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Abstract. In many approaches to the veri�cation of reactive systems,

operational semantics are used to model systems whereas speci�cations

are expressed in temporal logics. Most approaches however assume, that

the initial speci�cation is indeed the intended one. Changing the spec-

i�cation thus necessitates to �nd an accordingly adapted system and

to carry out the veri�cation from scratch. During a systems life cycle

however, changes of the requirements and resources necessitate repeated

adaptations of speci�cations. We here propose a method that supports

syntactic action re�nement (SAR) and allows to automatically obtain (a

priori) correct systems by hierarchically adding details to the according

speci�cations. More precisely, we give a de�nition of SAR for formulas '

of the Modal Mu-Calculus (denoted by '[�; Q]) that conforms to SAR

for TCSP -like process terms P (denoted P [� ; Q]) in the following

sense: The system induced by a process term P satis�es a speci�cation '

if and only if the system induced by the re�ned term P [�; Q] satis�es

the re�ned speci�cation '[� ; Q]. Model checking is used to decide,

whether the initial system satis�es the initial speci�cation. If we are not

satis�ed with the obtained re�nement P [� ; Q] or '[� ; Q] we reuse

already gained veri�cation information (P satis�es ' that is) as the ba-

sis for other re�nement steps. This can be conceived as a method to

reengineer systems. Syntactic action re�nement allows to handle in�nite

state systems. Further, the system induced by P might be exponentially

smaller that the system induced by P [� ; Q]. We explain how our re-

sults can thus also be exploited to enhance model checking techniques.

Finally, we apply our results to an example.

1 Introduction

Faults of reactive systems (like, for example of air tra�c control systems) can
imply severe consequences, whence proving the correctness of such systems with
respect to the expected behaviour is inevitable. We are concerned with a dual
language approach to veri�cation in which systems are modelled operationally
whereas speci�cations are given in an appropriate temporal logic. The obvious
method to obtain veri�ed systems is to come up with a speci�cation of the in-
tended system and subsequently invest experience and guess work to design an



according system. Model checking can then be used for the veri�cation to follow.
However, adaptation of the system and subsequent veri�cation has to be under-
gone repeatedly until the system meets the speci�cation, a time consuming task.
Another method uses transformational methods to construct a (a priori cor-
rect) system directly from the speci�cation [CE81,MW84,PR89,AE89], thereby
avoiding the need for an explicit veri�cation.

However, the above methods implicitly assume, that the actual speci�cation
is indeed the desired one, and that subsequent changes of it will not become
necessary. During a systems life cycle however, speci�cations (and hence the ac-
cording systems) are most often subject to repeated adaptations actuated by
changed requirements or resources. Such changes also emerge in realistic scenar-
ios for system development where the speci�cation is arrived at by successivly
enriching the initial speci�cation with details.

It would thus be desirable to extend the above mentioned approaches in the
following way: Once it has been proved that a system P satis�es a speci�cation
' (denoted P j= '), transforming ' into a modi�ed speci�cation '0 should entail
a transformation of P into P 0 such that P 0 j= '0. This paradigm supports (a
priori) correct system maintenance and stepwise development of correct reactive

systems. Reversely, reengineering amounts to the ability to infer P j= ' from
P 0 j= '0. This allows to reuse veri�cation knowledge that has already been
gained through preceding steps in a development sequence.

We here present an action based development/reengineering-technique that
exploits the method of syntactic action re�nement (see [GR99] for a survey),
SAR for short. Intuitively, SAR means to re�ne an (atomic) action � occur-
ring in a process term P by a more complex process term Q thereby yielding a
more detailed process description P [�; Q]. SAR however complicates the task
of veri�cation. For example, many behavioural equivalences used for veri�ca-
tion [BBR90] are not preserved under SAR [CMP87]. Considering a veri�cation
setting based on process algebras and (action based) logics, the following prob-
lem arises: Knowing that the system induced by a process term P satis�es a
particular formula does not tell us which formulas are satis�ed by the system
induced by the re�ned term P [�; Q].

To overcome this problem, we de�ne SAR for formulas ' of the Modal Mu-
Calculus [Koz83] that conforms to SAR for TCSP -like process terms P and
show the validity of the assertion

T (P ) j= ' i� T (P [�; Q]) j= '[�; Q] (�)

where T (P ) is the transition system induced by P and the operator �[� ; Q]
denotes syntactic action re�nement, both on process terms and formulas. The
distinguishing features of our approach are

{ The use of SAR. This supports hierarchical development of in�nite state
systems: As opposed to semantic action re�nement, SAR is applied to process
terms whence state spaces do not have to be handled algorithmically to
implement SAR.



{ The re�nement operator implicitly supplies an abstraction technique that, by
the syntactic nature of the re�nement operator, relates system descriptions.
Again, this allows in�nite state systems to be considered.

{ Using assertion (�), correctly developing (or adapting) a system with respect
to adding details to the actual speci�cation (or by changing it) boils down
to `gluing' re�nement operators to formulas and process terms. On the other
hand, reengineering amounts to replacing re�nement operators, that is, to
�rst `cutting away' inappropriate re�nement operators (stepping backwards
through a development sequence) and subsequently resuming the develop-
ment procedure. This development/reengineering-technique is illustrated by
Figure 1.

{ As the Modal Mu-Calculus subsumes many other process logics [EL86,Dam94],
we believe that our results provide a basis for similar investigations employ-
ing these logics and other semantics for concurrency.

T (P ) j= '
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Fig. 1. Developing/Reengineering Correct Systems

If not applied in the context of developing/reengineering reactive systems, as-
sertion (�) can still be usefull to support model checking techniques for sys-
tems that could not be handled otherwise due to the (huge or in�nite) size of
their state spaces: If we can �nd a process term Ps and a formula 's (an ab-
straction of the formula ' under consideration) and establish an appropriate
abstraction (induced by applications of the re�nement operator), for example
P = Ps[�1 ; Q1] : : : [�n ; Qn] and ' = 's[�1 ; Q1] : : : [�n ; Qn] then Ps
might well be manageable by a model checker since the state space of Ps might
be exponentially smaller then the state space of P due to the well known state
explosion problem1. We can then apply the model checker to decide Ps j= 's

1 A linear reduction of the number of actions in a process term might entail an expo-

nential reduction of the underlying state space.



and conclude via assertion (�) whether P j= ' holds or not. Thus, our approach
is also conceptually related to a large body of research which invertigates tech-
niques to enhance model checking techniques (see Section 5 for an application
of our abstraction technique and Section 6 for related methods).

We show how `metalevel reasoning' (involving bisimulations and logical rea-
soning) can also be exploited in the development/reengineering procedure. We
apply our results to a simple case study.

In Section 2 we introduce a TCSP -like process calculus which contains an
operator for syntactic action re�nement. SAR for the Modal Mu-Calculus is
de�ned in Section 3. Section 4 provides the link between those two re�nement
concepts. The case study is presented in Section 5. Related work is discussed
in Section 6. A summary of the results is given in Section 7. Some elementary
de�nitions are collected in Section 8.

2 Syntactic Action Re�nement in the System Model

In this section we �x the framework used to model reactive systems. Let �; �; : : :
range over a �xed set Act of (atomic) actions. Two languages are used to build
up process terms of the form P [� ; Q]. The language R� supplies the terms
Q whereas the language R� provides the terms P . Let R� be the language of
process terms generated by the grammar

Q ::= � j (Q+Q) j (Q;Q) j Q[�; Q]

and R� be the language of process terms generated by the grammar

P ::= 0 j � j x j (P + P ) j (P ;P ) j (PkAP ) j fix(x = P ) j P [�; Q]

where x ranges over a �xed set of identi�ers, A � Act is a synchronisation set

and Q 2 R�.
Let sync(P ) denote the union of all synchronisation sets that occur in P .

As usual, the term 0 denotes a process that cannot perform any action. Let
�; � be the languages of process expressions generated by the grammars for
R�; R� respectively, without the rule P ::= P [� ; Q]. These two languages
will subsequently be used to de�ne logical substitution (see De�nition 1).

An identi�er x is guarded in a term P 2 R� i� each free occurrence of x only
occurs in subexpressions F where F lies in a subexpression (E;F ) such that
E 62 p, that is E can execute an action (see Appendix A1). A term P 2 R� is
called guarded i� we have that in each subexpression fix(x = Q) occurring in P
the identi�er x is guarded in the term Q.

A term P1 2 R� is called alphabet-disjoint from a term P2 2 R� i� P1 and
P2 share no common actions.

A term P 2 R� is called uniquely synchronized i� for all terms (P1kAP2)
that occur in P , sync(Pi) = A for i = 1; 2.

To give a meaning to re�ned terms P [� ; Q], we make use of a reduction

function red : R� ! � which removes all occurrences of re�nement operators



in a process expression by syntactic substitution. To this end we adapt the
de�nitions of [GGR94] for our purposes and extend it, such that the recursion
operator fix can be handled (see Appendices A2 and A3). We illustrate the
reduction function by the following example.

Example 1. Consider the process expression P = ((�;�)kf�g�)[� ; (�1 + �2)].
Then we have that red(P ) = (((�1 + �2);�)kf�1;�2g(�1 + �2)). 2

The operational semantics of the language� is given as usual (see Appendix A4).
The semantics of a process expression P is a labelled transition system with ter-

mination, that is, a tuple T (P ) = (P;�;Act;!;
p
) where

p
is the termination

predicate (see Appendix A1). Since the terms P [�; Q] and red(P [� ; Q]) are
supposed to behave identically, we de�ne T (P ) := T (red(P )) to supply seman-
tics for terms P 2 R� (see also [AH91]). In what follows we sometimes identify
the term P with the transition system T (P ) if the context avoids ambiguity.
Remark 1. The absence of the parallel composition operator in terms Q 2 R�

is no severe restriction. For any �nite state system it is possible to replace kA by
appropriate combinations of sequential composition and binary choice operators
without changing the semantics (up to strong bisimulation equivalence [Mil80]).
The exclusion of the empty process term 0 from the language R� means that
we disallow `forgetful re�nement'2. As the re�nement of a (terminating) action
by some in�nite behaviour violates the intuition [GR99], no expression of the
form fix(x = P ) is allowed to occur in a term Q 2 R�. 2

3 Syntactic Action Re�nement in the Modal Mu-Calculus

We use the Modal Mu-Calculus [Koz83] �L to specify properties of reactive
systems. It is generated by the grammar

� ::= > j ? j Z j (�1 _ �2) j (�1 ^ �2) j [�]� j h�i� j �Z:� j �Z:�

where � ranges over the set Act of actions and Z ranges over a �xed set V ar of
variables. Let R�L be the language generated by the grammar for �L augmented

with the rule � ::= �[� ; Q] where Q 2 R�. Let R�Lh�i (R�L[�]) be the
language generated by the grammar for R�L without the rule � ::= [�]� (� ::=
h�i� resp.). We let � range over the set f�; �g.

A �xed point formula has the form �Z:' in which �Z binds free occurrences
of Z in '. A variable Z is called free i� it is not bound. A R�L-formula ' is
called closed i� every variable Z that occurs in ' is bound.

A R�L-formula ' is called guarded i� every occurrence of a variable Z in '
lies in the scope of a modality [�] or h�i.

A formula ' 2 R�L is called alphabet-disjoint from a term P 2 R� i� ' and
Q share no common actions. Next we introduce a concept of logical substitution
which will be used to de�ne the reduction of formulas.

2 Such re�nements cannot be explained by a change in the level of abstraction [vGG89]

and are usually avoided.



De�nition 1. Let Q;Q1; Q2 2 � and �; ';  2 �L. The operation of logical
substitution, (�)f�; Qg is de�ned as follows:

(�)f�; Qg := � if � 2 f>;?g [ V ar

(('�  ))f�; Qg := ((')f�; Qg � ( )f�; Qg) if � 2 f^;_g

(4�')f�; Qg := 4�(')f�; Qg if � 6= �

(4�')f�; Qg :=

8>>><
>>>:

4�(')f�; Qg if Q = �

((4
(')f�; Qg)f
 ; Q1g ^ (4�(')f�; Qg)f� ; Q2g) if Q = (Q1 +Q2)

(4
(4�(')f�; Qg)f� ; Q2g)f
 ; Q1g if Q = (Q1;Q2)

(�Z:')f�; Qg := �Z:(')f�; Qg

where in each clause 4� means throughout either h�i or [�] for all � 2 Act.

We require that 
; � are fresh actions, that is, 
 and � do neither occur in � nor

in Q in the term (�)f�; Qg. 2

Example 2. Let ' = �Z:[�](h�iZ _ [�]?) and Q = (�+ �) where �; �; �; � 2 Act.
Then

(')f�; Qg = �Z:([�](h�iZ _ ([�]? ^ [�]?)) ^ [�](h�iZ _ ([�]? ^ [�]?)))

2

We can now de�ne the reduction for formulas.

De�nition 2. Let Q 2 R� be a process expression and ';  2 R�L be formu-

las. We de�ne the logical reduction function Red : R�L ! �L as follows:

Red(�) := � if � 2 f>;?g [ V ar Red('[�; Q]) := (Red('))f�; red(Q)g

Red(('�  )) := (Red(')�Red( )) if � 2 f^;_g

Red([�]') := [�]Red(') ; Red(h�i') := h�iRed(')

Red(�Z:') := �Z:Red(') 2

To cater for re�nement, we extend the usual satisfaction relation (see Appendix
A5) with the clause P j=# '[�; Q] i� P j=# Red('[� ; Q]). We say P satis�es

' (with respect to #) i� P j=# '. For a closed R�L-formula ' we simply write
P j= '.

Example 3. Let � = �Z:([�]? ^ [�]Z) and  = �Z:(h�i> _ h�iZ). Then �

intuitively expresses the (strong) safety property `there is no �-action executable
on any �-path' and  expresses the (weak) liveness property `there exists a �-
path along which a state will eventually be reached at which the action � can
be executed'. Let P = fix(x = ((�;x);�)). Then we have P j= � and P 6j=  . 2



Example 4. Consider the process terms

P1 = fix(x = ((�k;�);x)) and P2 = fix(y = (((�;�) + (�;�)); y))

and the formula
' = �Z:(h�ih�iZ ^ h�ih�iZ):

Let Q := 
[
 ; (�1;�2)]. Then we have Pi j= ' and Pi[�; Q] j= '[�; Q] for
i = 1; 2. In addition we have P1[�; Q] j= h�1ih�ih�2i> whereas P2[�; Q] 6j=
h�1ih�ih�2i>. 2

4 Simultaneous Syntactic Action Re�nement

In this section we provide the link between the concept of SAR for the process
calculus used and SAR for the logical calculus. Let us �rst give the general result.

Theorem 1. Let P 2 R� be a guarded process term and ' 2 R�L be a closed

and guarded formula. Further let Q 2 R�, such that P and ' are alphabet-

disjoint from Q. Then P j= ', P [�; Q] j= '[�; Q].

Proof (Idea). The proof can be achieved by structural induction as follows: Fixed
point formulas are treated by `syntactically unrolling' them. This leads us to the
in�nitary Modal Mu-Calculus3 since the considered systems might be in�nite
state. By the condition of closedness and guardedness we obtain a well ordering,
along which an argument by trans�nite induction carries through. This argument
uses a subsidiary induction on the structure of Q 2 R�, which in turn exploits
a series of lemmata that relate the behaviour induced by a process term P with
the behaviour induced by the re�ned term P [� ; Q]. Alphabet-disjointness of
P from Q is needed to avoid the introduction and the resolvement of deadlocks
through SAR. On the other hand, alphabet-disjointness of ' from Q ensures
that ' remains satis�able under SAR.

Remark 2. Note that the equivalence in Theorem 1 guarantees that the reduc-
tion functions red and Red are de�ned appropriately as it excludes the use of
nonsensical reduction functions: Using the de�nition Red(') = > would trivially
validate the implication from left to right. 2

Remark 3. It is clear, that (logical) SAR as used in Theorem 1 is not complete
in the sense, that we cannot derive every (interesting) formula  from a formula
'. We believe however, that Theorem 1 can always be useful to provide `basic
knowledge' in the overall development procedure. 2

It is well known, that the Modal Mu-Calculus induces bisimulation equivalence
(in the sense of [Mil80]) on the set of (�nitely branching) transition systems. To
exploit this fact for our approach, we lift bisimulation equivalence to the set R�
by de�ning P �b P

0 i� T (P ) �b T (P 0). As a direct consequence of Theorem 1
we then obtain the following `vertical modularity' result.

3 Please consult [Sti96] for the relevant de�nitions.



Corollary 1. Let P; P 0 2 R� be guarded process terms and ' 2 R�L be a

closed and guarded formula. Let Q 2 R�, such that P and ' are alphabet-

disjoint from Q. Let [�; Q]n abbreviate [�1 ; Q1]; : : : ; [�n ; Qn]. If P �b P
0

then P [�; Q]n j= '[�; Q]n , P 0[�; Q]n j= '[�; Q]n.

Corollary 1 can thus be used after any development sequence to syntactically
interchange the original `target'-process term P with a term P 0, provided P and
P 0 are strongly bisimular.

Remark 4. Clearly, we can replace the premise P �b P
0 by the premise P 0 j= '.

Using model checking however, the best algorithm known hitherto needs time

O(alt(')2(NP + 1)balt(')=2c+1) to decide P 0 j= ' and space about N
alt(')=2
P

where alt(') is the alternation depth of �xed point operators in ', and NP is
the number of states of T (P ) (see [LBC+94]). In contrary, deciding bisimilarity
for two processes P; P 0 needs time O(MP+MP 0 logNP+NP 0) and space O(MP+
MP 0 +NP +NP 0) (see [PT87]) where MP is the number of transitions of T (P ).
2

In Theorem 1, we can meet the conditions that P and ' are alphabet-disjoint
from Q by renaming the actions of Q in the obvious way. This renaming is
consistent with the usual approach to action re�nement since an action � which
is to be re�ned in the term P [� ; Q] is the abstraction of the term Q whence
it should not be considered equal to any action that occurs in Q itself. This
supports the separation of di�erent levels of abstraction [GGR94]. Disjoint sets
of actions are necessary as can be seen in the following.

Example 5. Consider the process expression P := (�kf�g�) and the formula
' := h�ih�i>. We have P j= ' but P [� ; �] 6j= '[� ; �]. Note that P is not
alphabet-disjoint from Q. 2

Though renaming of action can often be applied successfully, alphabet disjoint-
ness rules out the possibility to conduct particular re�nement steps which can
become important in the development of reactive systems: Suppose the system
P can execute the atomic actions a; b. At the current level of abstraction, the
action a (b) is considered to be the name of a procedure Qa (Qb resp.) which
is not yet implemented. In an intermediate development step, Qa and Qb are
implemented making use of a common subsystem S which we might assume has
been provided by a system library. Hence, alphabet disjointness of Qa and Qb

does not hold. However, while dropping the conditions on alphabet-disjointness,
we can still derive two special cases of Theorem 1. For the following let alph(')
be the set of actions that occur in a formula ' 2 R�L.
Theorem 2. Let P 2 R� be a guarded and uniquely synchronized process term

and ' 2 R�Lh�i be a closed and guarded formula. Further let Q 2 R�, such that

no action in sync(P ) occurs in Q. If � 62 sync(P ) or alph(') � sync(P ) then

P j= ') P [�; Q] j= '[�; Q].

Theorem 3. Let P 2 R� be a guarded and uniquely synchronized process term

and ' 2 R�L[�] be a closed and guarded formula. Further let Q 2 R�, such that



no action in sync(P ) occurs in Q. If � 62 sync(P ) or alph(') � sync(P ) then

P j= '( P [�; Q] j= '[�; Q].

It is clear, that we cannot hope for a result like Theorem 1 for any fragment
L � R�L in which it is allowed to compose formulas ' 2 L containing both types
of modalities, i.e. h�i and [�] without accepting any restrictions on alphabet
disjointness. This is the reason why we considered the logics R�Lh�i and R�L[�]

where only one modality type might occur in the formulas.

The logic R�L[�] can be used to express interesting properties of reactive
systems, like unless-properties, for example `' remains true in every computation
unless  holds' or safety properties such as `' never holds again whenever  
has become true'. Moreover, R�L[�] can be used to express liveness-properties
under fairness and cyclic-properties (see [Sti96]). R�Lh�i-formulas can be used
to formalize properties like for example `there exists a computation sequence of
P in which ' holds in�nitely often' or `there exists a computation sequence of
P along which ' is always attainable.'

Whereas Theorem 2 can still be used to develop (correct) systems, the con-
trapositive form of Theorem 3 can be used to debug a complex (concrete) system
P [� ; Q] (with respect to '[� ; Q]) by debugging the (abstract) system P

with respect to '.

5 The Case Study

While the application of Theorem 1 to develop/reengineer reactive systems can
readily be seen, applying Theorem 1 as an abstraction technique to enhance
model checking might require some further illustration. To this end, we consider
a `data processing-environment' (DPE) which consists of a central data base and
several users of the data base. Conceptually, our example is similar to Milner's
scheduler [Mil80] or to the IEEE Futurebus+ (considered for example in [CFJ93])
as several structurally equal subsystems are executed in parallel. To ensure the
consistency of the data base, it must be accessed in mutual exclusion by the users.
Thus, the data base represents a critical section and accessing it is controlled by
parameterized read-and write semaphores.

We assume a situation where a DPE has already been implemented and we
want to prove, that the given implementation has a desirable property. In order
to demonstrate how our approch allows to �x bug's at high levels of abstraction
(instead of �xing the bug at the complex concrete level) we deliberately start
with a faulty implementation.

Instead of model checking that the concrete system is faulty, we �rst con-
struct an abstract system and model check that the abstract system contains
an according (abstract) bug. Using Theorem 1, we then infer that the concrete
system is faulty as well. We then �x the bug on the abstract level and model
check that the `abstract' bug has been removed. Finally, Theorem 1 is applied
again to automatically derive a corrected concrete system from the corrected
abstract system.



Let us start with giving some implementation details. The i-th user of the
DPE is modelled by the process term4

Useri := fix((xi = PDi;xi) + (vri ; readi; p
r
i ;xi) + (vwi ;writei; p

w
i ;xi)):

We de�ne USERn := (User1k;User2k;; : : : k;Usern). Useri can either process
(local) data by executing the subsystem PDi or access the data base (to read
or write data) by coordinating with a particular control process Conti. For user
Useri we thus use a control process Conti, implemented by the process term

Conti := fix(yi = (vri ; readi; p
r
i ; yi) + (vwi ;writei; p

w
i ; yi)):

Let us �rst consider a faulty control component de�ned by

CONTn := (Cont1k;; Cont2k;; : : : ; k;Contn):

A correct control component is

CorrCONTn := (Cont1 + Cont2 + : : :+ Contn):

We next de�ne a faulty and a correct DPE parameterized with respect to the
number of users, that is,

DPE(n) = (USERnkfvr
i
;vw
i
;readi;writei;p

r

i
;pw
i

j 1�i�ngCONT
n)

and

CorrDPE(n) = (USERnkfvr
i
;vw
i
;readi;writei;p

r

i
;pw
i

j 1�i�ngCorrCONT
n):

Useri can read data from the data base if Useri and Conti can jointly execute
vri (Useri occupies the read-semaphore), readi (Useri reads data) and p

r
i (Useri

releases the read-semaphore). As PDi is assumed to be a `local subsystem' of
Useri, it is reasonable to require that PDi and PDj contain no common actions
for i 6= j. Since the control component CONTn executes the control processes
Conti (1 � i � n) concurrently, mutual exclusive access to the data base is not
guaranteed.

We now consider a (faulty) `four user DPE' DPE(4). We would like to prove
that User1 and User2 cannot write data at the same time as long as only actions
from User1 and User2 are executed by DPE(4). In other words, we would like
to show that DPE(4) has no computation sequence (that consists of actions
from User1 and User2) which leads to a state where the actions write1 and
write2 can both be executed. This amounts to show, that DPE(4) has no such
computation path which leads to such a `bad state'. In order to do this, we try
to disprove that DPE(4) has a computation path along which a bad state is
reachable. This property can be expressed by the Modal Mu-Calculus formula

�i;jerror = �Z:(hwriteii> ^ hwriteji>) _ halph(Useri) [ alph(Userj)iZ
4 In the example, we sometimes omit pharenthesis in order to support readability.



for i = 1 and j = 2. In the above formula, alph(P ) denotes the set of ac-
tions that occur in a process term P and hAi' abbreviates the formula h�1i' _
h�2i'; : : : ; h�ni' for �1; : : : ; �n 2 A.

It turns out that the considered implementation of the DPE is faulty, that
is, DPE(4) j= �1;2error. This could be proved directly by using a model checker.
However, depending on the terms PDi (i = 1; 2; 3; 4), the state space of DPE(4)
can become tremendous due to the state explosion problem. In order to model
check that DPE(4) j= �1;2error we �rst abstract away those implementation details
of DPE(4) that are irrelevant for the veri�cation. To this end, we de�ne

SmallUseri := fix(xi = (pdi;xj + (ri;xi + wi;xi))

and

SmallConti := fix(xi = ri;xi + wi;xi):

Using these process terms, we de�ne

DPE4small =

�
USER2k;SmallUser3k;SmallUser3kL

CONT 2k;SmallCont3k;SmallCont4
�

where L = fvri ; vwi ; readi; writei; pri ; pwi ; rj ; wj j i = 1; 2 and j = 3; 4g. We can
then establish the re�nement

T = DPE4small[pd3 ; PD3][r3 ; vr
3
; read3; p

r
3
][w3 ; vw

3
;write3; p

w
3
]

DPE(4) = T [pd4 ; PD4][r4 ; vr
4
; read4; p

r
4
][w4 ; vw

4
;write4; p

w
4
]:

Note that the formula �1;2error remaines unchanged under the above re�nements
followed by logical reduction5. By Theorem 1 it su�ces to model check that
DPE4small j= �1;2error to conclude that DPE(4) j= �1;2error. In what follows, we
let PDi be implemented by three sequential actions. Then the state space of
DPE4small only contains 10 states whence it is about 8 times smaller than the
state space of DPE(4).

We can now �x the bug on the abstract level by using the correct control
component:

CorrDPE4small =

�
USER2k;SmallUser3k;SmallUser4kL

(CorrCONT 2 + SmallCont3 + SmallCont4)

�

5 Let  be the formula that arises by applying the above re�nement operators to the

formula �1;2error. Then �
1;2
error = Red( ) whence P j=  i� (by de�nition) P j= Red( )

i� P j= �1;2error.



Model checking can now be used on the abstract level to show that we have
CorrDPE4small 6j= �1;2error. For

T 0 = CorrDPE4small [pd3 ; PD3][r3 ; vr
3
; read3; p

r
3
][w3 ; vw

3
;write3; p

w
3
]

CorrDPE(4) = T 0[pd4 ; PD4][r4 ; vr
4
; read4; p

r
4
][w4 ; vw

4
;write4; p

w
4
]:

we can immediatly conclude (using Theorem 1 again) that

CorrDPE(4) 6j= �1;2error:

The example above shows, that those parts of the system description that
share no actions with the formula under consideration can be immediatly ab-
stracted. We believe that this makes precise, which parts of the system de-
scription are completely irrelevant for the actual veri�cation task and that such
situations (where the property of interest `refers' only to a part of the system)
often occur in practice. We conjecture, that the above sketched strategy can be
automated e�ciently.

It is clear, that the state space of DPE(i) grows exponentially in the number
i of DPE-users. The state space of DPE(8) contains about 13000 states whereas
a system abstracted with the above strategy contained 19 states, a 680-fold re-
duction of the state space6. Note that we can exploit the above sketched strategy
to disprove mutual exclusive write-access (in the above sense) of all users Useri.
This property can be expressed by the formula

�nerror =
^

i<j�n

�i;jerror :

The application of model checking to verify all conjuncts in the above formula
amounts to check a total of about 530 states in order to prove that DPE(8) j=
�8

error. In contrary, classical model checking would necessitate to create the whole
state space of 13000 states in order to verify this property.

Additional logical reasoning (based on the structure of the system) might be
neccessary if we want to abstract parts of the process term, that share action with
the formula under consideration. For further abstracting the (faulty) DPE(4)-
example, assume PDi = ti

1
; ti

2
; ti

3
(i = 1; 2). We can then use the formula

	error = �Z:(hwrite1ihpw1 i> ^ hwrite2ihpw2 i>) _ ht11iht12iht13iht21iht22iht23iZ
to carry out some more abstractions since we have that DPE4small j= 	error im-
plies DPE4small j= �1;2error (showing the validity of this implication is the above
mentioned additional logical reasoning). We proceed as follows:
Let DPE4V erySmall be the process term that arises from DPE4small by substi-
tuting the process term PDi by the action pdi, the term readi; p

r
i by the action

ri and the term writei; p
w
i by the action wi where i = 1; 2. If

T = DPE4V erySmall[pd1 ; PD1][pd2 ; PD2][r1 ; read1; p
r
1
]

6 We used the Edinburgh Concurrency Workbench 7.0 (see for example [Cle93]) to

calculate the size of the state spaces.



then

DPE4small = T [r2 ; read2; p
r
2
][w1 ; write1; p

w
1
][w2 ; write2; p

w
2
]:

Now consider the formula

�error = �Z:(hw1i> ^ hw2i>) _ hpd1ihpd2iZ:

We have that

 = �error[pd1 ; PD1][pd2 ; PD2][r1 ; read1; p
r
1
]

	error =  [r2 ; read2; p
r
2
][w1 ; write1; p

w
1
][w2 ; write2; p

w
2
]:

We use model checking to show that DPE4V erySmall j= �error. By Theorem 1
follows DPE4small j= 	error and hence DPE4small j= �1;2error.

User-guidance (involving additional logical reasoning) seems to be necessary
in situations, where system parts that share actions with the formula under
consideration are abstracted. We intend to investigate, to what extend techniques
from compiler optimization (for example, exploiting common subexpressions)
can support the presented method.

6 Related Work

Adressing a dual language development/reengineering-paradigm, [Huh96] showed
that a synchronisation structure S satis�es a formula ' if and only if a (semanti-
cal) re�nement of S satis�es a particular re�nement of '. It is not clear however,
to what extend this approach can be used in practice: Reactive behaviour can
only be modelled by in�nite synchronisations structures. This does not allow
to give a straightforward implementation of the involved method of semantic
action re�nement. Further, a linear time temporal logic is used wheres we use
the branching time Modal Mu-Calculus.

If not used to develop and reengineer systems, assertion (�) can still be used
to support model checking techniques for systems that could not be handled
otherwise due to the (huge or in�nite) size of their state spaces as was illus-
trated by the case study in section 5. Thus, our approach is also conceptually re-
lated to a large body of research which invertigates techniques to enhance model
checking techniques for huge or in�nite state spaces [CAV]. `On the 
y' model

checking [SW91,BS92,Hun94,Sti95] focusses on generating only those parts of
the state space that are relevant for the property under consideration. Other
techniques exploit partial order reduction (surveyed in [Pel98]) or binary deci-

sion diagrams [Bry86] with the aim to compactify state spaces without loosing
information about the systems.

Closest to our approach are the widely investigated abstraction techniques,
that are mostly based on the framework of abstract interpretations (see for exam-
ple [CC92,Cou96]). Theorem 1 relates process terms and formulas with syntactic



re�nements of them. The abstractions used in [CGL94,Gra94,BLO98,SS99] are
established on the system description as well.

Syntactic action re�nement allows to create hierarchical system descriptions.
In [AHR98], a model checking technique is presented that directly exploits the
hierarchical structure of the considered systems: The BDD-based algorithm tra-
verses `abstract' transitions by expanding the according `concrete' transition sys-
tems on the 
y. Hence, the system is analysed at di�erent levels of abstraction
which alleviates the state explosion problem.

Those abstraction techniques di�er from our approach in that only the sys-
tems are subject to abstractions whereas both, systems and formulas are ab-
stracted in our approach. Furthermore, our abstraction technique is exact whereas
most abstraction techniques found in literatur are only conservative: Let SA be
the abstraction of the system S. Then we cannot infere S 6j= ' from SA 6j= '

if the involved abstraction is only conservative. On the other hand, some of the
above mentioned approaches allow to create abstract �nite state systems from
concrete in�nite state systems which is not possible using our results.

Another method to enhance model checking exploits symmetries which are
often exhibited by concurrent systems (see for example [CFJ93,ES93]). Whereas
those methods aim to `merge' the symmetries that occur in the transition graph
of a system, our technique exploits the structural equalities that occur in the
process descriptions (process terms, that is).

7 Conclusion

We de�ned syntactic action re�nement (SAR) for formulas ' of the Modal Mu-
Calculus and showed that the presented de�nition conforms to SAR for TCSP -
like process terms P in the sense that

P j= ', P [�; Q] j= '[�; Q] (�)

The operator �[�; Q] denotes syntactic action re�nement both on formulas and
process expressions. Assertion (�) is valid provided some particular conditions
on alphabet-disjointness are obeyed. However, two special cases of assertion (�)
which do not rely upon the condition of alphabet-disjointness were presented.

Assertion (�) can be applied in various ways to the veri�cation of reactive
systems one of which is the (a priori) correct transformation of systems induced
by the syntactic re�nement of speci�cations: Provided we know P j= ', re�ning '
into '[�; Q] automatically yields P [�; Q] such that P [�; Q] j= '[�; Q].

Further, we explained how the obtained results can be used as an abstrac-
tion technique, allowing to model check systems that would remain unfeasable
otherwise.

We explained that assertion (�) can be combined with model checkers. Hence,
assertion (�) extends this veri�cation technique which leads to settings, that
allow to automatically develop/reengineer formally correct reactive systems by
hierarchically enriching/abstracting speci�cations with details.



We used the expressive Modal Mu-Calculus as speci�cation formalism and the
intuitive notion of transition systems as the semantic model for reactive systems.
We thus believe that our results can provide a basis for similar investigations
that employ other logics and semantic models.

Further case studies are necessary to determine the practical applicability
of our approach. De�ning an explicit abstraction operator and investigations to
what extend our abstraction technique can be fully automated are a future topic
of our research. Work is already in progress that extends the above results: We
study whether the conditions of alphabet-disjointness can be further relaxed and
how the reduction of formulas can be determined e�ciently. The consequences of
introducing the `hiding'-operator to the process algebra used will be investigated.

8 Appendix

A1. Terminated States:

To evaluate the semantics of the operator `;' it is common to use a special pred-
icate

p
: Let

p � R� be the least set which contains the term 0 and is closed
under the rules (P1 2

p^P2 2
p
)) (P1 op P2) 2

p
where op 2 fkA;+; ; g and

(P 2 p)) fix(x = P ) 2 p and (P 2 p)) P [�; Q] 2 p.

A2. Syntactic Substitution:

Let P; P1; P2 2 � and Q 2 � be process expressions and let alph(Q) denote
the set of actions that occur in Q. Syntactic substitution, denoted (P )fQ=�g is
de�ned as follows:

(�)fQ=�g := � where � 2 f0g [ Idf

(�)fQ=�g :=

�
Q if � = �

� otherwise

((P1 op P2))fQ=�g := ((P1)fQ=�g op (P2)fQ=�g) where op 2 f+; ; g

((P1 kA P2))fQ=�g :=

�
((P1)fQ=�g kAnf�g[alph(Q) (P2)fQ=�g) if � 2 A

((P1)fQ=�g kA (P2)fQ=�g) if � 62 A

(fix(x = P ))fQ=�g := fix(x = PfQ=�g)

A3. Reduction Function:

Let P; P1; P2 2 R� and Q 2 R� be process expressions.
The function red : R� ! � is de�ned as follows:

red(�) := � for � 2 f0g [ Idf [ Act



red((P1 op P2)) := (red(P1) op red(P2)) where op 2 f+; ; ; kAg

red(P [�; Q]) := (red(P ))fred(Q)=�g

red(fix(x = P )) := fix(x = red(P ))

A4. Operational Semantics:

Let P;Q 2 � be process expressions.

�
�

!0

P
�

!P 0

(P+Q)
�

!P 0

Q
�

!Q0

(P+Q)
�

!Q0

Q
�

!Q0

(P ;Q)
�

!Q0

if P 2 p P
�

!P 0

(P ;Q)
�

!(P 0;Q)

P
�

!P 0

(PkAQ)
�

!(P 0kAQ)

if � 62 A Q
�

!Q0

(PkAQ)
�

!(PkAQ0)

if � 62 A

P [fix(x=P )=x]
�

!Q

fix(x=P )
�

!Q

P
�

!P 0 Q
�

!Q0

(PkAQ)
�

!(P 0kAQ0)

if � 2 A

A5. Satisfaction:

Let P 2 R�, Q 2 R� be process expressions, ';  2 R�L be formulas, Z 2 V ar
be a variable and # : V ar ! 2R� be a valuation function. The customary up-
dating notation is used: #[E=Z] is the valuation #0 which agrees with # on all
variables Z 2 V ar except Z, and #0(Z) = E .
P j=# > , P 6j=# ? ; P j=# Z i� P 2 #(Z)

P j=# (' ^  ) i� P j=# ' and P j=#  

P j=# (' _  ) i� P j=# ' or P j=#  

P j=# [�]' i� P 2 fE 2 R�j8E0 2 R�(E
�
! E0 ) E0 j=# ')g

P j=# h�i' i� P 2 fE 2 R�j9E0 2 R�(E
�
! E0 and E0 j=# ')g

P j=# �Z:' i� P 2
T�

E � R�jfE 2 R�jE j=#[E=Z] 'g � E
	

P j=# �Z:' i� P 2
S�

E � R�jE � fE 2 R�jE j=#[E=Z] 'g
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