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1 Introduction

Asynchronous circuit design can probably avoid the occurrence of various pro-
blems which arise in designing large synchronous circuits, such as clock skews
and high power consumption. On the other hand, the cost of the verification of
asynchronous circuits is usually much higher than that of synchronous circuits.
This is because every change of wires should be taken into account in order to
capture the behavior of asynchronous circuits unlike in the case of synchronous
circuits. Furthermore, asynchronous circuit designers have recently preferred to
use timed circuits for implementing fast and compact circuits. This trend in-
creases the cost of verification, and at the same time increases the demands for
formal verification tools. VINAS-P is our newest formal verification tool for ti-
med asynchronous circuits using the techniques proposed in [1]. The main idea
in these techniques is the partial order reduction based on the timed version [2]
of the Stubborn set method [3].

This short paper mainly introduces what VINAS-P can verify and how we
use it. We are planning to release VINAS-P on our web site soon.

2  What Can VINAS-P Verify?

In order to formally verify timed circuits, VINAS-P uses the timed version [I] of
the trace theoretic verification method [4], and as its internal model, time Petri
nets are used. Thus, its implementation and specification are both modeled by
time Petri nets, and it produces the result whether the implementation conforms
to the specification or not. Since the time Petri nets for an implementation are
automatically generated from a Verilog-like description and the VINAS-P gate
library, users must usually handle a time Petri net only for the specification.
The properties to be verified by the current version of VINAS-P are safety pro-
perties. That is, it checks whether a failure state where the circuit produces an
output that the specification does not expect (i.e., the specification is not ready
for accepting the output) is reachable or not. Any causality relation between
input and output wires can be expressed in the specifications. Checking liveness
properties (e.g., that some output is actually produced) will be supported in the
future.

Here, we will demonstrate verification using VINAS-P with a simple example.
Consider the circuit shown in Figure [[a), which is a two-stage asynchronous
FIFO. The gate with a “C” symbol is actually implemented as shown in (b).
To describe this circuit, we prepare a Verilog-like description as shown in (c).
We do not have to describe primitive gates such as ANDs or ORs, because they
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module FIFO; module celm(z,c,d);
fifo_cell celll(a,b,wl,w2,w3,ack); and2 [1,2] AND1(wil,c,d);
fifo_cell cell2(w2,w3,req,x,y,wl); and2 [1,2] AND2(w2,c,z);
initial and2 [1,2] AND3(w3,d,z);
begin or3 [1,2] OR(z,wl,w2,w3);
#0 x=1; ack=1; req=1; w2@C1l@cell2=1; endmodul
end
endmodule
module fifo_cell(inl,in2,req,outl,out2,ack);
celm Cl(outl,req,inl);
celm C2(out2,req,in2);
nor2 [1,2] NOR(ack,outl,out2);
endmodule

(c)
Fig. 1. A circuit to be verified.

are included in the gate library. A module celm is for the “C” gate. This gate
produces the value v only when v is given to both inputs, otherwise, it holds the
previous value. The delay values (e.g., [1,2]) are specified for each primitive gate.
VINAS-P assumes the bounded delay model, and these delay values represent
the minimal and maximal delays.

Suppose that this circuit is used in the following environment. Either (0,1)
or (1,0) and then (0,0) is given to (a,b) periodically, say, every 12 time units.
However, due to clock skew, up to one time unit inaccuracy can occur. For req,
0 is given when (0,1) or (1,0) is given to (a,b), and 1 for (0,0). What we want
to verify is that this FIFO never causes overflow, that is, that ack is always
activated (i.e., 0 for (0,1) or (1,0), and 1 for (0,0)) before the next data is
given to (a,b). In order to describe both the environment and this property, we
prepare a time Petri net as shown in Figure Pl(a). Some transitions have timing
information like [p, ¢]. It means that the transition must have been enabled for
p time units or more before its firing, and that it must fire before ¢ time units
have passed unless it is disabled. Thus, the transitions labeled t0 and ¢1 fire
exactly every 12 time units. [0,1] in some transitions models the effect of the
clock skew. The transitions which are related to the input wires of the circuit
are labeled “(in)”, and the transitions related to the output wires are labeled
“(out)”. The names of these transitions end with “+” or “—”. The firings of “+”
(“=") transitions correspond to 0 — 1 (1 — 0) signal transitions. The firings of
these transitions are synchronized with the changes of the corresponding wires of
the circuit. Since the output wires are controlled by the circuit, the specification
cannot specify any timing information to those transitions. It is assumed that
they have [0,00]. The transitions without “(in)” or “(out)” are not related to
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Fig. 2. A specification and a failure trace.

any wires, and are called internal transitions. The transitions ¢2 and ¢3 which
conflict with the transitions for ack— or ack+ are for checking the properties
to be verified. These transitions become enabled when the change of a or b is
triggered. If the circuit changes the ack before the firings of these transitions,
then it is the correct behavior of the circuit (no overflow occurs). On the other
hand, if the ack is not changed for 12 time units, it means that the overflow
can be caused by the next data. In this case, t2 (or t3) fires and the transitions
for the ack become disabled. Thus, when the circuit eventually produces ack,
the situation in which the circuit produces an output that the specification does
not expect occurs. VINAS-P detects this as a failure. It is straightforward to see
that this time Petri net expresses both the behavior of the environment of the
circuit and the expected behavior of the circuit itself. All we should do for this
verification is to push the “verify” button and see the results. If the circuit does
not conform to the specification (actually it does not), the failure trace shown
in Figure 2(b) is displayed.

The major advantage of VINAS-P is that verification can be performed with-
out traversing the entire state space of the given system. This is possible by
the partial order reduction technique, and it often reduces the verification cost
dramatically. For example, an abstracted TITAC2 instruction cache subsystem
which contains around 200 gates (modeled by over 1500 places and 1500 transi-
tions) was verified in about 15 minutes, using less than 20 MBytes of memory
[5]. No conventional methods can complete this verification.

The most closely related work is probably ATACS developed at the University
of Utah. It also uses some kind of partial order reduction [6]. However, since
ATACS only uses restricted information relating to the concurrency between
events, VINAS-P is expected to be faster in many cases. On the other hand, the
expressibility of the ATACS modeling language is superior to that of VINAS-P.

3 User Interface

The verifier core of VINAS-P written in C is almost stable, and the graphical
user interface written in Java is being improved. It can select circuit files and



VINAS-P 575

specification Petri net files, and launch editors for them. The Petri net editor
(see view in Figure[d(a)) recognizes Petri net objects such as transitions, places,
and arcs, and is designed so that the creation or modification of Petri nets can
be easily done. Information of the Petri net objects created by this editor is also
used when browsing failure traces.

When VINAS-P detects a failure state, it shows a trace which leads the
system from the initial state to the failure state as shown in Figure[2 (This trace is
obtained simply from the recursion stack, and thus there is no timing information
in it). The user can select a set of wires to be shown. When this failure trace
is displayed, the specification net is also shown, and by moving the vertical
cursor on the failure trace, the corresponding marking of the specification net is
displayed by an animation. This function of VINAS-P helps users tremendously
in debugging circuits.

For early stages of debugging circuits, VINAS-P also provides a function
which we call “guided simulation”. It allows users to easily specify input sequen-
ces for simulation and to browse the output traces.

4 Future Works

¢ From some experimental results [7], we feel that the approach based on compres-
sing and thinning out the visited state information is more effective in reducing
the memory usage than symbolic approaches based on decision diagrams especi-
ally for the partial order reduction technique of timed systems. We are currently
implementing this idea in VINAS-P.

At present, we are also designing a specification description language for
VINAS-P in order to easily handle large specifications. Although CCS, CSP,
and their extensions can be used for this purpose, we do not think that it is easy
for nonexperts to use them. Instead, we have designed a Java-like language, and
are now checking its expressibility in comparison with Petri nets.
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