
An Abstraction Algorithm for the Verification of
Generalized C-Slow Designs

Jason Baumgartner1, Anson Tripp1, Adnan Aziz2, Vigyan Singhal3, and
Flemming Andersen1

1 IBM Corporation, Austin, Texas 78758, USA,
{jasonb,ajt,fanders}@austin.ibm.com

2 The University of Texas, Austin, Texas 78712, USA,
adnan@ece.utexas.edu

3 Tempus Fugit, Inc., Albany, California 94706, USA
vigyan@home.com

Abstract. A c-slow netlist N is one which may be retimed to another
netlist N ′, where the number of latches along each wire of N ′ is a mul-
tiple of c. Leiserson and Saxe [1, page 54] have shown that by increasing
c (a process termed slowdown) and retiming, any design may be made
systolic, thereby dramatically decreasing its cycle time. In this paper we
develop a new fully-automated abstraction algorithm applicable to the
verification of generalized c-slow flip-flop based netlists; the more gene-
ralized topology accepted by our approach allows applicability to a fairly
large class of pipelined netlists. This abstraction reduces the number of
state variables and divides the diameter of the model by c; intuitively,
it folds the state space of the design modulo c. We study the reachable
state space of both the original and reduced netlists, and establish a c-
slow bisimulation relation between the two. We demonstrate how CTL*
model checking may be preserved through the abstraction for a useful
fragment of CTL* formulae. Experiments with two components of IBM’s
Gigahertz Processor demonstrate the effectiveness of this abstraction al-
gorithm.

1 Introduction

Leiserson and Saxe [1,2] have defined a c-slow netlist N as one which is retiming
equivalent to another netlist N ′, where the number of latches along each wire of
N ′ is a multiple of c. Netlist N ′ may be viewed as having c equivalence classes of
latches; latches in class i may only fan out to latches in class (i+1) mod c. Each
equivalence class of latches of N ′ contains data from an independent stream of
execution, and data from two or more independent streams may never arrive at
any netlist element concurrently. They demonstrate that designs may be made
systolic through slowdown (increasing c), and how this process dramatically be-
nefits the cycle time of such designs. We have observed at IBM a widespread use
of such pipelining through slowdown, for example, in control logic which routes
tokens to and from table-based logic (e.g., caches and instruction dispatch logic).

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 5–19, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

6 J. Baumgartner et al.

This use has been hand-crafted during the design development, not achieved via
a synthesis tool.

The purpose of our research is to develop a sound and complete abstraction
algorithm for the verification of a generalized class of flip-flop (FF) based c-slow
designs, which eliminates all but one equivalence class of FFs and reduces the
diameter of the model by a factor of c. To the best of our knowledge, this paper is
the first to exploit the structure of c-slow designs for enhanced verification. Our
motivating example was an intricate five-stage pipelined control netlist with
feedback, and with an asynchronous interrupt to every stage. This interrupt
input prevents the classification of this design as c-slow by the definition in [2],
but our generalization of that definition enables us to classify and perform a
c-slow abstraction upon this example. Due to its complexity and size, model
checking this netlist required enormous computational complexity even after
considerable manual abstraction.

Retiming itself is insufficient to achieve the results of c-slow abstraction.
Retiming is not guaranteed to reduce the diameter of the model, and does not
change the number of latches along a directed cycle. It should also be noted
that a good BDD ordering cannot achieve the benefits of this abstraction. For
example, assume that we have two netlists, N and N ′, where N is equivalent
to N ′ except that the FF count along each wire of N ′ is multiplied by c. One
may hypothesize that a BDD ordering which groups the FFs along each wire
together may bound the BDD size for the reachable set of N to within a factor
of c of that of N ′; however, we have found counterexamples to this hypothesis.
A better ordering groups all variables of a given class together, as the design
could be viewed as comprising c independent machines in parallel. However,
such ordering will not reduce the number of state variables nor the diameter of
the model.

A related class of research has considered the transformation of level-sensitive
latch-based netlists to simpler edge-sensitive FF-based ones. (Refer to [3] for a
behavioral definition of these latch types.) Hasteer et al. [4] have shown that
multi-phase netlists may be “phase abstracted” to simpler FF-based netlists
for sequential hardware equivalence. Baumgartner et al. [5] have taken a simi-
lar approach (called “dual-phase abstraction” for a 2-phase design) for model
checking. This approach preserves initial values and provides greater reduction
in the number of state variables than the phase abstraction from [4] alone. Phase
abstraction is fundamentally different than c-slow abstraction. For example, in
multi-phase designs, only one class of latches updates at each time-step. Fur-
thermore, the initial values of all but one class of latches will be overwritten
before propagation. Therefore, given a FF-based design, these approaches are of
no further benefit.

The remainder of the document is organized as follows. Section 2 provides
our definition of c-slow netlists, and introduces a 3-slow netlist N . In Section 3
we introduce our abstraction algorithm, as well as the abstracted version of N .
We demonstrate the correctness of the abstraction in Section 4. In particular
we demonstrate a natural correspondence between the original and abstracted

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 7

designs which we refer to as a c-slow bisimulation, and discuss the effect of the
abstraction upon CTL* model checking. In Section 5 we introduce algorithms to
determine the maximum c and to translate traces from the abstracted model to
traces in the original netlist. We provide experimental results in Section 6, and
in Section 7 we summarize and present future work items.

2 C-Slow Netlists

In this section we provide our definition of c-slow netlists, which is a more general
definition than that of [2]. We assume that the netlist contains no level-sensitive
latches; if it does, phase abstraction [5] should be performed to yield a FF-based
netlist. We further assume that the netlist has no gated-clock FFs; if it does,
it is at most 1-slow (since an inactive gate mandates that the next state of the
FF be equivalent to its present state). Each c-slow netlist N is comprised of c
equivalence classes of FFs characterized as follows.

Definition 1. A c-slow netlist is one whose gates and FFs may be c-colored
such that:

1. Each FF is assigned a color i.
2. All FFs which have FFs of color i in their support have color (i + 1) mod c.
3. All gates which have FFs of color i in their support have color i.

There are several noteworthy points in the above definition. First, since no
gate may contain FFs of more than one color in its support, the design may
not reason about itself except “modulo c”. Intuitively, it is this property which
allows us to “fold” the design to a smaller domain of a single coloring of FFs.

Second, the coloring restrictions apply only to FFs and to gates which have
FFs in their support. Hence, it is legal for primary inputs to fanout to FFs of
multiple colors, which makes our definition more general than that in [2]. This
generality has shown great potential in extending the class of netlists to which
we may apply the c-slow abstraction; the two design fragments of the Gigahertz
Processor from our sample set which were found to be c-slow would not have
been classifiable as such without this generality.

J

A

B

C

D

E
F G

H I

f1

f2

f3

X

Y

Z f4

Fig. 1. 3-Stage Netlist N

8 J. Baumgartner et al.

Consider the generic 3-slow netlist N depicted in Figure 1. We assume that
this netlist represents a composition of the design under test and its environment.
We also assume that no single input will fan out to FFs of different colors. Later
in this section we demonstrate that we may soundly alter netlists which violate
this assumption by splitting such inputs into functionally identical yet distinct
cones, one per color. All nets may be vectors. We arbitrarily define the color of
FFs X as 0, of Y as 1, and of Z as 2.

Consider the first several time-steps of symbolic reachability analysis of N
in Table 1 below. The symbolic values ai, bi, and ci represent arbitrary values
producible at inputs A, B, and C respectively. The symbol ij represents the
initial value of the FFs of color j.

time 0 1 2 3 4 5
A a0 a1 a2 a3 a4 a5

B b0 b1 b2 b3 b4 b5

C c0 c1 c2 c3 c4 c5

D f1(a0, i2) t11 t02 f1(a3, t22) t13 f1(a5, t03)
E i0 f1(a0, i2) t11 t02 f1(a3, t22) t13

F f2(b0, i0) t21 t12 f2(b3, t02) t23 f2(b5, t13)
G i1 f2(b0, i0) t21 t12 f2(b3, t02) t23

H f3(c0, i1) t01 t22 f3
(
c3, t12

)
t03 f3(c5, t23)

I i2 f3(c0, i1) t01 t22 f3(c3, t12) t03

J f4(i2) f4
(
f3(c0, i1)

)
f4(t01) f4(t22) f4

(
f3(c3, t12)

)
f4(t03)

t01 = f3
(
c1, f2(b0, i0)

)
t02 = f1(a2, t01) t03 = f3

(
c4, f2(b3, t02)

)

t11 = f1
(
a1, f3(c0, i1)

)
t12 = f2(b2, t11) t13 = f1

(
a4, f3(c3, t12)

)

t21 = f2
(
b1, f1(a0, i2)

)
t22 = f3(c2, t21) t23 = f2

(
b4, f1(a3, t22)

)

Table 1. Reachability Analysis of N

At any instant in time, each signal may only be a function of the value
generated by a given “data source” at every c-th cycle. By data source, we
refer to inputs and initial values. This observation illustrates the motivation
behind this abstraction; our transformation yields a design where each signal
may concurrently (nondeterministically) be a function of each data source at
each cycle.

3 Abstraction of C-Slow Netlists

In this section we illustrate the structural modifications necessary and sufficient
to perform the c-slow abstraction.

The algorithm for performing the abstraction is as follows. Color c−1 FFs are
abstracted by replacement with a mux selected by a conjunction of a random

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 9

value with first cycle; the output of this mux passes through a FF, and the
initial value of this FF is defined by the value which would appear at its input if
first cycle were asserted. Color 0 FFs are abstracted by replacement with a mux
which is selected by first cycle. All others are abstracted by replacement with
a mux which is selected by a conjunction of a random value with first cycle. If
the netlist is a feed-forward pipeline, all variables may be replaced in this last
manner, thereby converting the sequential netlist to a combinational one.

Consider netlist N ′ shown in Figure 2 below, which represents our c-slow ab-
straction of N . We initialize Z ′ with the value which would appear at its inputs
if first cycle were 1. The new inputs ND and ND’ represent unique nondetermi-
nistic values. We will utilize one copy of this netlist (with first cycle tied up) to
generate the initial values for Z ′. This initial value will be utilized in a second
copy of this netlist where first cycle is tied down, which is the copy that we will
model check. Intuitively, the nondeterministic initial value allows the output of
the rightmost mux to take all possible values observable at net I in N during
the first c cycles. Thereafter, straightforward reachability analysis will ensure
correspondence of N and N ′.

i

A

B

C

D

E

G

f1

f3

f2
F

H

first_cycle

Z’
I J

f4

ND1

ND2

0i

1i

2

Fig. 2. Abstracted 3-Stage Netlist N ′

The first two cycles of symbolic simulation of N ′ is provided in Table 2. To
compensate for the “nondeterministic initial state set” induced by this abstrac-
tion, we have split this analysis into three timeframes; cycles 00 and 10 represent
the timeframe induced by the first element of the set – that element further
being a function only of the initial values of the FFs of color 0, cycles 01 and
11 induced by the second element, etc. This analysis illustrates the manner in
which the design will be treated by the reachability engine.

There are several critical points illustrated by this table. First, the values
present at FFs of color c − 1 in N ′, at time i along the path induced by initial
values of color j, are equivalent to those present upon their correspondents in N
at time 3i+ j. This may be inductively expanded by noting that ij in the above
two tables need not correlate to initial values, but to any reachable state.

10 J. Baumgartner et al.

time 00 10 01 11 02 12

A a2 a5 a1 a4 a0 a3

B b3 b6 b2 b5 b1 b4

C c4 c7 c3 c6 c2 c5

D t02 f1(a5, t03) t11 t13 f1(a0, i2) f1(a3, t22)
E t02 f1(a5, t03) t11 t13 f1(a0, i2) f1(a3, t22)
F f2

(
b3, t02)

)
t04 t12 f2(b5, t13) t21 t23

G f2
(
b3, t02)

)
t04 t12 f2(b5, t13) t21 t23

H t03 f3(c7, t04) f3
(
c3, t12

)
f3

(
c6, f2(b5, t13)

)
t22 f3(c5, t23)

I t01 t03 f3(c0, i1) f3
(
c3, t12

)
i2 t22

J f4(t01) f4(t03) f4
(
f3(c0, i1)

)
f4

(
f3

(
c3, t12

))
f4(i2) f4(t22)

t04 = f2
(
b6, f1(a5, t03)

)

Table 2. Reachability Analysis of N ′

Another point is that, in order to “align” the values present at FFs of color
c−1, we have been forced to temporally skew the inputs. For example, comparing
any state at time i in N ′ with state 3i + j in N , we see that the inputs which
fan out to all but color 0 FFs are skewed forward by an amount equal to the
color of the FFs in their transitive fanout. While this may seem bizarre, recall
our assumption that the netlist is a composition of the environment and design.
Therefore, without loss of generality, the inputs may only be combinational free
variables or constants. In either case, the values they may hold at any times i
and j are equivalent. For each value that input vector A may take at time i
(denoted Ai), there is an equivalent value that A may take at any time j, and
vice-versa. This fact is crucial to the correctness of our abstraction.

To further demonstrate this point, we now discuss how we handle inputs
which fan out to FFs of multiple colors. We split such “multi-color” input logic
cones into a separate cone per color. To illustrate the necessity of this technique,
assume that inputs A and B were tied together in N – a single input AB.
Thus, values ai and bi are identical. Tying these together in N ′ would violate
the correspondence; for example, state t32 is a function of a3 and b4, each being
a distinct value producible by input AB. Clearly any state producible in N ′,
where a3 and b4 are equivalent, would be producible in N . However, any state in
N where a3 and b4 differ would be unproducible in N ′, unless we split AB into
two functionally equivalent, yet distinct, inputs – one for color 0 and the other
for color 1. Such splitting of shared input cones is straightforward, and may be
performed automatically in O(c ·nets) time. This logic splitting may encompass
combinational logical elements, and even logic subcircuits including FFs which
themselves are c-slow. The exact theory of such splitting of sequential cones is
still under development, though may be visualized by noting that peripheral
latches upon multi-color inputs clearly need not limit c.

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 11

4 Correctness of Abstraction

In this section we define our notion of correspondence between the original and
abstracted netlists, which we term a c-slow bisimulation (inspired by Milner’s
bisimulation relations [6]). We will relate our designs to Kripke structures, which
are defined as follows.

Definition 2. A Kripke structure K = 〈S, S0,A,L, R〉, where S is a set of states,
S0 ⊆ S is the set of initial states, A is the set of atomic propositions, L : S 7→ 2A

is the labeling function, and R ⊆ S × S is the transition relation.

Our designs are described as Moore machines (using Moore machines, instead
of the more general Mealy machines [7], simplifies the exposition for this paper,
though our implementation is able to handle Mealy machines by treating outputs
as FFs). We use the following definitions for a Moore machine and its associated
structure (similar to Grumberg and Long [8]).

Definition 3. A Moore machine M = 〈L, S, S0, I, O, V, δ, γ〉, where L is the set
of state variables (FFs), S = 2L is the set of states, S0 ⊆ S is the set of initial
states, I is the set of input variables, O is the set of output variables, V ⊆ L is
the set of property visible FFs, δ ⊆ S × 2I × S is the transition relation, and
γ : S 7→ 2O is the output function.

We uniquely identify each state by a subset of the state variables; intuitively,
this subset represents those FFs which evaluate to a 1 at that state. We will
define V to be the FFs of color c − 1.

Definition 4. The Kripke structure associated with a Moore machine M =
〈L, S, S0, I, O, V, δ, γ〉 is denoted by K(M) = 〈SK , SK

0 ,A,L, R〉, where SK =
2L∪I , SK

0 = {s ∈ SK : s − I ∈ S0}, A = V , L = SK 7→ 2V , and R
(
(s, x), (t, y)

)

iff δ(s, x, t).

Intuitively, we define SK
0 as the subset of SK which, when projected down

to the FFs, is equivalent to S0. In the sequel we will use M to denote the Moore
machine as well as the Kripke structure for the machine.

Definition 5. A c-transition of a Kripke structure M is a sequence of c transi-
tions from state si to si+c, where R(sj , sj+1) for all j such that 0 ≤ j < c.

Definition 6. Let M be the Kripke structure of a c-slow machine. We define
the extended initial state set of M , Sinit ⊆ S, as the set of all states reachable
within c − 1 time-steps from the initial state of M .

Definition 7. Let M and M ′ be two Kripke structures. A relation G ⊆ S × S′

is a c-slow-bisimulation relation if G(s, s′) implies:
1. L(s) = L′(s′).

12 J. Baumgartner et al.

2. for every t ∈ S such that there exists a c − transition of M from state s to
t, there exists t′ ∈ S′ such that R′(s′, t′) and G(t, t′).

3. for every t′ ∈ S′ such that R′(s′, t′), there exists t ∈ S such that there exists
a c − transition of M from state s to t, and G(t, t′).

We say that a c-slow-bisimulation exists from M to M ′ (denoted by M ≺ M ′)
iff there exists a c-slow bisimulation relation G such that for all s ∈ Sinit and
t′ ∈ S′

0, there exist s′ ∈ S′
0 and t ∈ Sinit such that G(s, s′) and G(t, t′).

An infinite path π = (s0, s1, s2, . . .) is a sequence of states such that any two
successive states are related by the transition relation (i.e., R(si, si+1)). Let πi

denote the suffix path (si, si+1, si+2, . . .). We say that a c-slow-bisimulation rela-
tion exists between two infinite paths π = (s0, s1, s2, . . .) and π′ = (s′

0, s
′
1, s

′
2, . . .),

denoted by G(π, π′), iff for all i ≥ 0, we have that G(sc·i, s′
i).

Lemma 1. Let s and s′ be states of structures M and M ′, respectively, such
that G(s, s′). For each infinite path π starting at s and composed of transitions
of M , there exists an infinite path π′ starting at s′ and composed of transitions
of M ′ such that G(π, π′). Similarly, for each infinite path π′ starting at s′ and
composed of transitions of M ′, there exists an infinite path π starting at s and
composed of transitions of M such that G(π, π′).

The bisimilarity ensures that the reachable set of the original and abstrac-
ted netlists will be equivalent. Thus, properties such as AGφ and EFφ, where
φ is a boolean property, are trivially preserved using this abstraction, provided
that all formula signals refer to nets of the same color. This may seem limit-
ing: a simple formula such as AG(latchIn → AX

(
latchOut)

)
reasons about two

differently colored nets. However, such a formula may be captured by an auto-
maton which transitions upon latchIn ≡ 1 to a state where it samples latchOut;
the new “single-colored” formula asserts that this sampled value ≡ 1. Note that
such transformations of CTL to automata are commonplace for on-the-fly model
checking [9].

One approach to transforming properties for this abstraction is to synthe-
size the original property (for the unabstracted design), and compose it into the
model prior to abstraction. The structural abstraction will thereby also abstract
the property. Logic synthesis algorithms may need to be tuned for optimal use
of the c-slow abstraction. For example, p → AXAXAXq may likely be syn-
thesized as a counter (counting the number of cycles which have occurred since
p). However, such a direct translation would violate the c-slow topology of the
design. We therefore propose a pipelined “one-hot” translation which would,
for example, specifically introduce N state variables rather than dlog2(N)e for
AXN , if it is determined that the design has a c-slow topology. Translation of
design substructures which violate c-slowness, but may be safely replaced with
substructures which do not, is an important topic which is not limited to pro-
perty automata. We did not implement such a “c-slow-friendly translator” for
our experimentation, as our properties were relatively simple and in many cases
implemented directly via automata anyway, though we feel that one could be
readily automated.

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 13

A second approach to abstracting properties is by a dedicated transformation
algorithm. Both approaches place substantial constraints upon the fragment of
CTL* that our abstraction may handle, as is reflected by the following definition.

Definition 8. A c-slow reducible (CSR) subformula φ and its c-slow reduction
Ω(φ) are defined inductively as follows.

– every atomic proposition p is a CSR state formula φ = p, and Ω(φ) = p.
(Note that these atomic propositions are limited to the property-visible nets
V , which are nets of color c − 1.)

– if p is a CSR state formula, so is φ = ¬p, and Ω(φ) = ¬Ω(p).
– if p and q are CSR state formulae, so is φ = p ∧ q, and Ω(φ) = Ω(p) ∧ Ω(q).
– if p is a CSR path formula, then φ = Ep is a CSR state formula, and Ω(φ) =

EΩ(p).
– if p is a CSR path formula, then φ = Ap is a CSR state formula, and

Ω(φ) = AΩ(p).
– each CSR state formula φ is also a CSR path formula φ.
– if p is a CSR path formula, so is φ = ¬p, and Ω(φ) = ¬Ω(p).
– if p and q are CSR path formulae, so is φ = p ∧ q, and Ω(φ) = Ω(p) ∧ Ω(q).
– if p is a CSR path formula, so is φ = Xcp, and Ω(φ) = XΩ(p). (Note that

strings of less than c X operators must be flattened via translation to auto-
mata.)

If p is a CSR subformula, then φ = AG p and φ = EF p are CSR state for-
mulae, for which Ω(φ) = AG Ω(p) or Ω(φ) = EF Ω(p), respectively. These last
transformations are not recursively applicable; EF and AG are only applicable
as the first tokens in the formula. Furthermore, CSR subformulae are themselves
insufficient for model checking using this abstraction; the top-level quantification
is necessary to break the dependence on the initial state of the concrete model.

Note that pU q is not a CSR formula, since it entails reasoning across conse-
cutive time-steps. However, since the design may only reason about itself modulo
c, we have not found it beneficial to use such a property to verify the design.
Furthermore, we have found it useful to use a modulo-c variant of the U operator
for such designs. We define pUc q as true along a path (si, si+1, ...) iff there exists
a j such that sj |= q, and for all states at index k where (j mod c) ≡ (k mod c)
and k < j, we have that sj |= p. Similar approaches apply to the general use of
G and F .

It is noteworthy that every property which we had verified of the designs
reported in our experimental results was suitable for c-slow abstraction. As per
the above discussion, we suspect that all meaningful properties of such netlists
will either be directly suitable for c-slow abstraction, or may be strengthened to
be made suitable.

Theorem 1. Let s and s′ be states of M and M ′, and π = (s0, s1, s2, . . .) and
π′ = (s′

0, s
′
1, s

′
2, . . .) be infinite paths of M and M ′, respectively. If G is a c-slow-

bisimulation relation such that G(s, s′) and G(π, π′), then

14 J. Baumgartner et al.

1. for every c-slow-reducible CTL* state formula φ, s |= φ iff s′ |= Ω(φ).
2. for every c-slow-reducible CTL* path formula φ, π |= φ iff π′ |= Ω(φ).

Proof. The proof is by induction on the length of the formula φ. Our induction
hypothesis is that Theorem 1 holds for all CTL* formulae φ′ of length ≤ n.

Base Case: n = 0. There are no CTL* formulae of length 0, hence this base
case trivially satisfies the induction hypothesis.

Inductive Step: Let φ be an arbitrary CTL* formula of length n + 1. We
will utilize the induction hypothesis for formulae of length ≤ n to prove that
Theorem 1 holds for φ. There are seven cases to consider.

1. If φ is a state formula and an atomic proposition, then Ω(φ) = φ. Since s
and s′ share the same labels, we have that s |= φ ⇔ s′ |= φ ⇔ s′ |= Ω(φ).

2. If φ is a state formula and φ = ¬φ1, then Ω(φ) = ¬Ω(φ1). Using the
induction hypothesis (since the length of φ1 is exactly one less than that
of φ), we have that s |= φ1 ⇔ s′ |= Ω(φ1). Consequently, we have that
s |= φ ⇔ s 6|= φ1 ⇔ s′ 6|= Ω(φ1) ⇔ s′ |= Ω(φ).

3. If φ is a state formula and φ = φ1 ∧ φ2, then Ω(φ) = Ω(φ1) ∧ Ω(φ2).
By definition, we know that s |= φ ⇔ (

(s |= φ1) and (s |= φ2)
)
. Using

the induction hypothesis, since the lengths of φ1 and φ2 are strictly less
than the length of φ, we have that (s |= φ1) ⇔ s′ |= Ω(φ1), and also
that (s |= φ2) ⇔ s′ |= Ω(φ2). Therefore, we have that s |= φ ⇔ (

s′ |=
Ω(φ1) and s′ |= Ω(φ2)

) ⇔ s′ |= Ω(φ).
4. If φ = Eφ1, then Ω(φ) = EΩ(φ1). The relation s |= φ is true iff there exists

an infinite path σ beginning at state s such that σ |= φ1. Consider any σ
beginning at s (regardless of whether σ |= φ1), and let σ′ be an infinite path
beginning at state s′ such that G(σ, σ′). Such a σ′ must exist by Lemma 1.
Using the induction hypothesis, since the length of φ1 is exactly one less
than the length of φ, we have that σ |= φ1 ⇔ σ′ |= Ω(φ1). This implies that
s |= φ ⇔ s′ |= Ω(φ).

5. If φ = Aφ1, then Ω(φ) = AΩ(φ1). The expression s |= φ is true iff for every
infinite path σ beginning at state s, we have that σ |= φ1. For every infinite
path σ beginning at s, consider the infinite path σ′ beginning at state s′ such
that G(σ, σ′). Such a path must exist by Lemma 1. Applying the induction
hypothesis, since the length of φ1 is exactly one less than the length of φ,
we have that σ |= φ1 ⇔ σ′ |= Ω(φ1). This implies that s |= φ ⇔ s′ |= Ω(φ).

6. Suppose φ is a path formula which is also a state formula. Since we have
exhausted the possibilities for state formulae in the other cases, we conclude
that π |= φ ⇔ π′ |= Ω(φ).

7. If φ = Xcφ1, then Ω(φ) = XΩ(φ1). Note that expression π |= φ is true
iff πc = (sc, sc+1, sc+2, . . .) |= φ1. Since G(πc, π′1), and using the induction
hypothesis (since the length of φ1 is less than the length of φ), we have that
πc |= φ1 ⇔ π′1 = (s′

1, s
′
2, s

′
3, . . .) |= Ω(φ1). This is equivalent to π |= φ ⇔

π′ |= XΩ(φ1), and also to π |= φ ⇔ π′ |= Ω(φ).

Note that one by-product of this abstraction is that it extends the initial state
set of M ′ to encompass all states reachable within c−1 time-steps from the initial

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 15

state of M . The above cases prove preservation of CTL* model checking along
each path, and with respect to each state. The necessity of prefixing all c-slow
reducible CTL* formulae with EF or AG prevents this extended initial set from
becoming visible to properties.

Theorem 2. If N ′ is a c-slow abstraction of N , then N ≺ N ′.

Proof. Our induction hypothesis is that Theorem 2 holds for all c-slow netlists,
where c ≤ n. If c < 2, no c-slow abstraction will be performed.

Base Case: n = 2.
As depicted in Figure 3, in this case N has two sets of FFs, where X is

color 0, and Z is color 1. The abstraction (used to generate N ′) is performed as
described in Section 3.

N’

EX

H

A f1
D

f4
I J

C f3
H

Z’
I J

f4

Ef1
D

first_cycle

A

C

ND1

f3 Z
0i

1i

N

Fig. 3. Original and Abstracted Netlists, N and N’, Base Case (C=2)

This proof may be readily completed by enumerating an inductive symbolic
simulation for the two netlists (as in Tables 1 and 2), and demonstrating their
bisimilarity. This analysis is omitted here due to space constraints.

Inductive Step:
This step shows that if the bisimulation holds for c up to n, then it also

holds for c = n+1. The induction relies upon the the addition of “intermediate”
colored sets of FFs, which are all replaced with MUXes whose selects are con-
junctions of a unique random value (for that color) with first cycle, depicted in
Figures 4 and 5 as the “inductive units”. A set of zero or more inductive units
is depicted as a cloud within these two figures, and used in the obvious manner
to bring c (along with the explicitly depicted inductive unit) up to n + 1.

This proof also may be completed by an inductive symbolic simulation.
The proof of correctness for feed-forward pipelines is omitted due to space

constraints, but follows immediately from the example in the inductive step, by
omitting the color 0 and c − 1 FFs (and their feedback path).

5 Algorithms

Our algorithm for determining the maximum c is similar to that presented in
[2]. We iterate over each FF in the netlist; if unlabeled, it is labeled with an

16 J. Baumgartner et al.

Y

E

f3

f2
F

H

A
D

f1

C

Bn

B0 .. Bn-1

Z

Inductive Unit

G

I
f4

J

X

Fig. 4. Unabstracted Netlist N, Inductive Case

i
E

G

f3

f2
F

Hi

i

Z’
I J

f4

A
D

f1

C

Bn

B0 .. Bn-1

NDc-1

NDc-2

ND1..NDc-3

first_cycle

Inductive Unit

c-2

c-1

0

Fig. 5. Abstracted Netlist N’, Inductive Case

arbitrary index 0. We next perform a depth-first fanout search from this FF;
each time we encounter a FF, we label it with the current index and increment
that index for the recursive fanout search from that FF. Once the fanout search
is finished, we perform a depth-first fanin search from the original FF; each time
we encounter an unlabeled FF, we label it with the current index and decrement
that index for the recursive fanin search from that FF. When an already-labeled
FF is encountered during a fanin or fanout search, we find the greatest-common
divisor of the previous “maximum c” and the difference between the previous
index of this FF and the current index. Once completed, this algorithm (which
runs in linear time) yields the maximum value of c. If c is equal to 1, no c-
slow abstraction may be performed. If c is never updated during coloring, the
netlist is a feed-forward pipeline. To obtain the FF colorings, we transform the
initial indices modulo c such that the property-visible FFs have color c − 1. For
feed-forward pipelines, we merely shift the initial indices such that the lowest-
numbered ones are equivalent to 0.

Abstraction of the netlist occurs as in Section 3. Rather than introducing
c − 1 nondeterministic variables (used only for the calculation of initial values),
we need only dlog2(c)e variables. This is due to the observation that, if the
nondeterministic value conjuncted for the selector of a color i mux is equivalent
to 1, then the nondeterministic values conjuncted with the selectors of all color
j muxes (where j < i) are don’t cares. We may utilize this log2 nondeterministic
value to determine the color of the FFs whose initial values will propagate to
the remaining FFs. Thus, an abstract initial state may be bound to a unique
timeframe of the concrete design. Note that, regardless of the implementation,

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 17

the same random value must be utilized for all color i muxes to ensure atomicity
of the data.

Other than the dlog2(c)e nondeterministic values introduced for initial value
generation, the only other variables introduced are due to splitting of input
cones. While this may increase the number of inputs of the design by a factor of
c, we have found in practice that this increase is quite small – a small fraction
of the total number of inputs – and negligible compared to the number of state
variables removed. Despite this increase, these split inputs should not cause a
serious BDD blowup since they tend to form independent (on a per-color basis)
input ports, which a sophisticated BDD ordering may exploit.

5.1 Trace Lifting

We will perform our model checking upon the abstracted netlist N ′. However,
we must translate the traces obtained to the original netlist N . We have found
that the simplest way to perform the translation is to generate a testcase by
projecting the trace from N ′ down to the inputs, and manipulating this testcase
for application to N . We perform this generation in two steps: a prefix generation,
and a suffix generation.

For suffix generation, if no input splitting occurs, we may merely stutter each
input c − 1 times to convert the testcase. If input splitting does occur, we apply
the stuttering technique to all non-split inputs. We define the color of an input
as the color of the FFs to which it fans out. For example, if input A drives FFs
of color 0 and 2, it will be split into two inputs – A 0 and A 2, of color 0 and
2, respectively. We use the value upon input A i at cycle j in the abstract trace
for the value at time c · j + i of input A in the testcase for N . We fill in any
remaining gaps by an arbitrary selection of any legal value; this value does not
influence the behavior of interest. The suffix generation accounts for the fact
that every transition of the abstract machine correlates to a c-transition of the
original machine.

The prefix generation is used to prepend to the suffix trace a path suitable
to transition N from an initial state to the first state in the suffix trace (which
is an element of Sinit). Letting nd init be the value encoded in the log2 initial
value variables in the initial abstract state, the length of the prefix p is equal to
c− 1−nd init. Generating the prefix backwards (and beginning with i = 0), we
iteratively prepend the input values (from the initial value copy of the netlist)
which fan out to color c − 1 − i FFs, then increment i and repeat until i ≡ p.
For feed-forward pipelines, all trace lifting is performed via prefix generation.

6 Experimental Results

We utilized IBM’s model checker, RuleBase [10], to obtain our experimental
results. We arbitrarily selected ten components of IBM’s Gigahertz Processor
which had previously been model checked. Our algorithm identified two of these
as being c-slow. The first is a feed-forward pipeline; the second is the five-slow

18 J. Baumgartner et al.

pipeline with feedback mentioned in Section 1. Both were explicitly entered in
HDL as c-slow designs – this topology is not the by-product of a synthesis tool.
Both had multi-colored inputs, which our generalized topology was able to ex-
ploit. Both of these components had been undergoing verification and regression
for more than 12 months prior to the development of this abstraction technique.
Consequently, the unabstracted variants had very good BDD orderings available.
All results were obtained on an IBM RS/6000 Workstation Model 595 with 2
GB main memory. RuleBase was run with the most aggressive automated model
reduction techniques it has to offer (including dual-phase abstraction [5]), and
with dynamic BDD reordering (Rudell) enabled.

Prior to running the c-slow abstraction algorithm on these netlists, we ran
automated scripts which removed scan chain connections between the latches
(which unnecessarily limited c), and which cut self-feedback on “operational
mode” FFs (into which values are scanned prior to functional use of the netlist,
and held during functional use via the self-feedback loop).

We first deployed this abstraction technique on the feed-forward pipeline. The
most interesting case was the most complex property against which we verified
this design. The unabstracted version had 148 variables, and with our best initial
ordering took 409.6 seconds with a maximum of 1410244 allocated BDD nodes.
The first run on the abstracted variant (with a random initial ordering) had 53
variables, and took 44.9 seconds with a maximum of 201224 BDD nodes. While
this speedup is significant, this comparison is skewed since the unabstracted run
benefited from the extensive prior BDD reordering. Re-running the unabstracted
experiment with a random initial ordering took 3657.9 seconds, with 2113255
BDD nodes. Re-running the abstracted experiment using the ordering obtained
during the first run as the initial ordering took 4.6 seconds with 98396 nodes.
Computing the c-slow abstraction took 0.3 seconds.

The next example is the five-slow design. With a good initial ordering, model
checking the unabstracted design against one arbitrarily selected formula took
5526.4 seconds, with 251 variables and 3662500 nodes. The first run of the ab-
stracted design (with a random initial ordering) took 381.5 seconds, with 134
variables and 339424 nodes. Re-running the rule twice more (and re-utilizing
the calculated BDD orders) yielded a run of 181.1 seconds, 293545 nodes. Model
checking the unabstracted design with an random initial ordering took 23692.5
seconds, 7461703 nodes. Computing the c-slow abstraction took 3.2 seconds.

Note that, due to the potential increase in depth of combinational cones
entailed by this abstraction, there is a risk of a serious blowup of the transi-
tion relation or function. Splitting or conjoining may be utilized to combat such
blowup [11]. A reasonable ordering seems fairly important when utilizing this
abstraction. One set of experiments were run with reordering off, and a ran-
dom initial ordering. The results for the feed-forward pipeline were akin to those
reported above. However, the five-slow abstracted transition relation was signifi-
cantly larger than the unabstracted variant given the random ordering, thereby
resulting in a much slower execution than on the unabstracted run. With reor-
dering enabled, the results (as reported above) were consistently superior.

An Abstraction Algorithm for the Verification of Generalized C-Slow Designs 19

7 Conclusions and Future Work

We have developed an efficient algorithm for identifying and abstracting ge-
neralized flip-flop based c-slow netlists. Our approach generalizes the definition
provided in [2]; this generality allows us to apply our abstraction to a substantial
percentage of design components. This abstraction is fully automated, and runs
in O(c ·nets) time. Our abstraction decreases the number of state variables, and
the diameter of the model by c. Our experimental results indicate the substantial
benefit of this abstraction in reducing verification time and memory (one to two
magnitudes of order improvement), when applicable. We discuss expressibility
constraints on CTL* model checking using this abstraction.

Future work items involve efficient techniques for identification of netlist
substructures which violate c-slowness, yet may be safely replaced by others
which do not. Other work involves extending the class of netlists to which this
technique may be applied through the splitting of sequential cones.

References

1. C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. In Journal of
VLSI and Computer Systems, 1(1):41–67, Spring 1983.

2. C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry. In Algorithmica,
6(1):5–35, 1991.

3. S. Mador-Haim and L. Fix. Input Elimination and Abstraction in Model Checking.
In Proc. Conf. on Formal Methods in Computer-Aided Design, November 1998.

4. G. Hasteer, A. Mathur, and P. Banerjee. Efficient Equivalence Checking of Multi-
Phase Designs Using Phase Abstraction and Retiming. In ACM Transactions on
Design Automation of Electronic Systems, October 1998.

5. J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model Checking the IBM
Gigahertz Processor: An Abstraction Algorithm for High-Performance Netlists. In
Proceedings of the Conference on Computer-Aided Verification, July 1999.

6. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
7. Z. Kohavi. Switching and Finite Automata Theory. Computer Science Series.

McGraw-Hill Book Company, 1970.
8. O. Grumberg and D. E. Long. Module Checking and Modular Verification. In

ACM Transactions on Programming Languages and Systems, 16(3):843–871, 1994.
9. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Ske-

letons Using Branching Time Logic. In Proc. Workshop on Logic of Programs,
1981.

10. I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: an Industry-Oriented
Formal Verification Tool. In Proc. Design Automation Conference, June 1996.

11. A. J. Hu, G. York, and D. L. Dill. New Techniques for Efficient Verification with
Implicitly Conjoined BDDs. In Proceedings of the Design Automation Conference,
June 1994.

	Introduction
	C-Slow Netlists
	Abstraction of C-Slow Netlists
	Correctness of Abstraction
	Algorithms
	Trace Lifting

	Experimental Results
	Conclusions and Future Work

