
Binary Reachability Analysis of Discrete
Pushdown Timed Automata

Zhe Dang?, Oscar H. Ibarra??, Tevfik Bultan? ? ?,
Richard A. Kemmerer?, and Jianwen Su??

Department of Computer Science
University of California

Santa Barbara, CA 93106

Abstract. We introduce discrete pushdown timed automata that are
timed automata with integer-valued clocks augmented with a pushdown
stack. A configuration of a discrete pushdown timed automaton includes
a control state, finitely many clock values and a stack word. Using a
pure automata-theoretic approach, we show that the binary reachability
(i.e., the set of all pairs of configurations (α, β), encoded as strings, such
that α can reach β through 0 or more transitions) can be accepted by a
nondeterministic pushdown machine augmented with reversal-bounded
counters (NPCM). Since discrete timed automata with integer-valued
clocks can be treated as discrete pushdown timed automata without the
pushdown stack, we can show that the binary reachability of a discrete ti-
med automaton can be accepted by a nondeterministic reversal-bounded
multicounter machine. Thus, the binary reachability is Presburger. By
using the known fact that the emptiness problem is decidable for reversal-
bounded NPCMs, the results can be used to verify a number of properties
that can not be expressed by timed temporal logics for discrete timed
automata and CTL∗ for pushdown systems.

1 Introduction

After the introduction of efficient automated verification techniques such as sym-
bolic model-checking [16], finite state machines have been widely used for mode-
ling reactive systems. Due to the limited expressiveness, however, they are not
suitable for specifying most infinite state systems. Thus, searching for models to
represent more general transition systems and analyzing the decidability of their
verification problems such as reachability or model-checking is an important re-
search issue. In this direction, several models have been investigated such as
pushdown automata[4,12,17], timed automata[2] (and real-time logics[3,1,14]),
and various approximations on multicounter machines[9,7].
? This work is supported in part by the Defense Advanced Research Projects Agency

(DARPA) and Rome Laboratory, Air Force Materiel Command, USAF, under agre-
ement number F30602-97-1-0207.

?? This work is supported in part by NSF grant IRI-9700370.
? ? ? This work is supported in part by NSF grant CCR-9970976.

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 69–84, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

70 Z. Dang et al.

A pushdown system is a finite state machine augmented by a pushdown stack.
On the other hand, a timed automaton can be regarded as a finite state machine
with a number of real-valued clocks. All the clocks progress synchronously with
rate 1, and a clock can be reset to 0 at some transition. Each transition also
comes with an enabling condition in the form of clock constraints (i.e., Boolean
combinations of x#c and x − y#c where x and y are clocks, c is an integer
constant, and # denotes >, < or =. Such constraints are also called regions.). A
standard region technique [2] (and more recent techniques[6,18]) can be used to
analyze region reachability.

In this paper, we consider integer-valued clocks. We call a timed automaton
with integer-valued clocks a discrete timed automaton. A strictly more powerful
system can be obtained by combining a pushdown system with a discrete timed
automaton. That is, a discrete timed automaton is augmented with a pushdown
stack (i.e., a discrete pushdown timed automaton). We give a characterization
of binary reachability ;, defined as the set of pairs of configurations (control
state and clock values, plus the stack word if applicable) (α, β) such that α can
reach β through 0 or more transitions. Binary reachability characterization is
a fundamental step towards developing a model checking algorithm for discrete
pushdown timed automata. ¿From classical automata theory, it is known that the
binary reachability of pushdown automata is context-free. For timed automata
(with either real-valued clocks or integer-valued clocks), the region technique
is not enough to give a characterization of the binary reachability. Recently,
Comon et. al. [10] showed that the binary reachability of timed automata (with
real-valued clocks) is expressible in the additive theory of reals. They show that a
timed automaton with real-valued clocks can be flattened into one without nested
cycles. Their technique also works for discrete timed automata. However, it is not
easy to deduce a characterization of the binary reachability of discrete pushdown
timed automata by combining the above results. The reason is, as pointed out
in their paper, this flattening destroys the structure of the original automaton.
That is, the flattened timed automaton accepts different sequences of transitions,
though the binary reachability is still the same. Thus, their approach cannot be
used to show the binary reachability of the discrete pushdown timed automata
proposed in this paper, since by flattening the sequence of stack operations
cannot be maintained. A class of Pushdown Timed Systems (with continuous
clocks) was discussed in [5]. However, that paper focuses on region reachability
instead of binary reachability.

In this paper, we develop a new automata-theoretic technique to characterize
the binary reachability of a discrete pushdown timed automaton. Our technique
does not use the region technique [2] nor the flattening technique [10]. Instead,
a nondeterministic pushdown multicounter machine (NPCM), which is a non-
deterministic pushdown automaton with counters, is used. Obviously, without
restricting the counter behaviors, even the halting problem is undecidable, since
machines with two counters already have an undecidable halting problem. An
NPCM is reversal-bounded if the number of counter reversals (a counter chan-
ging mode between nondecreasing and nonincreasing and vice-versa) is boun-

Binary Reachability Analysis of Discrete Pushdown Timed Automata 71

ded by some fixed number independent of the computation. We show that the
binary reachability of a discrete pushdown timed automaton can be accepted by
a reversal-bounded nondeterministic pushdown multicounter machine. We also
discuss the safety analysis problem. That is, given a property P and an initial
condition I, which are two sets of configurations of a discrete pushdown timed
automaton A, determine whether, starting from a configuration in I, A can only
reach configurations in P . Using the above characterization and the known fact
that the emptiness problem for reversal-bounded NPCMs is decidable, we show
that the safety analysis problem is decidable for discrete pushdown timed auto-
mata, as long as both the safety property and the initial condition are accepted
by nondeterministic reversal-bounded multicounter machines.

It is known that Presburger relations can be accepted by reversal-bounded
multicounter machines. Therefore, it is immediate that the safety analysis pro-
blem is decidable as long as both the safety property and the initial condition
are Presburger formulas on clocks. A discrete timed automaton can be treated
as a discrete pushdown timed automaton without the pushdown stack. We can
show that the binary reachability of a discrete timed automaton can be accepted
by a reversal-bounded nondeterministic multicounter machine (i.e., a reversal-
bounded NPCM without the pushdown stack). That is, the binary reachability
of a discrete timed automaton is Presburger. This result shadows the result in
[10] that the binary reachability of a timed automaton with real-valued clocks
is expressible in the additive theory of reals, although our approach is totally
different.

The characterization of ; for discrete pushdown timed automata will lead
us to formulate a model checking procedure for a carefully defined temporal lo-
gic. The logic can be used to reason about a class of timed pushdown processes.
Due to space limitation, we omit it here. In fact, the binary reachability cha-
racterization itself already demonstrates a wide range of safety properties that
can be verified for discrete pushdown timed automata. We will show this by
investigating a number of examples of properties at the end of the paper.

2 Discrete Pushdown Timed Automata

A timed automaton [2] is a finite state machine augmented with a number of real-
valued clocks. All the clocks progress synchronously with rate 1, except a clock
can be reset to 0 at some transition. In this paper, we consider integer-valued
clocks. A clock constraint is a Boolean combination of atomic clock constraints in
the following form: x#c, x−y#c where # denotes ≤,≥, <, >, or =, c is an integer,
x, y are integer-valued clocks. Let LX be the set of all clock constraints on clocks
X. Let Z be the set of integers with Z+ for nonnegative integers. Formally, a
discrete timed automaton A is a tuple 〈S, X, E〉 where S is a finite set of (control)
states. X is a finite set of clocks with values in Z+. E ⊆ S × 2X × LX × S is a
finite set of edges or transitions. Each edge 〈s, λ, l, s′〉 denotes a transition from
state s to state s′ with enabling condition l ∈ LX and a set of clock resets λ ⊆ X.

72 Z. Dang et al.

Note that λ may be empty. Also note that since each pair of states may have
more than one edge between them, A is, in general, nondeterministic.

The semantics is defined as follows. α ∈ S × (Z+)|X| is called a configuration
with αx being the value of clock x and αq being the state under this configura-
tion. α →〈s,λ,l,s′〉 α′ denotes a one-step transition along an edge 〈s, λ, l, s′〉 in A
satisfying

– The state s is set to a new location s′, i.e., αq = s, α′
q = s′.

– Each clock changes according to the edge given. If there are no clock resets
on the edge, i.e., λ = ∅, then clocks progress by one time unit, i.e., for each
x ∈ X, α′

x = αx + 1. If λ 6= ∅, then for each x ∈ λ, α′
x = 0 while for each

x 6∈ λ, α′
x = αx.

– The enabling condition is satisfied, that is, l(α) is true.

We simply write α → α′ if α can reach α′ by a one-step transition. A path
α0 · · ·αk satisfies αi → αi+1 for each i. Also write α ;A β if α reaches β through
a path. Given a set P of configurations of A, write the preimage Pre∗(P) of P
as the set of configurations that can reach a configuration in P , i.e.,

Pre∗(P) =def {α : for some β ∈ P, α ;A β}.

The following figure shows an example of a discrete timed automaton with
two clocks x1 and x2. The following sequence of configurations is a path: 〈s0, x1 =
0, x2 = 0〉, 〈s1, x1 = 0, x2 = 0〉, 〈s0, x1 = 1, x2 = 1〉, 〈s1, x1 = 1, x2 = 0〉.

The above defined A is a little different from the standard (discrete) timed
automaton given in [2]. In that model, each state is assigned with a clock con-
straint called an invariant in which A can remain in the same control state with
all the clocks synchronously progressing with rate 1 as long as the invariant is
satisfied. It is easy to see that, when integer-valued clocks are considered, A’s
remaining in a state can be replaced by a self-looping transition with the invari-
ant as the enabling condition and without clock resets. Each execution of such a
transition causes all the clocks to progress by one time unit. Another difference
is that in a standard timed automaton a state transition takes no time, even
when the transition has no clock resets. In order to translate a standard timed
automaton to our definition, we introduce a dummy clock. Thus, for each state
transition t in a standard timed automaton the translated transition t′ is exactly
the same except the dummy clock is reset in t′. Thus, doing this will ensure that
all clock values remain the same when t has no clock resets. Thus, standard

?

��

� �6
��
��

��
��

s0 s1

x1 − x2 < 2 ∨ x2 > 0

{x2}

x2 = 0

∅

Fig. 1. An example discrete timed automaton

Binary Reachability Analysis of Discrete Pushdown Timed Automata 73

timed automata can be easily transformed into the ones defined above. Since
the paper focuses on binary reachability, the ω-language accepted by a timed
automaton is irrelevant here. Thus, event labels in a standard timed automaton
are not considered in this paper.

Discrete timed automata can be further extended by allowing a pushdown
stack. A discrete pushdown timed automaton A is a tuple 〈Γ, S, X, E〉 where Γ
is the stack alphabet, and S, X, E are the same as in the definition of a discrete
timed automaton except that each edge includes a stack operation. That is, each
edge e is in the form of 〈s, λ, (η, η′), l, s′〉 where s, s′ ∈ S, λ ⊆ X is the set of clock
resets and l ∈ LX is the enabling condition. The stack operation is characterized
by a pair (η, η′) with η ∈ Γ and η′ ∈ Γ ∗. That is, replacing the top symbol of
the stack η by a word η′. A configuration α ∈ (Z+)|X| × S × Γ ∗ with αw ∈ Γ ∗

indicating the stack content. α ;A β can be similarly defined assuming that the
stack contents in α and β are consistent with the sequence of stack operations
along the path.

This paper focuses on the characterization of binary reachability ;A for
both discrete timed automata and discrete pushdown timed automata. Before
we proceed to show the results, some further definitions are needed.

A nondeterministic multicounter machine (NCM) is a nondeterministic ma-
chine with a finite set of (control) states Q = {1, 2, · · · , |Q|}, and a finite num-
ber of counters x1, · · · , xk with integer counter values. Each counter can add 1,
subtract 1, or stay unchanged. Those counter assignments are called standard
assignments. M can also test whether a counter is equal to, greater than, or less
than an integer constant. Those tests are called standard tests.

An NCM can be augmented with a pushdown stack. A nondeterministic pus-
hdown multicounter machine (NPCM) M is a nondeterministic machine with a
finite set of (control) states Q = {1, 2, · · · , |Q|}, a pushdown stack with stack
alphabet Γ , and a finite number of counters x1, · · · , xk with integer counter va-
lues. Both assignments and tests in M are standard. In addition, M can pop the
top symbol from the stack or push a word in Γ ∗ on the top of the stack. It is
well-known that counter machines with two counters have undecidable halting
problem, and obviously the undecidability holds for machines augmented with
a pushdown stack. Thus, we have to restrict the behaviors of the counters. One
such restriction is to limit the number of reversals a counter can make. A counter
is n-reversal-bounded if it changes mode between nondecreasing and nonincrea-
sing at most n times. For instance, the following sequence of a counter values:
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 2, 1, 1, 1, 1, · · · demonstrates only one counter reversal. A
counter is reversal-bounded if it is n-reversal-bounded for some n. We note that
a reversal-bounded M (i.e., each counter in M is reversal-bounded) does not
necessarily limit the number of moves or the number of reachable configurations
to be finite.

Let (j, v1, · · · , vk, w) denote the configuration of M when it is in state j ∈ Q,
counter xi has value vi ∈ Z for i = 1, 2, · · · , k, and the string in the pushdown
stack is w ∈ Γ ∗ with the rightmost symbol being the top of the stack. Each
integer counter value vi can be represented by a unary string 0vi (1vi) when vi

74 Z. Dang et al.

positive (negative). Thus, a configuration (j, v1, · · · , vk, w) can be represented
as a string by concatenating the unary representations of each j,v1, · · · , vk as
well as the string w with a separator # 6∈ Γ . For instance, (1,2,-2,w) can be
represented by 01#02#12#w. Similarly, an integer tuple (v1, · · · , vk) can also be
represented by a string. Thus, in this way, a set of configurations and a set of
integer tuples can be treated as sets of strings, i.e., a language. It is noticed that
a configuration α of a discrete (pushdown) timed automaton A can be similarly
encoded as a string [α].

Note that the above defined M does not have an input tape; in this case it is
used as a system specification rather than a language recognizer, in which we are
more interested in the behaviors that M generates. When a NPCM (or NCM) M
is used as a language recognizer, we attach a separate one-way read-only input
tape to the machine and assign a state in Q as the final state. M accepts an
input iff it can reach the final state. When M is reversal-bounded, the emptiness
problem, i.e., whether M accepts some input, is known to be decidable,

Theorem 1. The emptiness problem for reversal-bounded nondeterministic
pushdown multicounter machines with a one-way input tape is decidable [15].

It has been shown in [13] that the emptiness problem for reversal-bounded non-
deterministic multicounter machines (NCMs) with one-way input is decidable
in nckr time for some constant c, where n is the size of the machine, k is the
number of counters, and r is the reversal-bound on each counter. We believe
that a similar bound could be obtained for the case of NPCMs.

Actually, Theorem 1 can be strengthened for the case of NCMs:

Theorem 2. A set of n-tuples of integers is definable by a Presburger formula iff
it can be accepted by a reversal-bounded nondeterministic multicounter machine
[15].

A language is bounded if there exist finite words w1, · · · , wn such that each
element can be represented as w∗

1 · · ·w∗
n. A nondeterministic reversal-bounded

multicounter machine can be made deterministic on bounded languages.

Theorem 3. If a bounded language L is accepted by a nondeterministic reversal-
bounded multicounter machine, then L can also be accepted by a deterministic
reversal-bounded multicounter machine [15].

For an NPCM M , we can define the preimage Pre∗(P) of a set of configu-
rations P similarly to be the set of all predecessors of configurations in P , i.e.,
Pre∗(P) = {t | t can reach some configuration t′ in P in 0 or more moves}. Re-
cently, we have shown [11] that Pre∗(P) can be accepted by a reversal-bounded
NPCM assuming that M is reversal-bounded and P is accepted by a reversal-
bounded nondeterministic multicounter machine.

Theorem 4. Let M be a reversal-bounded nondeterministic pushdown multi-
counter machine. Suppose a set of configurations P is accepted by a reversal-
bounded nondeterministic multicounter machine. Then Pre∗(P) with respect to
M can be accepted by a reversal-bounded nondeterministic pushdown multicoun-
ter machine.

Binary Reachability Analysis of Discrete Pushdown Timed Automata 75

3 Main Results

Let A be a discrete pushdown timed automaton with clocks x1, · · · , xk. The
binary reachability ;A can be treated as a language {[α]#[β]r : α ;A β}
where [α] is the string encoding of configuration α, [β]r is the reverse string
encoding of configuration β. 1 The two encodings are separated by a delimiter
“#”. The main result claims that the binary reachability ;A can be accepted
by a reversal-bounded NPCM using standard tests and assignments. A itself
can be regarded as an NPCM, when we refer to a clock as a counter. However,
tests in A as clock constraints are not standard tests. Furthermore, A is not
reversal-bounded since clocks can be reset for an unbounded number of times.

The proof of the main result proceeds as follows. We first show that ;A

can be accepted by a reversal-bounded NPCM using nonstandard tests and
assignments. Then, we show that these nonstandard tests can be made stan-
dard. Finally, these nonstandard assignments can be simulated by standard ones.
Throughout the two simulations the counters remain reversal-bounded.

First, we show that clocks x1, · · · , xk in A can be translated into reversal-
bounded ones. Let y0, y1, · · · , yk be another set of clocks such that xi = y0 − yi

(1 ≤ i ≤ k). Let A′ be a discrete pushdown timed automaton that is exactly the
same as A, except

– A′ has clock y0 that never resets. Intuitively, the now-clock y0 denotes current
time.

– Each yi with 1 ≤ i ≤ k denotes the (last) time when a reset of clock xi

happens. Thus, each reset of clock xi on an edge is replaced by updating yi

to the current time, i.e., yi := y0. If xi does not reset on an edge, the value
of yi is unchanged. Also, only if there is no clock reset on an edge, add an
assignment y0 := y0 +1 to the edge to indicate that the now-clock progresses
with one time unit. Only these assignments can change y0.

– the enabling condition on each edge of A is replaced by substituting xi

with y0 − yi. Note that the enabling conditions xi#c and xi − xj#c become
y0−yi#c and yj −yi#c, respectively. Thus, the resulting enabling conditions
are Boolean combinations of yi − yj#c with 0 ≤ i, j ≤ k and c being an
integer constant.

Counters y0, y1, · · · , yk in A′ do not reverse. The reason is that assignments
that change the counter values are only in the form of: y0 := y0 +1 and yi := y0
for 1 ≤ i ≤ k, and there is no way that a counter yi decreases. For a configuration
α of A and u ∈ Z+, write αu to be a configuration of A′ such that αu

y0
= u (y0’s

value is u), and for each 1 ≤ i ≤ k, αu
yi

= u−αxi (yi is the translation of xi), and
αu

w = αw (the stack content is the same). Also write maxα to be the maximal
value of clocks αxi

in α (note that, each αxi
is nonnegative by definition). Thus,

αmaxα is the configuration αu of A′ with y0’s value being maxα. It follows
directly, by induction on the length of a path, that the binary reachability of A
can be characterized by that of A′ as follows.
1 The reason that we use the reverse encoding of β will become apparent in the Proof

of Theorem 6.

76 Z. Dang et al.

Theorem 5. For any pair of configurations α and β of a discrete pushdown
timed automaton A, the following holds,

α ;A β iff there exist v ∈ Z+ with v ≥ maxα such that αmaxα ;A′
βv.

¿From the above theorem, it suffices for us to investigate the binary reachabi-
lity of A′. As mentioned above, A′ is an NPCM with reversal-bounded counters
y0, y1, · · · , yk. However, instead of standard tests, A′ has tests that check an
enabling condition by comparing the difference of two counters against an inte-
ger constant. Also the assignments include only y0 := y0 + 1 and yi := y0 for
1 ≤ i ≤ k in A′, which are not standard assignments. The following theorem
says the nonstandard tests can be made standard.

Theorem 6. The binary reachability ;A′
of A′ can be accepted by a reversal-

bounded NPCM using standard tests and nonstandard assignments that are of
the form y0 := y0 + 1 and yi := y0 with 1 ≤ i ≤ k.

Proof. We construct the reversal-bounded NPCM as required. Given a pair of
string encodings of configurations αA′

and βA′
(separated by a delimiter “#”

not in the stack alphabet, also recall that the encoding of βA′
has the stack word

in βA′
reversed.) of A′ on M ’s one-way input tape, M first copies αA′

into its
k+1 counters y0, y1, · · · , yk and the stack. Thus, M ’s input head stops at the be-
ginning of βA′

. M starts simulating A′ as follows with the stack operations in A′

being exactly simulated on its own stack. Tests in A′ are Boolean combinations
of yi − yj#c for 0 ≤ i, j ≤ k. Using only standard tests, M cannot directly com-
pare the difference of two counter values against an integer c by storing yi − yj

in another counter, since each time this “storing” is done it will cause at least a
counter reversal, and we don’t have a bound on the number of such tests. In the
following, we provide a technique to avoid such nonstandard tests. Assume m
is one plus the maximal absolute value of all the integer constants that appear
in the tests in A′. Denote the finite set [m] =def {−m, · · · , 0, · · · , m}. M uses
its finite control to build a finite table. For each pair of counters yi and yj with
0 ≤ i, j ≤ k, there is a pair of entries aij and bij . Each entry can be regarded as
finite state control variable with states in [m]. Intuitively, aij is used to record
the difference between the values of two counters yi and yj . bij is used to record
the “future” value of the difference when a clock assignment yi := y0 occurs
in the future. During the computation of A′, when the difference goes beyond
m or below −m, aij stays the same as m or −m. M uses aij#c to do a test
yi − yj#c. Doing this is always valid, as we will show later. Thus, M only uses
standard tests. Below, “ADD 1” means adding one if the result does not exceed
m, otherwise it keeps the same value. “SUBTRACT 1” means subtracting one
if the result is not less than −m, otherwise it keeps the same value. In the fol-
lowing, we show how to construct the table. When assignment y0 := y0 + 1 is
being executed by A′, M updates the table as follows, for each 0 ≤ i, j ≤ k:

– aij stays the same if i > 0 and j > 0. That is, the now-clock’s progressing
does not affect the difference between two non-now-clocks,

Binary Reachability Analysis of Discrete Pushdown Timed Automata 77

– aij ADD 1 if i = 0 and j > 0, noticing that yi is the now-clock and yj is a
non-now-clock (thus it remains unchanged),

– aij SUBTRACT 1 if i > 0 and j = 0, noticing that yj is the now-clock and
yi is a non-now-clock (thus it remains unchanged),

– aij is always 0 if i = 0 and j = 0. The difference between two identical
now-clocks is always 0.

After updating all aij , entries bij are updated as below, for each 0 ≤ i, j ≤ k,

– bij := a0j . Thus bij is the value of yi −yj assuming currently there is a jump
yi := y0.

It is noticed that an edge in A′ cannot contain two forms of assignment, i.e.,
both y0 := y0 +1 and yi := y0. Let τ ⊆ {y1, · · · , yk} denote assignments yi := y0
for i ∈ τ on an edge being executed by A′. M updates the table as follows, for
each 0 ≤ i, j ≤ k:

– aij := 0 if i, j ∈ τ , noticing that both yi and yj are currently the same value
as the now-clock y0,

– aij := bij if i ∈ τ and j 6∈ τ , noticing that yi currently is the same value of
the now-clock y0 and the difference yi − yj is prestored as bij ,

– aij := −bji if i 6∈ τ and j ∈ τ , noticing that yi − yj = −(yj − yi),
– aij stays the same if i 6∈ τ and j 6∈ τ , since clocks outside τ are not changed.

After updating all aij , entries bij are updated as follows, for each 0 ≤ i, j ≤ k:

– bij := 0 if i, j ∈ τ , noticing that both yi and yj are currently the same value
as the now-clock y0,

– bij := a0j if i ∈ τ and j 6∈ τ , noticing that yi currently is the same value as
the now-clock y0,

– bij := −a0i if i 6∈ τ and j ∈ τ , noticing that yj currently is set to the
now-clock y0,

– bij stays the same if i 6∈ τ and j 6∈ τ , noticing that bij represents y0 − yj and
in fact the two clocks y0 and yj are unchanged after the transition.

The initial values of aij and bij can be constructed directly from αA′
as follows,

for each 0 ≤ i, j ≤ k:

– aij := αA′
yi

− αA′
yj

if |αA′
yi

− αA′
yj

| ≤ m,
– aij := m if αA′

yi
− αA′

yj
> m,

– aij := −m if αA′
yi

− αA′
yj

< −m,

and for each 0 ≤ i, j ≤ k: bij := a0j .
M then simulates A′ exactly except using aij#c for a test yi − yj#c in A′,

with −m < c < m. Then, we claim that doing this by M is valid,
Claim. Each time after M updates the table by executing a transition, yi−yj#c
iff aij#c, and y0 − yj#c iff bij#c, for all 0 ≤ i, j ≤ k and for each integer
c ∈ [m − 1].

78 Z. Dang et al.

Proof of the Claim. We prove it by induction. Obviously, the Claim holds for
the initial values of all clocks yi (in configuration αA′

) and the corresponding
entries aij and bij , by the choice of m. Suppose that A′ is currently at confi-
guration γ and the Claim holds. Thus, for all 0 ≤ i, j ≤ k and for each integer
c ∈ [m − 1], γyi

− γyj
#c iff aij#c and γy0 − γyj

#c iff bij#c hold. Therefore, γ
satisfies an enabling condition in A′ iff the entries aij satisfy the same enabling
condition by replacing yi − yj with aij , noticing that m is chosen such that it is
greater than the absolute value of any constant in all the enabling conditions in
A′. Assume γ satisfies the enabling condition on an edge e and A′ will execute
e next. Thus, M , using the entries aij to test the enabling condition, will also
execute the same edge. We use γ′ to denote the configuration after executing the
edge, and use a′

ij and b′
ij to denote the table entries after executing the edge.

We need to show, for all 0 ≤ i, j ≤ k and for each integer c ∈ [m − 1],
(*) γ′

yi
− γ′

yj
#c iff a′

ij#c
and

(**) γ′
y0

− γ′
yj

#c iff b′
ij#c

hold. There are two cases to be considered according to the form of the assign-
ment. Suppose the assignment on e is a clock progress y0 := y0 + 1. After this
assignment, γ′

y0
= γy0 + 1 and γ′

yi
= γyi

for each 1 ≤ i ≤ k. On the other hand,
according to the updating algorithm above, a′

ij are updated for each 0 ≤ i, j ≤ k
as follows, depending on the case. There are four subcases:

– If i > 0 and j > 0, then γ′
yi

= γyi
, γ′

yj
= γyj

, a′
ij = aij . The claim (*) holds

trivially.
– If i = 0 and j > 0, then γ′

yi
= γyi + 1, γ′

yj
= γyj , a′

ij = aij ADD 1. Since y0
is the only now-clock, all γyi − γyj , γ′

yi
− γ′

yj
, a′

ij and aij are nonnegative. It
suffices to show for any c ≥ 0, c ∈ [m−1], the claim holds. In fact, γ′

yi
−γ′

yj
#c

iff γyi
− γyj

#c − 1 iff aij#c − 1 iff aij + 1#c. Also, aij + 1#c iff a′
ij#c, by

separating the cases for aij = m and aij < m, and noticing that c < m.
Thus, (*) holds, i.e., γ′

yi
− γ′

yj
#c iff a′

ij#c.
– If i > 0 and j = 0, similar as above.
– If i = 0 and j = 0, the Claim (*) holds trivially.

Noticing that under the assignment y0 := y0 + 1, b′
ij := a′

0j . Thus, (**) can be
shown using (*).

When the assignment is in the form of yi := y0 for yi ∈ τ ⊆ {y1, · · · , yk},
(note that in this case, the now clock does not progress, i.e., γ′

y0
= γy0) there

are four cases to consider in order to show (*) for all 0 ≤ i, j ≤ k,

– If i, j ∈ τ , then γ′
yi

= γ′
yj

= γy0 , a′
ij = 0 and therefore γ′

yi
− γ′

yj
= a′

ij = 0.
Thus, the Claim (*) trivially holds.

– If i ∈ τ and j 6∈ τ , then, γ′
yi

= γy0 , γ′
yj

= γyj
, a′

ij = bij . Thus, for each
c ∈ [m − 1], γ′

yi
− γ′

yj
#c iff γy0 − γyj #c iff (induction hypothesis) bij#c iff

a′
ij#c. The Claim (*) holds.

– If i 6∈ τ and j ∈ τ , similar as above.
– If i 6∈ τ and j 6∈ τ , then, γ′

yi
= γyi

, γ′
yj

= γyj
, and a′

ij = aij . Thus, the Claim
(*) holds trivially.

Binary Reachability Analysis of Discrete Pushdown Timed Automata 79

Now we prove Claim (**) under this assignment for τ . Again, there are four
cases to consider:

– If i, j ∈ τ , then b′
ij = 0, noticing that γ′

yj
= γy0 and γ′

y0
= γy0 , Claim (**)

holds.
– If i ∈ τ and j 6∈ τ , then, b′

ij = a′
0j . Claim (**) holds directly from Claim (*).

– If i 6∈ τ and j ∈ τ , similar as above.
– If i 6∈ τ and j 6∈ τ , then, b′

ij = bij . In fact, γ′
y0

= γy0 , γ′
yj

= γyj
. Thus, Claim

(**) holds directly from the induction hypothesis.

This ends the proof of the Claim. Thus, it is valid for M to use aij#c to
do each test yi − yj#c. At some point, M guesses that it has reached the con-
figuration βA′

by comparing the counter values and the stack content with βA′

through reading the rest of the input tape. M accepts iff such a comparison suc-
ceeds. Clearly M accepts ;A′

. There is a slight problem when M compares its
own stack content with the one βA′

w on the one-way input tape in βA′
by popping

the stack. The reason is that popping the stack contents reads the reverse of the
stack content. However, recall that the encoding of the stack word βA′

w on the
input tape is reversed. Thus, such a comparison can be proceeded. ut

Assignments in M constructed in the above proof, in the form of, y0 :=
y0 +1 and yi := y0 with 1 ≤ i ≤ k, are still not standard. We will now show that
these assignments can be made standard, while the machine is still reversal-
bounded. Let M ′ be an NPCM that is exactly the same as M . M ′ simulates
M ’s computation from the configuration αA′

. Initially, each yi := αA′
yi

as we
indicated in the above proof. However, each time that M executes an assignment
y0 := y0 + 1, M ′ increases all the counters by 1, i.e., yi := yi + 1 for each
0 ≤ i ≤ k. When M executes an assignment yi := y0, M ′ does nothing. The
stack operations in M are faithfully simulated by M ′ on its own stack. For each
1 ≤ i ≤ k, at some point, either initially or at the moment yi := y0 is being
executed by M , M ′ guesses (only once for each i) that yi has already reached
the value given in βA′

. After such a guess for i, an execution of y0 := y0 + 1 will
not cause yi := yi +1 as indicated above (i.e., yi will no longer be incremented).
However, after such a guess for i, a later execution of yi := y0 in M will cause
M ′ to abort abnormally (without accepting the input). At some point after all
1 ≤ i ≤ k have been guessed, M ′ guesses that it has reached the configuration
βA′

. Then, M ′ compares its current configuration with the one on the rest of the
input tape βA′

(recall that the stack word in βA′
is reversed on the input tape.).

M ′ accepts iff such a comparison succeeds. Clearly, M ′ uses only assignments
y0 := y0 + 1 and yi := yi + 1 for 1 ≤ i ≤ k. Thus, M ′ is also reversal-bounded
and accepts ;A′

. Therefore,

Theorem 7. The binary reachability ;A′
of A′ can be accepted by a reversal-

bounded NPCM using standard tests and assignments.

Combining the above theorem with Theorem 5 and noticing that v in Theo-
rem 5 can be guessed, it follows immediately that,

80 Z. Dang et al.

Theorem 8. The binary reachability of a discrete pushdown timed automaton
can be accepted by a reversal-bounded NPCM using standard tests and assign-
ments.

A discrete timed automaton is a special case of a discrete pushdown timed
automaton without the pushdown stack. The above proofs still work for discrete
timed automata without considering stack operations. That is,

Theorem 9. The binary reachability of a discrete timed automaton can be ac-
cepted by a reversal-bounded multicounter machine using standard tests and as-
signments.

Combining the above theorem and Theorem 2, it is immediate that the binary
reachability of a discrete timed automaton is Presburger over clocks. This result
shadows the result in [10] that the binary reachability of a timed automaton
with real-valued clocks is expressible in the additive theory of reals. However,
our proof is totally different from the flattening technique in [10].

4 Verification Results

The importance of the characterization of ;A for a discrete pushdown timed
automaton A is that the emptiness of reversal-bounded NPCMs is decidable
from Theorem 1. In this section, we will formulate a number of properties that
can be verified for discrete pushdown timed automata.

We first need some notation. We use α, β · · · to denote variables ranging over
configurations. We use q,x,w to denote variables ranging over control states,
clock values and stack words respectively. Note that αxi , αq and αw are still used
to denote the value of clock xi, the control state and the stack word of α. We
use a count variable #a(w) to denote the number of occurrences of a character
a ∈ Γ in a stack word variable w. An NPCM-term t is defined as follows:2

t ::= n | q | x | #a(αw) | αxi | αq | t − t | t + t

where n is an integer and a ∈ Γ . An NPCM-formula f is defined as follows:

f ::= t > 0 | t mod n = 0 | ¬f | f ∨ f

where n 6= 0 is an integer3. Thus, f is a Presburger formula over control state
variables, clock value variables and count variables. Let F be a formula in the
following format: ∨

(fi ∧ αi ; βi)
2 Control states can be interpreted over a bounded range of integers. In this way, an

arithmetic operation on control states is well-defined.
3 We use (i, j,w) to denote the i-th character of w is the j-th symbol in Γ . Then,

Theorem 10 is still correct when we include (i, j, αw) as an atomic formula in an
NPCM-formula with i, j ∈ Z+.

Binary Reachability Analysis of Discrete Pushdown Timed Automata 81

where fi, αi and βi are a number of NPCM-formulas and configuration variables.
Write ∃F to be a closed formula such that each free variable in F is existentially
quantified. Then, the property ∃F can be verified. 4

Theorem 10. The truth value of ∃F with respect to a discrete pushdown timed
automaton A for any NPCM-formula F is decidable.

Proof. Consider each disjunctive subformula fi ∧ αi ; βi in F . Since fi is
Presburger, (the domain of) fi can be accepted by a NCM Mfi

from Theorem
2, and further from Theorem 3, since the domain of fi can be encoded as a
set of integer tuples (thus, bounded), Mfi

can be made deterministic. ¿From
Theorem 8, we can construct a reversal bounded NPCM accepting (the domain
of) αi ; βi. It is obvious that fi ∧ αi ; βi can be accepted by a reversal-
bounded NPCM Mi by “intersecting” the two machines. Now, F is a union
of Mfi

. Since reversal-bounded NPCMs are closed under union [15], we can
construct a reversal-bounded M to accept F . Since ∃F = false is equivalent to
testing the emptiness of M , the theorem follows from Theorem 1. ut

Although ∃F cannot be used to specify liveness properties, it can be used to
specify many interesting safety properties. For instance, the following property:

“for any configurations α and β with α ;A β, clock x2 in β is the sum of
clocks x1 and x2 in α, and symbol a appears in β twice as many times as symbol
b does in α.”
This property can be expressed as, ∀α∀β(α ;A β → (βx2 = αx1 + αx2 ∧
#a(βw) = 2#b(αw))). The negation of this property is equivalent to ∃F for
some F . Thus, it can be verified. We also need to point out that

– Even without clocks, #a(βw) = 2#b(αw) indicate a nonregular set of stack
word pairs. Thus, this property cannot be verified by the model checking
procedures for pushdown systems [4,12,17],

– Even without the pushdown stack, βx2 = αx1 + αx2 is not a clock region
[2]. Thus, the classical region techniques (include [5] for Pushdown Timed
Systems) can not verify this property. This is also pointed out in [10].

Note that in an NPCM-formula, the use of a stack word is limited to count
the occurrences of a symbol, e.g., #a(αw). In fact we can have the following more
general use. Given P and I, two sets of configurations of a discrete pushdown
timed automaton A. If, starting from a configuration in I, A can only reach con-
figurations in P , then P is a safety property with respect to the initial condition
I. The safety analysis problem is whether P is a safety property with respect
to the initial condition I, given P and I. The following theorem asserts that
the safety analysis problem is decidable for discrete pushdown timed automata,
4 If stack words in αi and βi are bounded, i.e., in the form of w∗

1 · · · w∗
k with w1, · · · , wk

fixed, then F can be further extended to allow disjunctions and conjunctions over
(fi ∧ αi ; βi) formulas and the following theorem still holds. The reason is that
reversal-bounded NPCMs are closed under conjunction when languages are bounded
[15].

82 Z. Dang et al.

when both P and I are bounded languages and are accepted by reversal-bounded
NCMs.

Theorem 11. The safety analysis problem is decidable for discrete pushdown
timed automata where both the safety property and the initial condition are boun-
ded languages and accepted by reversal-bounded nondeterministic multicounter
machines.

Proof. Let A be a discrete pushdown timed automaton. Let P and I be accepted
by reversal-bounded NCMs MP and MI , respectively. Note that P is a safety
property with respect to the initial condition I iff I ∩ Pre∗(¬P) = ∅. That is,
if P is a safety property, then, starting from a configuration, A can not reach
a configuration that is in the complement ¬P of P . ¿From Theorem 3, since
P and I are bounded, both MP and MI can be made deterministic. Thus, ¬P
can also be accepted by a reversal-bounded NCM. Therefore, from Theorem 8
and Theorem 4, we can construct a reversal-bounded NPCM MPre∗ accepting
Pre∗(¬P). It is obvious that I ∩ Pre∗(¬P) can also be accepted by a reversal-
bounded NPCM M ′ by “intersecting” MI and MPre∗ . The theorem follows by
noticing that I ∩ Pre∗(¬P) = ∅, i.e., testing the emptiness of M ′ is decidable
from Theorem 1. ut

Thus, from the above theorem, the following property can be verified:
“starting from a configuration α with the stack word anb2n for some n, A

can only reach a configuration β satisfying: the clock x1 in β is the sum of clock
x2 and x3 in β, and the stack word is anbn+2m for some n and m.”
The reason is that anb2n and anbn+2m can be encoded as Presburger tuples (thus
bounded). Therefore they can be accepted by reversal-bounded NCMs.

Now let’s look at A without a pushdown stack, i.e., a discrete timed auto-
maton. Obviously, the above two theorems still hold for such A. However, since
;A now is Presburger from Theorem 9, we can do more. An NCM-term t is
defined as follows:

t ::= n | q | x | αxi
| αq | t − t | t + t

where n is an integer and a ∈ Γ . An NCM-formula f is defined as follows:

f ::= t > 0 | ¬f | f ∨ f | α ;A β | ∀α(f) | ∀x(f) | ∀q(f).

Thus, f is a Presburger formula over control state variables, clock value variables
and configuration variables. Thus, if f is closed (i.e., without free variables),
then the truth value of f is decidable since f is Presburger. Thus, a property
formulated as a closed NCM-formula can be verified. Even clocks are real values,
this is still true from [10]. The following is an example property which can be
verified:

“for all configuration α there exists a configuration β such that α ;A β and
the clock x1 in β is the sum of clocks x1 and x2 in α.”
This property can be written in the following closed NCM-formula,

∀α∃β(α ;A β ∧ βx1 = αx1 + αx2).

Binary Reachability Analysis of Discrete Pushdown Timed Automata 83

NCM-formulas can be extended by considering event labels as follows. Con-
sider a discrete timed automata A. Recall that an edge in A does not have a
label. Now we assume that, just as a standard timed automaton, each edge in
A is labeled by a letter in a finite alphabet Γ . Denote R(α, β,nΓ) to be a pre-
dicate meaning α can reach β through a path that for each a ∈ Γ , the number
of occurrence of label a in the path is equal to na with nΓ being an array of
na for a ∈ Γ . By introducing a new counter for each a ∈ Γ and increasing
the counter whenever M executes a transition labeled by a, we can construct a
reversal-bounded NCM M as in the proof of Theorem 9 (and the actual proof is
in Theorem 8.). From Theorem 2, we have,

Theorem 12. R is Presburger.

Thus, we can add atomic terms na for a ∈ Γ and an atomic formula
R(α, β,nΓ) to the above definition of NCM-formulas. Then such closed NCM-
formulas can be verified for discrete timed automata with labels. The following
is an example property:

“For any configuration α there exists a configuration β such that if the clock
x1 in β is the sum of clocks x1 and x2 in α, then α can reach β through a path
with the number of transitions labeled by a being twice the number of transitions
labeled by b.”

This property can be written in a closed NCM-formula,

∀α∃β(βx1 = αx1 + αx2 → ∃na∃nb(R(α, β,na,nb) ∧ na = 2nb)).

Thus, it can be verified.

5 Conclusion

We consider discrete pushdown timed automata that are timed automata with
integer-valued clocks augmented with a pushdown stack. Using a pure automata-
theoretic approach, we show that the binary reachability can be accepted by a
reversal-bounded nondeterministic pushdown multicounter machine. The proof
reveals that, by replacing enabling conditions with a finite table, the control part
(testing clock constraints) and the clock behaviors (clock progresses and resets)
can be separated for a discrete (pushdown) timed automaton, while maintaining
the structure of the automaton. By using the known fact that the emptiness
problem for reversal-bounded nondeterministic pushdown multicounter machines
is decidable, we show a number of properties that can be verified.

Binary reachability characterization is a fundamental step towards a more
general model-checking procedure for discrete pushdown timed automata. It is
immediate to see that the region reachability in [2] can be similarly formulated
by using Theorem 11, as long as stack words are regular. Thus, we can use the
idea in [4] as well as in [12] to demonstrate a subset of µ-calculus that has a
decidable decision procedure for a class of timed pushdown processes. We plan
to investigate this issue in future work. In the future we would also like to

84 Z. Dang et al.

investigate the complexity of the verification procedures we have developed in
this paper. The techniques in this paper will be used in the implementation of
a symbolic model checker for real-time specifications written in the specification
language ASTRAL [8].

Thanks to anonymous reviewers for a number of useful suggestions.

References

1. R. Alur, C. Courcoibetis, and D. Dill, “Model-checking in dense real time,” Infor-
mation and Computation, 104 (1993) 2-34

2. R. Alur and D. Dill, “Automata for modeling real-time systems,” Theoretical Com-
puter Science, 126 (1994) 183-236

3. R. Alur, T. A. Henzinger, “A really temporal logic,” J. ACM, 41 (1994) 181-204
4. A. Bouajjani, J. Esparza, and O. Maler, “Reachability Analysis of Pushdown Auto-

mata: Application to Model-Checking,”, In CONCUR’97, LNCS 1243, pp. 135-150
5. A. Bouajjani, R. Echahed, and R. Robbana, “On the Automatic Verification of

Systems with Continuous Variables and Unbounded Discrete Data Structures,”,
In Hybrid System II, LNCS 999, 1995, pp. 64-85

6. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise and W. Yi, “Efficient timed
reachability analysis using clock difference diagrams,”, In CAV’99, LNCS 1633,
pp. 341-353

7. B. Boigelot and P. Wolper, “Symbolic verification with periodic sets,” In CAV’94,
LNCS 818, pp. 55-67

8. A. Coen-Porisini, C. Ghezzi and R. Kemmerer, “Specification of real-time systems
using ASTRAL,” IEEE Transactions on Software Engineering, 23 (1997) 572-598

9. H. Comon and Y. Jurski, “Multiple counters automata, safety analysis and Pres-
burger arithmetic,” In CAV’98, LNCS 1427, pp. 268-279.

10. H. Comon and Y. Jurski, “Timed Automata and the Theory of Real Numbers,”
In CONCUR’99, LNCS 1664, pp. 242-257

11. Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su “Safety property
analysis of reversal-bounded pushdown multicounter machines,”, manuscript, 1999

12. A. Finkel, B. Willems and P. Wolper“A direct symbolic approach to model checking
pushdown systems,” In INFINITY’97.

13. E. Gurari and O. Ibarra, “The Complexity of Decision Problems for Finite-Turn
Multicounter Machines,” J. Computer and System Sciences, 22 (1981) 220-229

14. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. “Symbolic Model Checking
for Real-time Systems,” Information and Computation, 111 (1994) 193-244

15. O. H. Ibarra, “Reversal-bounded multicounter machines and their decision pro-
blems,” J. ACM, 25 (1978) 116-133

16. K. L. McMillan. “Symbolic model checking - an approach to the state explosion
problem,” PhD thesis, Carnegie Mellon University, 1992.

17. I. Walukiewicz, “Pushdown processes: games and model checking,” In CAV’96,
LNCS 1102, pp. 62-74

18. F. Wang, “Efficient Data Structure for Fully Symbolic Verification of Real-Time
Software Systems ,” In TACAS’00, to appear.

	Introduction
	Discrete Pushdown Timed Automata
	Main Results
	Verification Results
	Conclusion

