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Abstract. The work reported in this paper applies group theory to

characterize local surface contact among solids, and makes such a for-

malization computationally tractable. This paper serves three purposes:
(1) to report a new treatment of contacting surfaces as oriented sets and

to verify the consistency of their corresponding symmetry groups in a

group theoretical formalization framework; (2) to give a concise sum-
mary of this group theoretical approach, from theory, to algorithms, to

applications; (3) to pinpoint some unsolved problems and possible future

directions.

1 Introduction

Contact motion analysis of rigid bodies is one of the most useful yet di�cult

topics in robotics, design, assembly planning and manufacturing. Increasing level

of automation demands more e�ective computational method for representing

and reasoning about contacts, and transforming high-level speci�cations to low-

level executable commands. Admittedly, contact analysis is \a computational

bottleneck in mechanical design", \it is especially challenging for curved parts

with multiple, changing contacts" [5, 6]. The current state of art in this area has

left much to be desired. The input to almost all the reported automatic assembly

planning systems, such as [24, 25, 16, 4], is one-static-state of the �nal assembly

con�guration regardless the assembly is meant to be rigid or articulated. Most

work in contact analysis is dealing with planar surfaces [22, 17, 7]. While the

most impressive work on higher pairs1 analysis and simulations [5, 21, 2] still

need human intervention, there exist no formal theory and algorithms for contact

analysis of rigid bodies in general.

Herv�e [3] and Popplestone [19] are among the few pioneers who contributed

to the group theoretical formalization of mechanical engineering practice. Herv�e

has introduced a rational classi�cation of mechanisms by applying the theory

of continuous groups. Since each lower-pair allows a set of relative motions of

two coupled bodies, these motions can be regarded as subgroups of E+. The

1 Lower pairs are mechanical joints that have surface to surface contact (area con-

tact). otherwise they are called Higher pairs (line/curve/point contact) in mechan-
ical engineering.
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number of independent variables required to de�ne the relative position of two

coupled links is referred to as their degree of freedom, which can be extended to

a subgroup of E+ in 3-space, the corresponding concept being that of dimension.
In [3], Herv�e gave a table (Table III) listing the intersection and composition of

continuous subgroups of the proper Euclidean group. Only pairs of continuous

subgroups are considered. In [19] Popplestone relates robotics and group theory,

in particular he pointed out that 1) the symmetry group of a feature (of a solid) is

perhaps more important than that of the whole solid, and 2) not only continuous

groups (as treated in [3]) but also �nite and discrete groups should be handled.

In Liu's Ph.D. thesis [9, 11], the group theoretical formalization of surface

contact among solids was further extended and solidi�ed. The novelties in her

work include, (1) both �nite and continuous groups are treated under a uniform

general formalization; (2) a simple geometric algorithm for combining di�er-

ent symmetry groups of local contacting surfaces, to determine relative motions

of the contacting solids, is developed and implemented with proven tractabil-

ity. (3) the approach carries through: starting from CAD models of solids, fol-

lowed by automatic determination of relative locations/motions of multi-contact-

assembly-parts, to the generation of assembly procedures for robots [12{14]. Liu's

notations and algorithms can deal with symmetry groups which is itself a semidi-

rect product of a continuous group and a discrete group, thus providing the power

of reasoning about both degrees of freedom and combinatoric con�gurations of

contacting solids simultaneously. A list of some important canonical subgroups

of E+ treated in [9] is given in Table 1. Further development after [9] includes,

Table 1. Some important subgroups of E+

Canonical De�nition
Groups

Gid f1g
T 1 gpftrans(0; 0; z)jz 2 <g
T 2 gpftrans(x; y; 0)jx; y 2 <g
T 3 gpftrans(x;y; z)jx;y; z 2 <g

SO(3) gpfrot(i; �)rot(j; �)rot(k; �)j�; �; � 2 <g
SO(2) gpfrot(k; �)j� 2 <g
O(2) gpfrot(k; �)rot(i; n�)j� 2 <; n 2 Ng
Gcyl gpftrans(0; 0; z)rot(k; �)rot(i;n�)jn 2 N ; �; z 2 <g

Gdir cyl gpftrans(0; 0; z)rot(k; �)jz; � 2 <g
Gplane gpftrans(x;y; 0)rot(k; �)jx;y; � 2 <g

Gscrew(p) gpftrans(0; 0; z)rot(k; 2z�=p)jz 2 <g
GT1C2

gpftrans(0; 0; z)rot(i;n�)jn 2 N ; z 2 <g
D2n gpfrot(k; 2�=n)rot(i;m�)jm;n 2 Ng
Cn gpfrot(k; 2�=n)jn 2 Ng
E+ gpftrans(x;y; z)rot(i; �)rot(j; �)rot(k; �)jx;y; z; �; �; � 2 <g
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transforming high-level spatial relation descriptions to low-level compliant mo-

tions [15]; treating each oriented surface on a solid as a primitive feature; and

obtaining an explicit expression for general contact relationships in terms of the

symmetry groups of the contacting surfaces. The last two parts are described

in this paper. We are now ready to go beyond surface contact, to venture into

more general algebraic surfaces, higher pairs and group products. Di�erent from

the study of solids in local contact, e.g., [8, 18], our aim is to have a precise and

complete description of the intended, possibly articulated, �nal assembly con�g-

uration of solids where each part usually has multiple contacts with the rest of

the assembly; and our approach is algebraic in nature. Also di�erent from [20,

23] in that a group theoretical formalism is embedded in a concise representation

of contact motions not involving extensive algebraic equation manipulation.

2 Basic Group Theoretical Formalism of Contact

Analysis

Since contacts among solids happen via the contacts of the surfaces of the solids,

the representation and characterization of each surface constitutes the founda-

tion of any formalization for solid contacts.

2.1 Oriented Surface and Its symmetry Group

The surfaces which we have treated mathematically as subsets of <3 [9, 11] have

no intrinsic inside and outside. To remedy this we introduce the concept of

oriented features by de�ning a set of outward-pointing normal vectors for each

surface point of a solid. The polynomial used to express an algebraic surface

implicitly de�nes such normal vectors. Let S2 be the unit sphere at the origin

embedded in <3, each point of S2 corresponds to a unit vector in <3.

De�nition 2.1.1 An oriented primitive feature F = (S; �) of a solid M is
an oriented surface where

1) S � <3 is a connected, irreducible2 and continuous algebraic surface which
partially or completely coincides with one or more �nite oriented faces of M ;

2) � � S � S2 is a continuous relation. For each s 2 S if s is a non-singular
point of surface S (p.78 [1]) then v 2 S2 is one of two opposing normals of
the tangent plane at point s such that (s; v) 2 �; if s is a singular point of S
(e.g. at the apex of a cone) then, for all v, where v 2 S2 is the limit of the
orientations of its neighborhood, (s; v) 2 �.

3) For all s 2M; (s; v) 2 �; v points away from M .

Intuitively speaking, a feature is composed of both \skin", S, and \hair", the

set of normal vectors which correspond to the points on S2. Each element of

2 Here irreducible implies that a primitive feature cannot be composed of any other
more basic surfaces.
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relation � is a correspondence between a point on S and a vector on S2. Note,
there may be more than one `normal vector' at one point of a surface, e.g. at

the apex of a conic shaped surface.

Let E+ be the proper Euclidean group which contains all the rotations and

translations in <3, and T3 be the maximum translation subgroup of E+.

De�nition 2.1.2 Any isometry g = tr of E+; t 2 T3
; r 2 SO(3) acts on � in

such a way that (s; v) 2 �, (gs; rv) 2 g � �.

De�nition 2.1.3 An isometry g 2 E+ is a proper symmetry of a feature

F = (S; �) if and only if g(S) = S and g � � = �.

Note, there is an extra demand on a symmetry for an oriented feature | it

has to preserve the orientations � of the feature as well as the point set S. Since

orientations are points on S2, symmetries of an oriented feature have to keep

two sets of points in <3 setwise invariant. One can prove3 that the symmetries

for an oriented surface form a group.

2.2 Multiple Contacts: Compound Surface Features and Their

Symmetry Groups

An assembly or mechanism is a manifestation of multiple surface interactions

of its subparts, albeit the physical property of each individual part (rigid or

deformable) or the nature of the contact (static or articulated). Thus the rep-

resentation of an assembly or mechanism is reduced to how to specify a set of

contact constraints which dictate the con�guration of a set of solids. Given two

solids B1 and B2 in contact via surfaces F1 and F2 respectively, the relative

motions of B2 respect to B1 can be expressed as:

l
�1
1 l2 2 f1G1G2f

�1
2 ; (1)

where l�11 l2 is the relative position of solid 2 w.r.t. solid 1, G1; G2 are symmetry

groups of F1 and F2 respectively, l1; l2 specify the locations of solids B1; B2 in

the world coordinate system and f1 and f2 specify the locations of F1; F2 in their

respective body coordinates. A more speci�c form for the relative positions of

two solids under n surface contacts (two contacting surfaces coincide):

l
�1
1 l2 2 f1Gf

�1
2 (2)

has shown clearly that the possible motions of a solid or a subassembly S in an

assembly are described precisely by the symmetry group G of the multiple con-

tacting oriented surfaces of S. Note, G here is usually not the symmetry group

of the whole solid/subassembly S but the symmetry group of those surfaces of S

that are in contactwith other solids. If G is an identity group, i.e. l�11 l2 = f1f
�1
2

gives a �xed position for S. If G is a �nite rotation group, then f1Gf
�1
2 contains

3 Due to space limit, we only give results without proofs. Interested readers can �nd
details in the references listed.
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a �nite number of positions re
ecting the existence of discrete symmetries in the

collection of contacting surfaces. If G is a continuous group then there exists

relative continuous motions between S and the rest of the assembly. It is then

the degrees of freedom of such a con�guration can be spoken of.

Let us �rst give a denotation for such a collection of contacting surfaces

from a single solid, and then determine what e�ect the symmetry group of this

surface-set will impose on the relative motions of contacting solids.

De�nition 2.2.1 A compound feature F = (S; �) of primitive features F1 =
(S1; �1); :::; Fn = (Sn; �n), is de�ned to be S = S1 [ :::[Sn and � = �1 [ :::[ �n.

Pairwise Relationship of Oriented Features In order to determine the

symmetry group of a compound feature systematically, we start with the simplest

compound feature | a compound feature composed of only one pair of primitive

features. See Figure 1(a), 1(b) and Figure 1(c) for examples of these simple

compound features ( Note that only a �nite face on each primitive feature is

drawn).

Given a pair of primitive features, what kind of relationship holds between the

two features and what is the e�ect of such a relationship in terms of determining

their symmetry group? The following de�nition gives a characterization of four

relationships between a pair of primitive features:

De�nition 2.2.2 Two oriented primitive features F1 = (S1; �1); F2 = (S2; �2)

are said to be

{ Distinct: if for any open subsets S01 � S1; S
0

2 � S2, no g = tr 2 E+ exists

such that g(S01) � S2 or g(S
0

2) � S1. See Figure 1(a) for an example of a pair

of distinct features F1; F2.

{ 1-congruent: if there exists at least one g 2 E+ such that g(S1) = S2 and

g � �1 = �2, but for all such g; g(S2) 6= S1. For an example see Figure 1(b).

Another example is two parallel planar surfaces with normal vectors pointing

in the same direction.

{ 2-congruent: if there exists gc 2 E+ such that gc(S1) = S2; gc(S2) = S1; gc�
�1 = �2 and gc � �2 = �1. For an example, consider two parallel cylindrical

surfaces having the same radius and normal vectors pointing away from their

center lines, as in Figure 1(c). Also, two parallel planar surfaces with normal

vectors pointing to the opposite directions serve as examples of a pair of

2-congruent features.

{ Complementary: if there exists g 2 E+ such that g(S1) = S2 and g �
�1 = ��2 where ��2 = f(s;�v)j(s; v) 2 �2g; in other words, 8(s; v) 2
g � �1; 9(s;�v) 2 �2, and 8(s; v) 2 �2; 9(s;�v) 2 g � �1. See Figure 1(d) for
an example.

It is easy to verify that these relationships are symmetrical relations. Imme-

diately we can prove that this characterization has exhaustively enumerated all

the possible cases between a pair of oriented primitive features.
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Proposition 2.2.3 Distinct, 1-congruent, 2-congruent and complementary are
the only possible relationships between a pair of primitive features.

Corollary 2.2.4 Except for a pair of planar surface primitive features, distinct,
1-congruent, 2-congruent and complementary relationships are mutually exclu-
sive relations between a pair of primitive features.

Proposition 2.2.5 If features F1 = (S1; �1); F2 = (S2; �2) are complementary
of each other, where a(S1) = S2; a 2 E

+, and G1; G2 are the symmetry groups of
F1; F2 respectively, then aG1a

�1 = G2. In particular, if S1 = S2 then G1 = G2

(the necessary condition for surface contact).

S1
2S

F1 = (S1 , 1) F2 )= ( 2S ,
2

1 2

orientation vectors 

o
.

.
o

F1 F2= ( )S1 , 1 ) = ( 2S , 2

g 2S

S1

.
1 2

orientation vectors of ,

F1 F2= ( )S1 , 1 ) = ( 2S ,
2

g
c

g
c

S1 2S

1 2orientation vectors of , o

F1 F2= ( )S1 , 1 ) = ( 2S , 2

2S

S1

1orientation vectors of o

2
oorientation vectors of 

(a) distinct (b) 1-congruent (c) 2-congruent (d) complementary

Fig. 1. Four types of surface relations between a pair of solids.

Symmetry Group of Multiple Oriented Surfaces In the next few propo-

sitions we shall explore how the symmetry group of a compound feature is ex-

pressed by the symmetry groups of its component primitive features. The �rst

case we consider is when a compound feature F is composed of n pairwise distinct
features.

Proposition 2.2.6 Given a compound feature F = (S; �) of primitive features
F1 = (S1; �1); :::; Fn = (Sn; �n) where F1; :::; Fn are pairwise distinct primitive
features with symmetry groups G1; :::Gn respectively. Then the symmetry group
G of F is G = G1 \ :::\Gn.

Proposition 2.2.7 Let a compound feature F = (S; �) be composed of a pair
of primitive features F1 = (S1; �1) and F2 = (S2; �2) which are 1-congruent of
each other. If G1; G2 are the symmetry groups of F1; F2 respectively, and G is
the symmetry group of F then G = G1 \G2.

Proposition 2.2.8 Let a compound feature F = (S; �) be composed of a pair of
primitive features F1 and F2 which are 2-congruent of each other via gc (Def-
inition 2.2.2). If F1 = (S1; �1); F2 = (S2; �2) have symmetry groups G1; G2
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respectively, and G is the symmetry group of F then G =< gc > (G1 \ G2)

where < gc > denotes the subgroup of E+ generated by gc.

In general, the symmetry group G of a compound feature F can be found

from the intersection of the symmetry groups Gi of its primitive features. The

only exception is when a mapping which 
ips a pair of 2-congruent features in

F is also a member of G. These kinds of mappings are new symmetries that do

not exist in any Gi and the new group they generate is a discrete group.

2.3 Surface Contact: Computationally Tractable

As one can observe from the proven results for surface contact, the intersection

of symmetry groups of the primitive features is one of the crucial operations

in determining the relative motions of contacting solids. We face two compu-

tational problems: (1) How to denote symmetry groups, which can be �nite,

in�nite, discrete or continuous, on computers? (2) How to do intersections of

subgroups of E+ on computers e�ciently? We have successfully implemented an

e�cient TR4 subgroup intersection algorithm using geometric invariants deno-

tation of the groups [9,10] (Figures 2 and 3). The basic symmetry group of each

surface of a solid is obtained by a straightforward mapping from the boundary

(surface) �le of the solid to their respective canonical symmetry groups. The

Fig. 2. A geometric representation, characteristic invariants, for the subgroups of the

Euclidean group

group theoretical formalization of surface contact has also been embedded into

an assembly planning system KA3 (Figure 4).

4 A symmetry group G (a set of motions) that can be divided into a translation

subgroup T and a rotation subgroup R | a semidirect product G = TR. We call
such a group a TRsubgroup of E+.
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Fig. 3. Left: TR group intersection algorithm using translation and rotation invariants.

Right: an example of symmetry group intersection (symmetry groups of planar and
cylindrical surfaces)

Fig. 4. An assembly planner KA3 takes high-level task speci�cations and generates

robot executable assembly instructions.
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S3

S2

S1

S5

S4

S2

S3

S1

S4

S5

(A) (B)

S1

S2 S3

S4

S5

L1

L2 L3

L4

L12

L23

L14

+

gr_SO2

gr_dir_cyl

+

gr_SO2

gr_dir_cyl

+

gr_SO2

gr_dir_cyl

+

gr_SO2

gr_dir_cyl

(stationary)

S1

S2

S3
S4

S5

(C) (D)

Fig. 5. (A) A �ve-part gearbox assembly. (B) The top view of the gearbox con�guration

automatically computed by KA3. (C) Representation of the gearbox assembly in terms
of contacting compound feature symmetry groups, see text for details. (D) The output

POAMS for the gearbox assembly. Each solid Si is associated with a sequence of

motions in terms of the symmetry group of its contacting surfaces with the rest of the
assembly. Notice, during disassembly each solid is going through a 2-surface contact

(SO(2), assembled con�guration), 1-surface contact (Gdir cyl) and �nally, no contact

(E+, disassembled con�guration).

As an example of assembly speci�cation using symmetry groups, see Figure

5 for a �ve-part gearbox. The representation of the assembly is shown in Figure

5(C), where Li; i = 1::4 is the symmetry group of the contacting compound fea-

ture between solids Si and S5. Li = aiSO(2)a
�1
i
; i = 1::4, SO(2) is a one degree

rotation group resulted from the intersection of the symmetry group of a plane

with that of a cylinder (the compound feature composed of two surfaces of the

shaft of a gear). Lij = LiLj = aijSO(2)bijSO(2)cij ; i; j = 1::4 indicates that the

relative positions between gears (non-surface contact) are simply determined by

rotations in SO(2) and some speci�c translations aij; bij; cij, where the relative

gear pitch ratio is also embedded. This representation of the gearbox (Figure

5(C)) speci�es precisely the articulated gearbox assembly. After a disassembly

analysis by moving one solid away from this contacting network (Figure 5(C))

at a time, a partially ordered assembly motion set (POAMS) is found (Figure 5

(D)).
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3 General Contact and Computational Issues

S 1 2S S
m3

S
2

S
1

S

(A) (B)

Fig. 6. (A) Solids S1 and S2 have n parallel contacts. (B) Solids S1; S2; :::Sm form a

sequential contact chain

We have divided the general contact motion among solids into surface contact

(lower pairs), which we have successfully treated computationally, and the non-

surface-contact (higher pairs). They have the following speci�c forms:

1. Two solids have n surface contact, the relative position of solid 2 with respect

to solid 1:

l
�1
1 l2 2 f1Gf

�1
2 (3)

where G is the symmetry group of the compound feature composed of all
the contact primitive features of S1 or S2. If F is composed of n pairwise

distinct features Fi, then G = \Gi, where Gi is the symmetry group of Fi.

2. Two solids have n general contact (Figure 6 (A)), the relative position of

solid 2 with respect to solid 1:

l
�1
1 l2 2 f11G11�1G21f

�1
21 \ f12G12�2G22f

�1
22 \ :::\ f1nG1n�nG2nf

�1
2n (4)

where Gij is the symmetry group of primitive feature j of Si and fij is its

feature coordinates.

3. m solids have a chaining general contact (Figure 6 (B)), the relative location

of solid m with respect to solid 1:

l
�1
1 lm 2 f1G12�1G21f

�1
21 f2G23�2G32f

�1
32 :::fm�1G(m�1)m�m�1Gm(m�1)f

�1
m(m�1)

(5)

where Gij is the symmetry group of the surface on solid i in contact with

solid j.

Encouraged by our existing work on making the group theoretical formalization

of surface contact (case 1. above) tractable, our goal is to seek the computational

means to deal with the general contact using group theoretical formalization

(cases 2. and 3.).

Many open problems remain: (1) Can the geometric representation used for
TR groups be used for group product? It is known that in general, a product

of groups is not a group. For TR groups, the TR-restriction presented in [9,
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10] provides us with a constructive way to judge from its invariants whether a

product remains a TR group. However we do not yet know how to compute a

product from the invariants of its subgroups. (2) Given an algebraic surface, how
can one �nd its symmetry group computationally? We intend to investigate the

possibility of using the Gr�obner basis of a given polynomial to �nd its symmetry

group. An alternative is to use semi-algebraic set to represent the contacting

surfaces and �nd the continuous symmetries using Lie algebra5, but under this

formalism it is not clear how to deal with discrete symmetries e�ectively. (3)

Given a set of n algebraic surfaces and their respective symmetry groups, what
is the exact algorithm to �nd the symmetry group for the whole set? [9{11]

have only proved results for subcases, i.e. n distinct surfaces, a pair of 1-cong or

2-cong surfaces. No proven result for the most general case yet exists. We are

going to further study those compound features with more complicated inner

structures. For example, one may de�ne a concept of n-congruence on n features

F1 : : :Fn as requiring that there exists g 2 E+ such that g(Fi) = F(i mod n)+1;

this is a natural extension of 2-congruence. Such congruences will give rise to

new symmetries of the compound feature.

4 Conclusion

This work provides a good example of applying algebra to solve a fundamental

problem in robotics: solids in contact. It re
ects both the power of group theory,

and the e�ort one has to expend to make a mathematical theory computation-

ally feasible. We establish a group theoretical formalization of general contact

motion. The generality of this approach allows the treatment of solids in contact

as subgroup manipulations, and provides a uniform computational platform for

both continuous and discrete groups. The next challenge is to construct tools en-

abling computations of higher pairs, which will make this work computationally

complete. Our previous work has shed some light on the feasibility of achieving

this goal.
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