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Summary. 
Visualization of program executions has been used in applications which 
include education and debugging. However, traditional visualization tech-
niques often fall short of expectations or are altogether inadequate for new 
programming paradigms, such as Constraint Logic Programming (CLP), 
whose declarative and operational semantics differ in some crucial ways 
from those of other paradigms. In particular, traditional ideas regarding 
the behavior of data often cannot be lifted in a straightforward way to 
(C)LP from other families of programming languages. In this chapter we 
discuss techniques for visualizing data evolution in CLP. We briefly re-
view some previously proposed visualization paradigms, and also propose 
a number of (to our knowledge) novel ones. The graphical representations 
have been chosen based on the perceived needs of a programmer trying 
to analyze the behavior and characteristics of an execution. In particular, 
we concéntrate on the representation of the run-time valúes of the vari
ables, and the constraints among them. Given our interest in visualizing 
large executions, we also pay attention to abstraction techniques, i.e., tech
niques which are intended to help in reducing the complexity of the visual 
information. 

11.1 Introduction 

As mentioned in the previous chapter, program visualization has focused 
classically on the representation of program flow (using flowcharts and block 
diagrams, for example) or on the data manipulated by the program and its 
evolution as the program is executed. In that chapter we discussed issues 
related to the visualization of the "programmed control" or "programmed 
search" part of the execution of constraint logic programs [11.17, 11.19]. In 
this chapter we focus on methods for displaying the contents of variables, 
the constraints among such variables, the evolution of such contents and 
constraints, and abstractions of the proposed depictions. For simplicity, and 
because of their relevance in practice, in what follows we will discuss mainly 
the representation of finite domain (FD) constraints and variables, although 
we will also mention other constraint domains and consider how the visual-
izations designed herein can be applied to them. 



11.2 Displaying Variables 

In imperative and functional programming there is a clear notion of the 
valúes that variables are bound to (although it is indeed more complex in the 
case of higher-order functional variables). The concept of variable binding 
in LP is somewhat more complex, due to the variable sharing which may 
occur among Herbrand terms. The problem is even more complex in the case 
of CLP, where such sharing is generalized to the form of equations relating 
variables. As a result, the valué of C(L)P variables often is actually a complex 
object representing the fact that each variable can take a (potentially infinite) 
set of valúes, and that there are constraints attached to such variables which 
relate them and which restrict the valúes they can take simultaneously. 

Textual representations of the variables in the store are usually not very 
informative and difficult to interpret and understand.1 A graphical depiction 
of the valúes of the variables can offer a view of computation states that is 
easier to grasp. Also, if we wish to follow the history of the program (which is 
another way of understanding the program behavior, but focusing on the data 
evolution), it is desirable that the graphical representation be either animated 
(Le., time in the program is depicted in the visualization also as time) or laid 
out spatially as a succession of pictures. The latter allows comparing different 
behaviors easily, trading time for space. 

Since different constraint domains have different properties and charac-
teristics, different representations for variables may be needed for them. In 
what follows we will sketch some ideas focusing on the representation of vari
ables in Finite Domains, but we will also refer briefly to the depiction of other 
commonly used domains. 

11.2.1 Depicting Finite Domain Variables 

As mentioned before, Finite Domains (FD) are one of the most popular con
straint domains. FD variables take valúes over finite sets of integers which 
are the domains of such variables. The operations allowed among FD vari
ables are pointwise extensions of common integer arithmetic operations, and 
the allowed constraints are the pointwise variants of arithmetic constraints. 
At any state in the execution, each FD variable has an active domain (the 
set of allowed valúes for it) which is usually accessible by using primitives of 
the language. For efficiency reasons, in practical systems this domain is usu
ally an upper approximation of the actual set of valúes that the variable can 
theoretically take. We will return to this characteristic later, and we will see 
how taking it into account is necessary in order to obtain correct depictions 
of valúes of variables. 

A possible graphical representation for the state of FD variables is to 
assign a dot (or, depending on the visualization desired, a square) to every 

1 Also note that some solvers maintain, for efficiency or accuracy reasons, only an 
approximation of the valúes the variables can take. 
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possible valué the variable can take; therefore the whole domain is a line 
(respectively, a rectangle). Valúes belonging to the current domain at every 
moment are highlighted. An example of the representation of a variable X 
with current domain {1,2,4,5} from an initial domain {1 . . .6} is shown 
in Figure 11.1. More possibilities include using different colors / shades / 
textures to represent more information about the valúes, as in Figure 11.2 
(this is done also, for example, in the GRACE visualizer [11.20]). 

Looking at the static valúes of variables at only one point in the execution 
(for example, the final state) obviously does not provide much information 
on how the execution has actually progressed. However, the idea is that such 
a representation can be associated with each of the nodes of the control tree, 
as suggested in Chapter 10, i.e., the window that is opened upon clicking on 
a node in the search-tree contains a graphical visualization for each of the 
variables that are relevant to that node. The variables involved can be repre-
sented in principie simply side to side as in Figure 11.6 (we will discuss how 
to represent the relations between variables, i.e., constraints, in Section 11.3). 

Note that each node of the search-tree often represents several internal 
steps in the solver (e.g., propagation is not seen by the user, or reflected in 
user code). The visualization associated to a node can thus represent either 
the final state of the solver operations that correspond to that search-tree 
node, or the history of the involved variables through all the internal solver 
(or enumeration) steps corresponding to that node. 

Also, in some cases, it may be useful to follow the evolution of a set of 
program variables throughout the program execution, independently of what 
node in the search-tree they correspond to (this is done, for example, in some 
of the visualization tools for CHIP [11.1]). This also requires a depiction of 
the valúes of a set of variables over time, and the same solutions used for the 
previous case can be used. 

Thus, it is interesting to have some way of depicting the evolution in time 
of the valúes of several variables. A number of approaches can be used to 
achieve this: 

— An animated display which follows the update of the (selected) variables 
step by step as it happens; in this case, time is represented as time. This 
makes the immediate comparison of two different stages of the execution 
difficult, since it requires repeatedly going back and forth in time. However, 
the advantage is that the representation is compact and can be useful for 
understanding how the domains of the variables are narrowed. We will 
return to this approach later. 



Different shadings (or hues of color) can be used in the boxes corresponding 
to the valúes, representing in some way how long ago that valué has been 
removed from the domain of the variable (see Figure 11.2, where darker 
squares represent valúes removed longer ago). Unfortunately, comparing 
shades accurately is not easy for the human eye, although it may give a 
rough and very compact indication of the changes in the history of the 
variable. An easier to interpret representation would probably involve ad-
justing the shades so that the human brain interprets them correctly when 
squares of different shades surround it. 
A third solution is to simply stack the different state representations, as 
in Figure 11.3. This depiction can be easily shrunk/scrolled if needed to 
accommodate the whole variable history in a given space. It can repre
sent time accurately (for example, by reflecting it in the height between 
changes) or ignore it, working then in events space (see Chapter 10), by 
simply stacking a new line of a constant height every time a variable domain 
changes, or every time an enumeration step is performed. This representa
tion allows the user to perform an easier comparison between states and 
has the additional advantage of allowing more time-related information to 
be added to the display. 

Fíg. 11.3. History of a single variable (same as in Figure 11.2) 

The last approach is one of the visualizations available in the VIFID 
visualizer, implemented at UPM, and which, given a set of variables in a 
FD program, generates windows which display states (or sets of states) for 
those variables. VIFID can be used as a visualizer of the state in nodes of 
the search-tree, or standalone, as a user library, in which case the display is 
triggered by spy-points introduced by the user in the program. Figure 11.15 
shows an example of such an annotated program, where the lines calling 
l og_s t a t e / l implement the spy-points, and Figure 11.4 shows a screen dump 
of a window generated by VIFID presenting the evolution of selected program 
variables in a program to sol ve the queens problem for a board of size 10. Each 
column in the display corresponds to one program variable, and are labeled 
with the ñame of the variables on top. In this case the possible valúes are 
the row numbers in which a queen can be placed. Lighter squares represent 
valúes still in the domain, and darker squares represent discarded valúes. 
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Each row in the display corresponds to a spy-point in the source program, 
which caused VIFID to consult the store and update the visualization. Points 
where backtracking took place are marked with small curved arrows pointing 
upwards. It is quite easy to see that very little backtracking was necessary, 
and that variables are highly constrained, so that enumeration (proceeding 
left to right) quite quickly discarded initial valúes. VIFID supports several 
other visualizations, some of which will be presented later in the chapter. 

Some of the problems which appear in a display of this type are the possi-
bly large number of variables to be represented and the size of the domain of 
each variable. Note that the first problem is under control to some extent in 
the approach proposed: if the visualization is simply triggered from a selected 
node in the search-tree, the display can be forced to present only the relevant 
variables (e.g., the ones in the clause corresponding to that node). In the case 
of triggering the visualization through spy-points in the user program, the 
number of variables is under user control, since they are selected explicitly 
when introducing the spy-points. The size of the domains of variables is more 
difncult to control (we return to this issue in Section 11.4.1). However, note 
that, without loss of generality, programs using FD variables can be assumed 
to initialize the variables to an integer range which includes all the possible 
valúes allowable in the state corresponding to the beginning of the program.2 

However, being able to deduce a small initial domain for a variable allows 
starting from a more compact initial representation for that variable. This 
in turn will allow a more compact depiction of the narrowing of the range 
of the variable, and of how valúes are discarded as the execution proceeds. 
Other abstraction means for coping with large executions are discussed in 
Section 11.4.1. 

2 In the default case, variables can be assumed to be initialized to the whole 
domain. 



Fíg. 11.5. Alternative depiction of the creation of a Herbrand term 

11.2.2 Depicting Herbrand Terms 

Herbrand terms can always be written textually, or with a slightly enhanced 
textual representation. An example is the depiction of nodes in the APT tool, 
discussed in Chapter 10. They can also be represented graphically, typically 
as trees. A term whose main functor is of arity n is then represented as a tree 
in which the root is the ñame of this functor, and the n subtrees are the trees 
corresponding to its arguments. This representation is well suited for ground 
terms. However, free variables, which may be shared by different terms, need 
to be represented in a special way. A possibility is to represent this sharing 
as just another edge (thus transforming the tree into an acyclic graph), and 
even, taking an approach closer to usual implementation designs, having a free 
variable to point to itself. This corresponds to a view of Herbrand terms as 
complex data structures with single assignment pointers. Figure 11.5 shows 
a representation using this view of the step by step creation of a complex 
Herbrand term by a succession of Herbrand constraints. Rational trees (as 
those supported by Prolog II, III, IV) can also be represented in a similar 
way—but in this case the graph can contain cycles, although it cannot be a 
general graph. 

11.2.3 Depicting Intervals or Reals 

In a broad sense, intervals resemble finite domains: the constraints and op-
erations allowed in them are analogous (pointwise extensions of arithmetic 
operations), but the (theoretical) set of valúes allowed is continuous, which 
means that an infinite set of valúes are possible, even within a finite range. 
Despite these differences, visual representations similar to those proposed for 
finite domains can be easily used for interval variables, using a continuous line 
instead of a discrete set of squares. An important difference between intervals 
and finite domains is that intervals usually allow non-linear arithmetic oper
ations for which a solution procedure is not known, which forces the solvers 
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Fíg. 11.6. Several variables side to side Fig. 11.7. Changing a domain 

to be incomplete. Thus, the visualization of the actual domain3 will in gen
eral be an upper approximation of the actual (mathematical) domain. As a 
result, an exact display of the intervals is not possible in practice. But the 
approach for showing the evolution in time (Figure 11.4) and for representing 
the constraints (Section 11.3) is still valid, although in the former case some 
means for dealing with phenomena inherent to solving in real-valued intervals 
(e.g., slow convergence of algorithms) should be taken. 

11.3 Representing Constraints 

In the previous section we have dealt with representations of the valúes of 
individual variables. It is obviously also interesting to represent the relation-
ships among several variables as imposed by the constraints affecting them. 
This can sometimes be done textually by simply dumping the constraints and 
the variables involved in the source code representation. Unfortunately, this 
is often not straightforward (or even possible in some constraint domains), 
can be computationally expensive, and provides too much level of detall for 
an intuitive understanding. 

Constraint visualization can be used alternatively to provide information 
about which variables are interrelated by constraints, and how these interre-
lations make those variables affect each other. Obviously, classical geometric 
representations are a possible solution: for example, linear constraints can be 
represented geometrically with dots, lines, planes, etc., and nonlinear ones by 
curves, surfaces, volumes, etc. Standard mathematical packages can be used 
for this purpose. However, these representations are not without problems: 
working out the representation can be computationally expensive, and, due 
to the large number of variables involved the representations can easily be 
n-dimensional, with n > 3 . 

A general solution which takes advantage of the representation of the ac
tual valúes of a variable (and which is independent of how this representation 

3 Not only the representation, but also the internal representation, from which the 
graphical depiction is drawn. 
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Fíg. 11.8. Enumerating Y, repre-
senting solver domains X and Z 

Fig. 11.9. Enumerating Y, repre-
senting also the enumerated do
mains for X and Z 

is actually performed) is to use projections to present the data piecemeal and 
to allow the user to update the valúes of the variables that have been pro-
jected out, while observing how the variables being represented are affected 
by such changes. This can often provide the user with an intuition of the 
relationships linking the variables (and detect, for example, the presence of 
erroneous constraints). The update of these variables can be performed in-
teractively by using the graphical interface (e.g., via a sliding bar), or adding 
manually a constraint, using the source CLP language. 

We will use the constraint C l , below, in the examples which follow: 

C l : X G {1..6}AX f 6AX f 3AZ G {1..6}AZ = 2X-YAY G {1..6} (11.1) 

Figure 11.6 shows the actual domains of FD variables X, Y, and Z subject 
to the constraint C l . As before, lighter boxes represent points inside the 
domain of the variable, and darker boxes stand for valúes not compatible 
with the constraint (s). This representation allows the programmer to explore 
how changes in the domain of one variable affect the others: an update of 
the domain of a variable should indicate changes in the domains of other 
variables related to it. For example, we may discard the valúes 1, 5, and 6 
from the domain of Y, which boils down to representing the constraint C2: 



C 2 : C l A Y ^ l A r < 5 (11.2) 
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Fig. 11.10. X against Y Fig. 11.11. X against Z Fig. 11.12. Y against Z 

Figure 11.7 represents the new domains of the variables. Valúes directly 
disallowed by the user are shown as crossed boxes; valúes discarded by the 
effect of this constraint are shown in a lighter shade. In this example the 
domains of both X and Z are affected by this change, and so they depend on 
Y. This type of visualization (with the two enumeration variants which we 
will comment on in the following paragraphs) is also available in the VIFID 
tool. 

Within this same visualization, a more detailed inspection can be done by 
leaving just one element in the domain of Y, and watching how the domains 
of X and Z are updated. In Figures 11.8 and 11.9 Y is given a definite valué 
from 1 (in the topmost rectangle) to 6 (in the bottommost one). This allows 
the programmer to check that simple constraints hold among variables, or 
that more complex properties (e.g., that a variable is made definite by the 
definiteness of another one) are met. 

The difference between the two figures lies in how valúes are determined 
to belong to the domain of the variable. In Figure 11.8, the valúes for X 
and Z are those kept internally by the solver, and are thus probably a safe 
approximation. In Figure 11.9, the corresponding valúes were obtained by 
enumerating X and Z, and the domains are smaller. Both figures were ob
tained using the same constraint solver, and comparing them gives an idea 
of how accurately the solver keeps the valúes of the variables. For several 
reasons (limitation of internal representation, speed of addition/removal of 
constraints, etc), quite often solvers do not keep the domains of the vari
ables as accurately as it is possible. Overconstraining a problem may then 
help in causing an earlier failure. On the other hand, overconstraining incre-
ments the number of constraints to be processed and the time associated to 
this processing. Comparing the solver-based against the enumeration-based 
representation of variables helps in deciding whether there is room for im-
provement by adding redundant constraints. 

A static versión of this view can be obtained by plotting valúes of pairs 
of variables in a 2-D grid, which is equivalent to choosing valúes for one of 
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Fig. 11.13. Relating variables in VIFID 

them and looking at the allowed valúes for the other. This is schematically 
shown in Figures 11.10, 11.11, and 11.12, where the variables are subject 
to the constraint C2. In each of these three figures we have represented a 
different pair of variables. From these representations we can deduce that the 
valúes X = 3 and X = 6 are not feasible, regardless the valúes of Y and Z. It 
turns out also that the plots of X against Y and X against Z (Figures 11.10 
and 11.11) are identical. From this, one might guess that perhaps Y and Z 
have necessarily the same valué, i.e., that the constraint Z = Y is enforced 
by the store. This possibility is discarded by Figure 11.12, in which we see 
that there are valúes of Z and Y which are not the same, and which in fact 
correspond to different valúes of X. Furthermore, the slope of the highlighted 
squares on the grid suggests that there is an inverse relationship between Z 
and Y: incrementing one of them would presumably decrement the other— 
and this is actually the case, from constraint C l . A VIFID window showing 
a 2-D plot appears in Figure 11.13; the check buttons at the bottom allow 
the user to select the variables to depict. 

Note that, in principie, more than two variables could be depicted at the 
same time: for example, for three variables a 3-D depiction of a "Lego object" 
made out of cubes could be used. Navigating through such a representation 
(for example, by means of rotations and virtual tours), does not pose big 
implementation problems on the graphical side, but it may not necessarily 
give information as intuitively as the 2-D representation. The usefulness of 
such a 3-D (or n-D) representation is still a topic of further research—but 
3-D portraits of other representations are possible; see Section 11.4.2. On the 



other hand, we have found very useful the possibility of changing the valué 
of one (or several) variables not plotted in the 2-D grid, and examine how 
this affects the valúes of the current domains of the plotted variables. 

11.4 Abstraction 

While representations which reflect all the data available in an execution can 
be acceptable (and even didactic) for "toy programs," it is often the case that 
they result in too much data being displayed for larger programs. Even if an 
easy-to-understand depiction is provided, the amount of data can overwhelm 
the user with an unwanted level of detail, and with the burden of having 
to navigate through it. This can be alleviated by abstracting the information 
presented. Here, "abstracting" refers to a process which allows a user to focus 
on interesting properties of the data available. Different abstraction levéis 
and/or techniques can in principie be applied to any of the aforementioned 
graphical depictions, depending on which property is to be highlighted. 

Note that the depictions presented so far already incorpórate some ab-
stractions: when using VIFID, the user selects the interesting variables and 
program points via the spy-points and the window controls. If it is interfaced 
with a tree representation tool (as, for example, the one presented in Chap-
ter 10), the variables to visualize come naturally from those in the selected 
nodes. In what follows we will present several other ideas for performing ab
straction, applied to the graphical representations we have discussed so far. 
Also, some new representations, which are not directly based on a refinement 
of others already presented, will be discussed. 

11.4.1 Abstracting Valúes 

While the problem of the presence of a large number of variables can be 
solved, at least in part, by the selection of interesting variables (a task that 
is diñicult in itself), another problem remains: in the case of variables with 
a large number of possible valúes, representations such as those proposed in 
Section 11.2.1 can convey information too detailed to be really useful. At 
the limit, the screen resolution may be insufficient to assign a pixel to every 
single valué in the domain, thus imposing an aliasing effect which would 
prevent reflecting faithfully the structure of the domain of the variable. This 
is easily solved by using standard techniques such as a canvas that is larger 
than the window, and scrollbars, providing means for zooming in and out, 
etc. A "ñsh-eye" technique can also be of help, giving the user the possibility 
of zooming precisely those parts which are more interesting, while at the 
same time trying to keep as much information as possible condensed in a 
limited space. However, these methods are more "physical" approaches than 
true conceptual abstractions of the information, which are richer and more 
flexible. 



An alternative is to perform a more semantic "compaction" of parts of 
the domain. As an example of such a compaction, which can be performed 
automatically, consider associating consecutive valúes in the domain of a vari
able to an interval (the smallest one enclosing those valúes) and representing 
this interval by a reduced number of points. A coarser-level solution, com-
plementary to the graphical representation, is to present the domain of a 
variable simply as a number, denoting how many valúes remain in its current 
domain, thus providing an indication of its "degree of freedom". A similar 
approach can be applied to interval variables, using the difference between 
the máximum and minimum valúes in their domains, or the total length of 
the intervals in their domains. 

Another alternative for abstraction is to use an application-oriented fil-
tering of the variable domains. For example, if some parts of the program 
are trusted to be correct, their effects in the constraint store can be masked 
out by removing the valúes already discarded from the representation of the 
variables, thus leaving less valúes to be depicted. E.g., if a variable is known 
to take only odd valúes, the even valúes are simply not shown in the repre
sentation. This filtering can be specified using the source language—in fact, 
the constraint which is to be abstracted should be the filter of the domain of 
the displayed variables. 

Note that this transformation of the domain cannot be completely auto-
mated easily: the debugger may not have any way of knowing which parts of 
the program are trusted and which are not, or which abstraction should be 
applied to a given problem. Thus, the user should indicate, with annotations 
in the program [11.9, 11.4] or interactively, which constraints should be used 
to abstract the variable valúes. Given this information, the actual reduction 
of the representation can be accomplished automatically. Warnings could be 
issued by the debugger if the valúes discarded by the program do not cor-
respond to those that the user (or the annotations in the program) want to 
remove: if this happens, a sort of "out of domain" condition can be raised. 
This condition does not mean necessarily that there is an error: the user may 
choose not to show uninteresting valúes which were not (yet) removed by the 
program. 

11.4.2 Domain Compact ion and New Dimensions 

Besides the problems in applications with large domains, the static repre-
sentations of the history of the execution (Figure 11.4) can also fall short in 
showing intuitively how variables converge towards their final valúes, again 
because of the excess of points in the domains, or because an execution shows 
a "chaotic" profile. The previously proposed solution of using the domain size 
as an abstraction can be applied here too. However, using raw numbers di-
rectly in order to represent this abstraction to the user is not very useful 
because it is not easy for humans to visualize arrays of numbers. A possible 
solution is to resort to shades of gray, but this may once again not work too 



well in practice: deducing a structure from a picture composed of different 
levéis of brightness is not straightforward, and the situation may get even 
worse if colors are added. 

A better option is to use the number of active valúes in the domain as 
coordinates in an additional dimensión, thus leading to a 3-D visualization. A 
possible meaning of each of the dimensions in such a representation appears 
in Figure 11.14. As in Figure 11.4, two axes correspond to time and selected 
variables: time runs along the Z direction, and every row along this dimensión 
corresponds to a snapshot of the set of FD variables which have been selected 
for visualization. In each of these rows, the size of the domain of the variable 
(according to the internal representation of the solver) is depicted as the 
dimensión Y. 

X The CLP(FD) variables. 

Y An abstraction of the variable: the size of its domain. 

Z Time, 

of the dimensions in the 3-D representation. 

Figure 11.15 shows a CLP(FD) program for the DONALD + GERALD = 
ROBERT puzzle; we will inspect the behavior of this program using two differ
ent orderings, defined by the order /3 predicate. A different series of choices 
concerning variables and valúes (and, thus, a different search-tree) will be 
generated by using each of these options. The program (including the label-
ing routines) was annotated with calis to predicates which act as spy-points, 
and log the sizes of the domains of each variable (and, maybe, other infor-
mation pertaining to the state of the program) at the time of each cali. This 
information is unaffected by backtracking, and thus it can also keep infor-
mation about the choices made during the execution. The Handle used to 
log the data may point to an internal datábase, an external file, or even a 
socket-based connection for on-line visualization or even remote debugging. 

Figure 11.16 is an execution of the program in Figure 11.15, using the 
first or dering of the variables. The variables closer to the origin (the ones 
which were labeled first) are assigned valúes quite soon in the execution and 
they remain fixed. But there are backtracking points scattered along the 
execution, which appear as blocks of variables protruding out of the picture. 
There is also a variable (which can be viewed as a white strip in the middle 
of the picture) which appears to be highly constrained, so that its domain is 
reduced right from the beginning. That variable is probably a good candidate 
to be labeled soon in the execution. Some other variables apparently have a 
high interdependence (at least, from the point of view of the solver), because 

X 
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Fíg. 11.14. Meaning 



:- use_module(library(clpfd)). 
:- use_module(library(visclpfd)). 

dgr(WhichOrder, ListOfVars):-
ListOfVars = [D,0,N,A,L,G,E,R,B,T] 
order(WhichOrder, ListOfVars, OrderedVars) , '/.•/. Added 
open_log(dgr, ListOfVars, Handle) , '/,'/, Added 
domain(OrderedVars, O, 9 ) , 
log_state (Handle) , '/.•/, Added 
D #> O, 
log_state (Handle) , '/.•/, Added 
G #> O, 
log_state (Handle) , '/.•/. Added 
all_different(OrderedVars), 
log_state (Handle) , '/.•/, Added 
100000+D + ÍOOOO+O + 1000+N + 100*A + 10*L + D + 
100000+G + 10000+E + 1000+R + 100*A + 10*L + D #= 
100000+R + 10000*0 + 1000+B + 100*E + 10*R + T, 
log_state (Handle) , '/,•/. Added 
user_labeling(OrderedVars, Handle), 
close_log(Handle). 

order(l, [D,0,N,A,L,G,E,R,B,T], [D,G,R,0,E,N,B,A,L,T]). 
order(2, [D,0,N,A,L,G,E,R,B,T], [G,0,B,N,E,A,R,L,T,D]). 

Fig. 11.15. The annotated DONALD + GERALD = ROBERT FD program. 

Fíg. 11.16. Execution of the DONALD + GERALD = ROBERT program, first ordering. 



Fíg. 11.17. Execution of the DONALD + GERALD = ROBERT program, second ordering 

in case of backtracking, the change of one of them affects the others. This 
suggests that the behavior of the variables in this program can be classified 
into two categories: one with highly related variables (those whose domains 
change at once in the case of backtracking) and a second one which contains 
variables relatively independent from those in the first set. 

Another execution of the same program, using the second ordering, yields 
the profile shown in Figure 11.17. Compared to the first one, there are fewer 
execution steps, but, of course, the classification of the variables is the same: 
the whole picture has the same general layout, and backtracking takes place 
in blocks of variables. 

These figures have been generated by a tool, TRIFID, integrated into the 
VIFID environment. They were produced by processing a log created at run-
time to créate a VRML depiction with the Pro VRML package [11.24], which 
allows reading and writing VRML code from Prolog, with a similar approach 
to the one used by PiLLoW [11.7]. One advantage of using VRML is that 
sophisticated VRML viewers are readily available for most platforms. The 
resulting VRML file can be loaded into such a viewer and rotated, zoomed in 
and out, etc. Additionally, the log file is amenable to be post-processed using 
a variety of tools to analyze and discover characteristics of the execution, in 
a similar way as in [11.16]. Another reason to use VRML is the possibility of 
using hyper-references to add information to the depiction of the execution 
without cluttering the display. In the examples shown, every variable can be 
assigned a hyperlink pointing to a description of the variable. This description 
may contain pieces of information such as the source ñame of the variable, the 
actual size of its domain at that time, a profile of the changes undergone by 
that particular variable during the execution, the number of times its domain 



Fig. 11.18. Constraints represented as Fig. 11.19. Bold frames represent defi-
a graph nite valúes 

has been updated, the number of times backtracking has changed its domain, 
etc. Using the capability of VRML for sending and receiving messages, and 
for acting upon the receipt of a message, it is possible to encode in the VRML 
scene an abstraction of the propagation of constraints as it takes place in the 
constraint solver, in a similar way as the variable interactions depicted by 
VIFID. 

11.4.3 Abs t rac t ing Const ra in ts 

As the number and complexity of constraints in programs grow, if we resort to 
visualizing them as relationships among variables (e.g., 2-D or 3-D grids plus 
sliding bars to assign valúes for other variables, as suggested in Section 11.3), 
we may end up with the same problems we faced when trying to represent 
valúes of variables, since we are building on top of the corresponding repre-
sentations. The solutions suggested for the case of representation of valúes 
are still valid (fish-eye view, abstraction of domains, . . . ) , and can give an 
intuition of how a given variable relates to others. However, it is not always 
easy to deduce from them how variables are related to each other, due to the 
lack of accuracy (inherent to the abstraction process) in the representation 
of the variables themselves. 

A different approach to abstracting the constraints in the store is to show 
them as a graph (see, e.g., [11.22] for a formal presentation of such a graph), 
where variables are represented as nodes, and nodes are linked iff the corre
sponding variables are related by a constraint (Figure 11.18)4. This represen
tation provides the programmer with an approximate understanding of the 
constraints that are present in the solver (but not exactly which constraints 
they are), after the possible partial solving and propagations performed up to 
that point. Moreover, since different solvers behave in different ways, this can 
provide hints about better ways of setting up constraints for a given program 
and constraint solver. 

4 This particular figure is only appropriate for binary relationships; constraints of 
higher arity would need hypergraphs. 



The topology of the graph can be used to decide whether a reorgani-
zation of the program is advantageous; for example, if there are subsets of 
nodes in the graph with a high degree of connectivity, but those subsets are 
loosely connected among them, it may be worth to set up the tightly con-
nected sections and making a (partial) enumeration early, to favor more local 
constraint propagation, and then link (Le., set up constraints) the different 
regions, thus solving first locally as many constraints as possible. In fact, 
identifying sparsely connected regions can be made in an almost automatic 
fashion by means of clustering algorithms. For this to be useful, a means of 
accessing the location in the program of the variables which appears depicted 
in the graph is needed. This can as well help discover unwanted constraints 
among variables—or the lack of them. 

More information can be embedded in this graph representation. For ex
ample, weights in the links can represent various metrics related to aspects 
of the constraint store such as the number of times there has been propaga
tion between two variables or the number of constraints relating them. The 
weights themselves need not be expressed as numbers attached to the edges, 
but can take instead a visual form: they can be shown, for example, as dif
ferent degrees of thickness or shades of color. Variables can also have a tag 
attached which gives visual feedback about interesting features. For example, 
the actual range of the variable, or the number of constraints (if it is not clear 
from the number of edges departing from it) it is involved in, or the number 
of times its domain has been updated. 

The picture displayed can be animated and change as the solver proceeds. 
This can reflect, for example, propagation taking place between variables, or 
how the variables lose their links (constraints) with other variables as they 
acquire a definite valué. In Figure 11.19 some variables became definite, and 
as a result the constraints between them are not shown any more. The reason 
for doing so is that those constraints are not useful any longer: this reflects the 
idea of a system being progressively simplified. It may also help to visualize 
how backtracking is performed: when backtracking happens, either the links 
reappear (when a point where a variable became definite is backtracked over 
and a constraint is active again in the store), or they disappear (when the 
system backtracks past a point where a constraint was created). 

Further filtering can be accomplished by selecting which types of con
straints are to be represented (e.g, represent only "greater than" constraints, 
or certain constraints flagged in the program through annotations). This is 
quite similar to the domain filtering proposed in Section 11.4.1. 

11.5 Conclusions 

We have discussed techniques for visualizing data evolution in CLP. The 
graphical representations have been chosen based on the perceived needs 
of a programmer trying to analyze the behavior and characteristics of an 



execution. We have proposed solutions for the representation of the run-time 
valúes of the variables and of the run-time constraints. In order to be able 
to deal with large executions, we have also discussed abstraction techniques, 
including the 3-D rendition of the evolution of the domain size of the variables. 
The proposed visualizations for variables and constraints have been tested 
using two prototype tools: VIFID and TRIFID. These visualizations can be 
easily related, so that tools based on them can be used in a complementary 
way, or integrated in a larger environment. In particular, in the environment 
that we have developed, each tool can be used independently or they can all 
be triggered from a search-tree visualization (e.g., APT). 

VIFID (and, to a lesser extent, TRIFID which is less mature) has evolved 
into a practical tool and is are quite usable by itself as a library which can 
be loaded into a number of CLP systems. Also, some of the views and ideas 
proposed have since made their way to other tools, such as those developed 
by Cosytec for the CHIP system, and which are described in other chapters. 

References 

11.1 A. Aggoun and H. Simonis. Search Tree Visualization. Technical Report 
D.WP1.1.M1.1-2, COSYTEC, June 1997. In the ESPRIT LTR Project 22352 
DiSCiPl. 

11.2 K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes 
through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994. 

11.3 R. Baecker, C. DiGiano, and A. Marcus. Software Visualization for Debugging. 
Communications of the ACM, 40(4):44-54, April 1997. 

11.4 J. Boye, W. Drabent, and J. Maluszyñski. Declarative diagnosis of constraint 
programs: an assertion-based approach. In Proc. of the 3rd. Int'l Workshop 
on Automated Debugging-AADEBUG'97, pages 123-141, Linkoping, Sweden, 
May 1997. U. of Linkoping Press. 



11.5 F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, 
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations 
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the 
3rd. Int'l Workshop on Automated Debugging-AADEBUG'97, pages 155-170, 
Linkoping, Sweden, May 1997. U. of Linkoping Press. 

11.6 L. Byrd. Understanding the Control Flow of Prolog Programs. In S.-A. 
Tárnlund, editor, Workshop on Logic Programming, Debrecen, 1980. 

11.7 D. Cabeza and M. Hermenegildo. WWW Programming using Computational 
Logic Systems (and the PILLOW/CIAO Library). In Proceedings ofthe Work
shop on Logic Programming and the WWW at WWW6, San Francisco, CA, 
April 1997. 

11.8 M. Carro and M. Hermenegildo. Some Design Issues in the Visualization of 
Constraint Program Execution. In AGP'98 Joint Conference on Declarative 
Programming, pages 71-86, July 1998. 

11.9 The CLIP Group. Program Assertions. The CIAO System Documentation 
Series - TR CLIP4/97.1, Facultad de Informática, UPM, August 1997. 

11.10 W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging 
with assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming 
in Logic Programming, pages 501-522. MIT Press, 1989. 

11.11 M. Ducassé and J. Noyé. Logic programming environments: Dynamic pro
gram analysis and debugging. Journal of Logic Programming, 19,20:351-384, 
1994. 

11.12 Mireille Ducassé. A General Query Mechanism Based on Prolog. In 
M. Bruynooghe and M. Wirsing, editors, International Symposium on Pro
gramming Language Implementation and Logic Programming, PLILP'92, vol-
ume 631 of LNCS, pages 400-414. Springer-Verlag, 1992. 

11.13 M. Eisenstadt and M. Brayshaw. The Transparent Prolog Machine (TPM): 
An Execution Model and Graphical Debugger for Logic Programming. Journal 
of Logic Programming, 5(4), 1988. 

11.14 Massimo Fabris. CP Debugging Needs. Technical report, ICÓN s.r.L, April 
1997. ESPRIT LTR Project 22352 DiSCiPl deliverable D.WP1.1.M1.1. 

11.15 J.M. Fernández. Declarative debugging for BABEL. Master's thesis, School 
of Computer Science, Technical University of Madrid, October 1994. 

11.16 M. Fernández, M. Carro, and M. Hermenegildo. IDRA (IDeal Resource 
Allocation): Computing Ideal Speedups in Parallel Logic Programming. In 
Proceedings of EuroPar'96, number 1124 in LNCS, pages 724-734. Springer-
Verlag, August 1996. 

11.17 J. Jaífar and M.J. Maher. Constraint Logic Programming: A Survey. Journal 
of Logic Programming, 19/20:503-581, 1994. 

11.18 K. Kahn. Drawing on Napkins, Video-game Animation, and Other ways to 
program Computers. Communications ofthe ACM, 39(8):49-59, August 1996. 

11.19 Kim Marriot and Peter Stuckey. Programming with Constraints: An Intro-
duction. The MIT Press, 1998. 

11.20 M. Meier. Grace User Manual, 1996. Available at 
h t tp : / /www.ecrc .de /ec l ipse /h tml /grace/grace .h tml . 

11.21 Sun Microsystems. Animated Sorting Algorithms, 1997. Available at 
h t tp : / / j ava . sun .com/app le t s / . 

11.22 U. Montanari and F. Rossi. True-concurrency in Concurrent Constraint 
Programming. In V. Saraswat and K. Ueda, editors, Proceedings of the 1991 
International Symposium on Logic Programming, pages 694-716, San Diego, 
USA, 1991. The MIT Press. 

http://www.ecrc.de/eclipse/html/grace/grace.html
http://java.sun.com/applets/


11.23 J.M. Ramos. VIFID: Variable Visualization for Constraint Domains. Mas-
ter's thesis, Technical University of Madrid, School of Computer Science, E-
28660, Boadilla del Monte, Madrid, Spain, September 1998. 

11.24 G. Smedbáck, M. Carro, and M. Hermenegildo. Interfacing Prolog and 
VRML and its Application to Constraint Visualization. In The Practica! Ap
plication of Constraint Technologies and Logic programming, pages 453-471. 
The Practical Application Company, April 1999. 


