The STATEMATE Verification Environment
Making It Real

Tom Bienmiiller!, Werner Damm?, and Hartmut Wittke?2

! Carl von Ossietzky University, 26111 Oldenburg, Germany
Bienmueller@Informatik.Uni-Oldenburg.DE
2 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
{Damm, Wittke}@OFFIS.DE

Abstract. The STATEMATE Verification Environment supports requirement ana-
lysis and specification development of embedded controllers as part of the STATE-
MATE product offering of I-Logix, Inc. This paper discusses key enhancements of
the prototype tool reported in [2I5]] in order to enable full scale industrial usage of
the tool-set. It thus reports on a successfully completed technology transfer from
a prototype tool-set to a commercial offering. The discussed enhancements are
substantiated with performance results all taken from real industrial applications
of leading companies in automotive and avionics.

1 Introduction

This paper reports on a successful technology transfer, taking a prototype verification
system for STATEMATE [2J5] to a version available as commercial product offering. It is
only through the significant improvements reported in this paper that key companies are
now taking up this technology in an industrial setting. In particular, other approaches
such as [1514], though similar in overall goal, did as of today not reach a comparable
level neither in quality of handling nor degree of captured complexity.

The leading players in automotive and avionics base their product developments on
well established and highly matured process models, typically variations of the well
known V-model originally introduced as a standard for military avionics applications.
E.g. [16] reports on the development process and process improvements of Aerospatiale,
documenting the benefits of a model based development process. Overall product qua-
lity is critically dependent on the familiarity of system and software designers with the
established process, and any change, in particular the introduction of a technology com-
pletely novel to designers, can potentially cause significant process degradation, thus
leading to quality reduction rather than quality enhancements. It is thus essential to tune
layout and handling to use-cases well understood and easily appreciated by designers.
Particular causes of concern identified in numerous discussions with industrial partners
are:

— scariness of formal methods: With a typical background in mechanical or elec-
trical engineering, it is prohibitive to expose any of the underlying mathematical
machinery to designers. We tried to maintain as much of the “look and feel” of
the simulation capabilities of the tool-set, offering in particular pure push button
analysis techniques described in Section 2| which completely hide the underlying

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 561-B5671 2000.
(© Springer-Verlag Berlin Heidelberg 2000

562 T. Bienmiller, W. Damm, and H. Wittke

verification technology. We spent a significant effort in providing a tight integration
with STATEMATE for all verification related activities, as described in Section[4l.

— relation to testing: A standard topic of discussion is the relation to testing, which
typically causes confusion. The techniques are complementary, but model-checking
can take over a significant part traditionally handled by testing. In terms of the V-
diagram, the so-called virtual V supports model based integration of components
of subsystems, and model-checking based verification can replace all model-based
testing (if clear interface specifications are given), as well as capture a large share of
errors typically detected today in integration testing. We found that test engineers not
only accept but appreciate a transition, in which the traditional activity of designing
test sequences for properties captured only informally or even mentally is replaced
by the process of capturing these in forms of requirement patterns (provided as
library), leaving construction of test-sequences to the model-checker.

— user models: Test engineers constitute only one out of a number of identified classes
of users. While there are differences in company cultures, we feel that a second pro-
minent use-case of model-checking rests in its capabilities as a powerful debugging
tool, simply reducing the number of iterations until stable models are achieved, and
thus reducing development costs.

Of slightly different nature, though similar in spirit, is the introduction of a metho-
dology for supporting successive refinements of abstractions. We allow to selectively
“degrade” accuracy, with which the model-checker tracks computations on selected ob-
jects within the cone-of-influence for a given property. In particular, all tests dependent
on floats are over approximated, while for objects with finite domain a more refined view
of computations can be maintained (see Section B). This technique is complemented by
a symbolic evaluation engine, whose underlying machinery rests on a simplified, but re-
stricted version of the first-order model-checking algorithm documented in [1]—see [1]
for a description of the use of these enhancement on automotive applications.

While the prototype system reported in [2)5] was based on the SVE system [10],
the current version rests on a tight integration with the VIS model-checker [11]] and
the CUDD BDD package [[17], yielding in average a five time performance boost for
model-generation times and a 50% speed-up for model-checking.

Acknowledgments. The development of the STATEMATE verification environment has
been a collaborative effort of our research team. We gratefully acknowledge the excellent
cooperation with Jirgen Bohn, Udo Brockmeyer, Claus EfSmann, Martin Franzle, Hans
Jirgen Holberg, Hardi Hungar, Bernhard Josko, Jochen Klose, Karsten Liith, Ingo Schinz
and Rainer Schlor, with Peter Jansen (BMW), Joachim Hofmann and Andreas Nagele
(DaimlerChrysler — DC), and Geoffrey Clements (British Aerospace — BAe), with the
VIS Group, in particular Roderick Bloem, for supporting the integration, Fabio Somenzi
for the CUDD BDD package and I-Logix, in particular Moshe Cohen.

2 Model Analysis

The STATEMATE semantics [12] contains modeling techniques which enables simul-
taneous activation of conflicting transitions or nondeterministic resolution of multiple

The STATEMATE Verification Environment 563

write accesses to data-items. Even if these mechanisms are captured by the STATEMATE
semantics, such properties prove to be errors in later design processes, where the design
is mapped to more concrete levels of abstraction, for instance, by using code-generation
facilities.

The current version of the verification environment has been extended by push-button
analysis for STATEMATE designs to be able to verify if some robustness properties are
fulfilled by the system under design. These debugging facilities cover

a) simultaneous activation of conflicting transitions,
b) several write accesses to a single data-item in the same ste;ﬂ, and
c¢) parallel read- and write-accesses to the same object.

Besides these robustness checks, which are completely automated, the verification en-
vironment offers simple reachability mechanisms to drive the simulation to some user
provided state or property, for example, a state where some specific atomic proposition
holds. Such analysis can be used to verify, for instance, that states indicating fatal errors
are not reachable. In the context of testing, reachability related analysis can be used for
achieving simulation prefixes.

These use cases require—in contrast to verification activities related to quality ac-
ceptance gates for complete Electronic Control Units (ECUs) or subsystems—a white
box view of the underlying model, allowing to refer to states and transitions of the model,
typically asking for state-invariants.

Implementation and Results. Model analysis is performed using symbolic model-
checking as described in Section[Il. In order to use model-checking for model analysis,
the finite state machine describing the model’s behavior is extended automatically by
observers, which allow to specify robustness properties as atomic propositions p. These
propositions are then checked using simple AG(p) formulae, stating that nothing bad
ever happens. If there is a path leading to some state o with o |= —p, then that path is a
witness for erroneous modeling. This path can be used to drive the STATEMATE simulator
as described in [214].

Model analysis has been successfully applied to industrial sized applications like
a central locking system (BMW; c.f. [7]), a main component of a stores management
system of an aircraft (BAe; c.f. [2]), and an application of another leading european car
manufacturer. Each application consists of up to 300 state-variables and 80 input-bits.
In every model, all types of robustness failures were detected, consuming 300 seconds
of analysis time in average on an UltraSparc II, 277MHz, equipped with 1GB of RAM.
Note that these results have been achieved on top level designs. If these facilities will—as
intended—be used while developing a design, model analysis will be performed much
faster as it will be applied mainly to subcomponents of a complete system.

! Within STATEMATE, W/W-races are reported disregarding the values to be written simulta-
neously. Besides such an analysis, the verification environment also provides an enhanced
W/W-race detection, also taking into account the values to be assigned, since designers often
considered W/W-races wrt. equal values to be not harmful.

564 T. Bienmiller, W. Damm, and H. Wittke
3 Propositional Abstraction

Several different approaches have been proposed in the literature to overcome the state
explosion problem, which is inherent even to symbolic model checking. Besides tech-
niques for compositional reasoning, the current version of the STATEMATE verification
environment provides a simple but powerful abstraction technique, which is offered to
the user as special verification method for component proofs. This abstraction method
improves the approach described in [2].

State of the art model checkers like VIS [11] compute the cone-of-influence (COI)
of a model M regarding a requirement ¢ before verification is initiated. The COI of M
contains those variables of M, which may influence the truth value of ¢. As the COI
preserves the exact behavior of M regarding ¢, it potentially still contains very complex
computations for its variables—this complexity often remains too high for successful
verification. On the other hand, the COI provides useful information about dependencies
of objects within M when verifying ¢.

Even if the COI contains all variables which may influence requirement ¢, some of
them can safely be omitted if ¢ must hold for any value of these variables. If the exact
valuation for some variable x is not required to verify ¢, also all computations for its
concrete representation can be omitted. The propositional abstraction supported in the
STATEMATE verification environment provides a mechanism to automatically compute
an over-approximation M, of M wrt. a user selected set of variables from within the
COL. Every computation required to build M, is performed on a higher level language
SMI [3], which serves as intermediate format in the STATEMATE verification environment.
Note that also the COI can be calculated on that level. Since it is not required to build M
to obtain M,, the abstraction technique becomes suitable also for models containing
infinite objects. Abstracted variables are eliminated and only their influence on other
objects is maintained in M.

Let x be a variable to be abstracted. Then, each condition b occurring in M is repla-
ced by Ja.0[Assignments to x are eliminated, and if x is referenced in a right hand side
of an assignment y := (..., x,...), the assignment is replaced by y := y_inp, where
y-inp is a fresh input ranging over the domain of y 8. The model checking problem
becomes simpler on the abstract model, as any computations regarding x are not further
in use.

The verification environment offers an application methodology for propositional ab-
straction, which is based upon an iterative scheme:

1) compute cone-of-influence of M regarding ¢,
2) select set of variables to be abstracted from M and compute M,,
a) if M, = ¢, the requirement also holds for M,
b) if verification fails due to complexity or a (user defined) timeout occurs for M,
set M :=M, and go to[l)),
c) otherwise, analyze error-path to identify needed increase of accuracy.

! Since SMI does not provide existential quantification, this is approximated by replacing positive
occurrences of propositions referring to x by true, while negative ones are replaced by false.

2 [2]] reports other possible types of computations for M, These types differ in the remaining
degree of information about some abstract variable x in M.

The STATEMATE Verification Environment 565

Results. The abstraction technique and its application methodology have been comple-
tely integrated into the verification environment. The abstraction technique itself proves
to be powerful for industrial applications. Verification of some non-trivial safety re-
quirements regarding a BAe application (stores management system) with up to 1200
state-bits became possible using this type of abstraction within a couple of seconds. The
number of state-bits dropped to 160 in the abstract model. Propositional abstraction has
also been successfully applied to a DC application [[13]], which originally contained four
32-Bit integer and two real variables. The automatically abstracted version used only
80 state-bits and 7800 BDD nodes and model-checking some relevant safety properties
was performed successfully within 60 seconds.

4 Integration

The tool-set for STATEMATE verification is enhanced with a graphical interface which
significantly eases its use. All verification related activities can be performed by graphical
operations. Compiling the design to the internal representation for the verification [4] as
well as model analysis described in Section[2]can be initiated directly from appropriate
icons.

The verification environment provides a behavioral view for each activity of the STA-
TEMATE design. This allows to apply model analysis on each activity separately. Results
are recorded in a report. Witness paths found by the analysis operations are translated into
simulation control programs [4], which can be used to drive the STATEMATE simulator.

Verification of specific properties of the design under consideration is supported by
a graphical specification formalism integrated in the user interface. For each activity of
the design the user can state requirements using predefined specification patterns, which
can also be employed to express assumptions about the environment of an activity.
Typical properties for verification are offered as a library of patterns, which can easily
be instantiated in customized specifications.

The user interface ensures automatic translation of requirements into temporal logic
formulae [9], while assumptions about the environment of an activity are compiled into
observer automata. Verification is done by adding the observers for the assumptions
plus fairness constraints to the model [6] and performing regular model checking using
the CTL model checker VIS. This process is managed by the user interface, hiding all
control aspects from the user.

Creation of proof obligations and execution of proof tasks is integrated in the user
interface. The interface keeps track of verification results. Proof-results are automatically
invalidated by changes in the design or modifications of the specification. A fine granular
dependency management ensures minimal invalidation. Proofs can be established again
wrt. the changes by re-executing the affected proof tasks. Witness sequences are collected
and managed by the environment. The user can easily animate runs of the activity
violating requirements by using the STATEMATE simulator. Additionally, a violation can
be displayed as set of waveforms.

The user interface offers propositional abstraction for each proof task. The abstraction
iterations discussed in Section[3are recorded and automatically reapplied when the proof
task needs to be re-executed, for example, if some changes are made to the model.

Compositional reasoning is guided by the user interface as described in [2]]. Specifica-
tions of sub-components can be used hierarchically to derive specifications of composed

566 T. Bienmiller, W. Damm, and H. Wittke

activities of the design. Such structural implications are maintained wrt. the verification
results for the sub-activities.

5 Conclusion

We have described key enhancements taking a prototype verification system for STATE-
MATE to a verification environment now available as commercial offering from I-Logix.
As part of the ongoing cooperation, further extensions of the technology are under de-
velopment, including in particular support for industrially relevant classes of hybrid
controller models and support for a recently developed extension of Message Sequence
Charts called Live Sequence Charts [8]]. Within the SafeAir project, the same verification
technology is linked to other modeling tools used by our partners Aerospatiale, DASA,
Israeli Aircraft Industries, and SNECMA. In cooperation with BMW and DC we are
integrating further modeling tools.

References

[1] Tom Bienmiiller, Jiirgen Bohn, Henning Brinkmann, Udo Brockmeyer, Werner Damm,
Hardi Hungar, and Peter Jansen. Verification of automotive control units. In Ernst-Riidiger
Olderog and Bernd Steffen, editors, Correct System Design, number 1710 in LNCS, pages
319-341. Springer Verlag, 1999.

[2] Tom Bienmiiller, Udo Brockmeyer, Werner Damm, Gert Dohmen, Claus EBmann, Hans-
Jirgen Holberg, Hardi Hungar, Bernhard Josko, Rainer Schlor, Gunnar Wittich, Hartmut
Wittke, Geoffrey Clements, John Rowlands, and Eric Sefton. Formal Verification of an
Avionics Application using Abstraction and Symbolic Model Checking. In Felix Redmill and
Tom Anderson, editors, Towards System Safety — Proceedings of the Seventh Safety-critical
Systems Symposium, Huntingdon, UK, pages 150—173. Safety-Critical Systems Club, Sprin-
ger Verlag, 1999.

[3] Jiirgen Bohn, Udo Brockmeyer, Claus Essmann, and Hardi Hungar. SMI — system modelling
interface, draft version 0.1. Technical report, Kuratorium OFFIS, e.V., Oldenburg, 1999.

[4] Udo Brockmeyer. Verifikation von STATEMATE Designs. PhD thesis, Carl von Ossietzky
Universitiat Oldenburg, December 1999.

[5] Udo Brockmeyer and Gunnar Wittich. Tamagotchis Need Not Die — Verification of STA-
TEMATE Designs. In Tools and Algorithms for the Construction and Analysis of Systems,
number 1384 in LNCS, pages 217-231. Springer Verlag, 1998.

[6] E.Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model Checking. Formal
Methods in System Design, 10(1):47-71, February 1997.

[71 W. Damm, U. Brockmeyer, H.-J. Holberg, G. Wittich, and M. Eckrich. Einsatz formaler
Methoden zur Erhohung der Sicherheit eingebetteter Systeme im KFZ, 1997. VDI/'VW
Gemeinschaftstagung.

[8] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. In
FMOODS’99 IFIP TC6/WG6.1 Third International Conference on Formal Methods for
Open Object-Based Distributed Systems, 1999.

[9] Konrad Feyeraband and Bernhard Josko. A visual formalism for real time requirement
specifications. In Proceedings of the 4th International AMAST Workshop on Real-Time
Systems and Concurrentand Distributed Software, ARTS’ 97, Lecture Notes in Computer
Science 1231, pages 156-168, 1997.

(10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

The STATEMATE Verification Environment 567

Thomas Filkorn. Applications on Formal Verification in Industrial Automation and Tel-
ecommunication, April 1997. Workshop on Formal Design of Safety Critical Embedded
Systems.

The VIS Group. VIS : A System for Verification and Synthesis. In 8th international
Conference on Computer Aided Verification, number 1102 in LNCS, 1996. VIS 1.3 is
available from the VIS home-page: http://www-cad.eecs.Berkeley.EDU/ vis.

D. Harel and A. Naamad. The STATEMATE semantics of statecharts. Technical Report
CS95-31, The Weizmann Institute of Science, Rehovot, 1995.

Joachim Hoffmann, Hans-Jiirgen Holberg, and Rainer Schlor. Industrieller Einsatz formaler
Verifikationsmethoden, February 2000. to appear in ITG/GI/GMM-Workshop Methoden
und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Syste-
men, Frankfurt/Main.

E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for statecharts. In
Asian Computing Conference (ASIAN’97), number 1345 in LNCS. Springer Verlag, 1997.
E. Mikk, Y. Lakhnech, and M. Siegel. Towards Efficient Modelchecking Statecharts: A
Statecharts to Promela Compiler, April 1997.

Francois Pilarski. Cost effectiveness of formal methods in the development of avionics
systems at Aerospatiale. In 17th Digital Avionics Systems Conference, Seattle, WA. Sprin-
ger Verlag, 1998.

Fabio Somenzi. CU Decision Diagram Package, 1998. CUDD 2.3.0 is available from
http://vlsi.Colorado.EDU/ fabio.

	Introduction
	Model Analysis
	Propositional Abstraction
	Integration
	Conclusion

