly more powerful than the finite-domain
methods.

var x : natural
initially x = 0
action a[i : natural] (x < i) ↪→ x := i

5.2 Symmetric Programs

Bisimulation reductions for semantically symmetric programs have been pro-
posed in [ES93,CFJ93]. It is computationally difficult, however, to implement
such reductions symbolically (i.e., with BDD’s) [CFJ93]. Hence, [ET99] consider
syntactically symmetric programs, defined using symmetric predicates such as
3 A similar tradeoff occurs in finite-domain [PRSS99] vs. predicate abstraction

[SGZ+98] approaches to verifying combinational circuits over integer variables.
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(∀i :: P (i)). The reduction of such a program with n processes, each with k
local states, is obtained by introducing k variables {xi}, each with a domain of
[0 . . . n]. By considering symmetric predicates to be atomic, our algorithm can
be applied to such programs. In the worst case, it may produce all predicates of
the form xi ≥ l for each l ∈ [0 . . . n], requiring k ∗ (n + 1) (correlated) boolean
variables, but with a poly(n) size BDD for each action. On the other hand, as our
algorithm calculates only those predicates necessary for the reduction, it may
also produce a program with fewer than the k ∗ log(n) bits required by [ET99].

6 Related Work and Conclusions

Among related work, [GS97,CABN97,BLO98,CU98] also propose predicate ab-
straction methods. [CABN97] performs a simple syntactic transformation, but
requires the use of a constraint solver during the model checking process. The
methods of [GS97,BLO98,CU98] utilize general-purpose theorem proving to com-
pute the abstract program, which is defined over boolean variables that corre-
spond to an a priori fixed set of predicates. If the verification fails on the abstract
program, the set of predicates is refined heuristically, and the abstraction pro-
cess is repeated. In contrast, our algorithm, which has the same initial choice of
predicates, both refines the set of predicates and computes the abstract program
automatically, in a manner that is shown to be both sound and complete.

The papers [Wol86,ID96,HB95,Laz99] present algorithms for abstracting syn-
tactically restricted programs. As shown in the previous section, our algorithm
can be applied with guaranteed termination to these classes of programs, and is
more generally applicable.

The symbolic minimization algorithms in [BFH90,LY92,HHK95] produce an
explicit abstract transition system, which can be quite large and may preclude
the effective application of symbolic model checking and partial order reduction
methods. In contrast, our algorithm produces an implicit program description in
the same syntax as the original program, which can then be analyzed using any
model checking method. Our completeness results guarantee that our algorithm
can find an equivalent finite abstract program, if one exists, given an appropriate
termination bound.

The deductive model checking algorithm of [SUM99] produces an abstrac-
tion relative to a LTL specification by a process of iterative refinement which,
however, requires significant human intervention. In [KP00], it is shown that
finite state abstractions exist for programs that satisfy LTL properties; the com-
pleteness proof is non-constructive in general but partly utilizes predicate ab-
straction. Other automatic abstraction methods [DGG93,CGL94] apply only to
finite state systems. Other semi-algorithms [HGD95,KMM+97,BGP97,BDG+98]
directly model check infinite state systems without computing an abstract pro-
gram. The algorithm in [GS92] for model checking a special type of parameterized
system relies on a trace equivalent abstraction.

We have hand-simulated our algorithm for a simple data transfer protocol
that transmits natural numbers with 0 representing null data. The correctness
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property is that data that is sent is eventually received. The abstracted protocol
is verified by COSPAN using less resources (time, space) than the verification
of the original protocol with data domain size 1. We are currently developing a
prototype implementation to experiment with larger examples.
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