
Monitoring Quality of Service across
Organizational Boundaries

Rainer Hauck and Helmut Reiser

Munich Network Management Team,
University of Munich, Dept. of CS, Oettingenstr. 67, D-80538 Munich, Germany

{hauck|reiser}@informatik.uni-muenchen.de

Abstract In a customer/provider relationship a provider offers services
to a customer who pays for using them. To control service delivery cer-
tain Quality of Service (QoS) parameters have to be agreed through so
called Service Level Agreements (SLAs). Monitoring of some of these
QoS parameters only makes sense when done from a customer perspec-
tive. Therefore, the data collection has to take place at the customer site,
which means at least one organizational boundary has to be crossed. In a
cooperation project we developed a flexible and extensible agent for that
purpose using the Java Dynamic Management Kit (JDMK) and the Ap-
plication Response Measurement API (ARM). Based on our experiences
with the prototype implementation this paper analyses the suitability of
JDMK and ARM for the monitoring of QoS parameters and SLAs and
for building scalable and flexible management systems in large–scale en-
terprise networks.
Keywords:
Quality of Service, Intra-/Extranet, Application Response Measurement,
Service Level Agreement, Application Management, JDMK, JMX

1 Introduction

In a typical customer/provider scenario a customer demands - and pays for - a
certain Quality of Service (QoS) laid down in so-called Service Level Agreements
(SLAs). In recent years growing demand from customers to monitor the perfor-
mance of their network services can be realized. Poor performance is no longer
tolerated. Instead customers now can receive discounts or even have the right to
cancel the contract and choose a different provider. But network parameters like
numbers of IP packets dropped or the available bandwidth at a certain point
in time are not very meaningful to the vast majority of customers. So it seems
preferable not to monitor network performance but service performance instead.
In order to observe the quality of delivered services it is necessary to negotiate
Quality of Service (QoS) parameters as well as means for the measurement and
evaluation of these parameters. The monitoring of the QoS parameters has to be
done by an agent running at the customer site, because this is the only way to
monitor actual service usage of the customer. The fact that an agent belonging
to a provider must be running at the site of a customer implies strong security
requirements. Due to numerous changes to SLAs in course of time, the agent has
to be flexible and extensible in order to allow easy updating.

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 124–137, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Monitoring Quality of Service across Organizational Boundaries 125

The paper shows how concepts and services of the Java Dynamic Manage-
ment Kit (JDMK) can be used for building such an architecture. It also points
out weaknesses and deficiencies JDMK still has to deal with. As an example
of how monitoring of QoS parameters can be done, a web browser was instru-
mented using the Application Response Measurement (ARM) API to deliver
information about the actual response times a customer is experiencing.

The paper is structured as follows: Section 2 gives an overview about the sce-
nario the paper deals with and shows the requirements a management solution
for this scenario has to fulfill. In section 3 JDMK and the ARM API which are
both used in building our solution are introduced. Section 4 describes how we
applied JDMK and ARM to the problem domain. An example how actual QoS
parameters can be obtained is shown. Section 5 summarizes our experiences and
evaluates how JDMK and ARM are suitable for monitoring QoS parameters in
large enterprise environments. The Java Management Extensions (JMX) spec-
ification is intended as a replacement for the Java Management API (JMAPI)
and relies to a large extent on JDMK. We will therefore contrast JMX with
JDMK in section 6 and discuss to what degree JMX alleviates the shortcomings
of JDMK. Section 7 concludes the paper.

2 Scenario: Outsourcing of Extranets

An exemplary scenario – which this paper is based on – is a car manufacturer
(customer) which enables all its dealers (more than 1000) to use special appli-
cations within its corporate network (CN) (e.g., Online Ordering of cars). The
dealers build a so called extranet (EN). Besides the specific applications the EN
enables connections to the worldwide Internet. The provider implements the EN
infrastructure with all the demanded services on the customers behalf. It is also
responsible for the management of the extranet with all services it offers. It has
to be remarked that the provider is not responsible for applications offered by
the customer.

Service Area
(Customer)

C
or

po
ra

te
 N

et
w

or
k

C
us

to
m

er

D
ea

le
r 

n

Service Area
(Provider)

DNSMail
ISDN

VPN

D
ea

le
r 

2
D

ea
le

r 
3

Internet
Dealer 1

Extranet

Provider
Corporate Network

Management Center (Provider)

Figure 1. Extranet Solution for a Car Manufacturer

The correspond-
ing infrastructure is
presented in figure
1. Dealers are con-
nected with a Point
of Presence (PoP)
of the provider over
leased lines or ISDN
dial-up lines. They
form a virtual private
network (VPN) on
top of the infrastruc-
ture of the provider,
which is also used by

other customers. In the Service Area (SA) of the provider reside servers for the
services rendered by the provider (e.g. Mail, DNS, Authentication Service, . . .)
and a well defined access point to the Internet. If a dealer wants to use a service



126 R. Hauck and H. Reiser

of the manufacturer it will be routed into the SA of the car manufacturer. In
this configuration dealers use services both in the SA of the provider and in the
SA of the customer.

2.1 Management Requirements for Monitoring Quality of Service

In order to observe the quality of delivered services it is necessary to negoti-
ate QoS parameters between customer and provider. As mentioned before, it is
important that these parameters are meaningful to the customer and reflect its
expectations. They are part of Service Level Agreements which essentially are
a contractual relationship between a customer and a provider. SLAs are used –
among other things – for billing purposes. If a service is not delivered with the
quality that was agreed in the SLA the customer may get a discount. Therefore
the SLA (and therefore the QoS parameters) have to be supervised by the man-
agement system of the provider. Further the provider is obliged by the SLA to
report compliance with agreed QoS parameters. Examples for such QoS param-
eters are the response time, the connectivity or the availability not of a network
connection but of a certain service from a customer’s point of view. Thus these
parameters have to be measured and valued in the customer environment. Most
of the QoS parameters (e.g. the connectivity or the availability) of a service are
only defined if the customer actually tries to use this certain service. For the
monitoring of such parameters it is necessary for the management system of the
provider to be able to measure from the side of the customer. In our scenario
that means an agent which performs the monitoring of QoS parameters must
be installed at a dealer’s host. Thus the agent has to cross the organizational
boundary between the customer and the provider. The customer will allow the
provider to do so only if high security requirements are met. Additionally a cus-
tomer will only accept such a solution if no additional or only minimal costs
are caused. This especially causes problems for customers which are connected
via dial-up lines, because the initiation of a connection solely for management
purposes cannot be tolerated in this case. Furthermore it means the agent has
to do its measures locally as far as possible and transfered results should be as
small as possible. As requirements for services, QoS parameters and SLAs could
change in course of time the architecture has to be flexible and must be able
to react on such changes quickly. In large–scale corporate networks as described
in the scenario, well–scaling management systems are absolutely necessary. In
addition, a lot of different hardware and software at the customer side, requires
a high degree of platform independence for the corresponding agent.

2.2 Related Work

Distributed network, systems and application management is an active field of
research motivated – among others – by the experiences with deploying cen-
tralized management systems in large-scale corporate networks. To overcome
deficiencies of centralized management systems a lot of research has been done.

Management by Delegation (MbD) [5,15,14] defines a concept for dele-
gating functionality from managing systems to agents in order to enhance them
at runtime. The decision when this delegation should happen and which kind



Monitoring Quality of Service across Organizational Boundaries 127

of functionality should be transferred to the agents is taken by the managing
system, thus preventing autonomous decisions by the agents. Flexible agents
[11] rely on MbD and exhibit a certain degree of autonomy; they are able to
receive event notifications from peers and can be grouped together in order to
jointly achieve a task. In recent years mobile agents [12,13] which add the con-
cept of mobility to flexible agents or MbD have been investigated. Their roaming
capabilities allow them to move across networks in order to achieve specific, pre-
defined tasks. However, the applicability of mobile agents is bound by security
concerns; [6] and [23] discuss these aspects. Mobile management agents are
designed to achieve administrative tasks on systems and software; while [1] dis-
cusses the advantages of applying mobile agents to management, [4] presents a
Java-based environment for configurable and downloadable lightweight manage-
ment applications.

The following approaches for the monitoring of application response times
are commonly used today: First network monitors like the Tivoli Netview
Performance Monitor1 can be used to monitor traffic on the network. However
the packets must be correlated to actual user transactions in order to calculate
response times, which is quite a complex task [16]. Moreover, it is very unlikely
that a customer will allow a provider to place a network monitor in his corporate
network. A different approach is by using active probes like done by Geyer
& Weinig’s GW-TEL INFRA-XS2. Here an agent at the remote site actively
initiates transactions and measures the response time. The problem with this
solution is that it does not monitor the actual transactions of the user but some
test transactions and that it increases network and server load.

3 Framework and Development Tools

The Java Dynamic Management Kit (JDMK)3, developed by Sun Microsystems
[18,19], promises to overcome many of the problems mentioned and supports
some new requirements. Application Response Measurement API (ARM) is a
valuable standard for the application perfomance instrumentation. In the next
sections, we will introduce the architecture and services of JDMK and the con-
cepts and use of ARM.

3.1 Architecture and Services of JDMK

JDMK represents a framework with corresponding tools, based on the JavaBeans
specification [17], for the development of management applications and manage-
ment agents. The base components of the architecture are shown in figure 2.

M–Beans (Managed Beans) are Java objects implementing the intelligence
and the functionality of an agent.

1 http://www.tivoli.com/products/index/netview perfmon/
2 http://www.gwtel.de/
3 http://www.sun.com/software/java-dynamic/



128 R. Hauck and H. Reiser

Manager 

Java Virtual Machine

Agent

2

C-Bean
1

A
da

pt
or

 I

Java Virtual Machine

A
da

pt
or

 I
A

da
pt

or
 II

C
or

e 
M

an
ag

em
en

t F
ra

m
ew

or
k

M-Bean
1

M-Bean
2

M-Let
Service

M-Bean
3

C-Bean

Figure 2. JDMK Architecture

They act as a representative for
one or more managed objects (MOs).
In order to use JDMK services or com-
munication resources M–Beans have
to be registered at the so called
Core Management Framework (CMF)
. Only registered Beans can be ac-
cessed from outside the CMF. The
CMF together with its M–Beans rep-
resents the management agent. C–
Beans (Client Beans) can be gener-
ated from M–Beans using a special
compiler. C–Beans are proxy objects
for remote M–Beans. Together with their adaptors and additional management
functionality they form the manager. An agent is also able to register C–Beans
with its CMF. By doing this, the agent becomes a manager for that agent which
implements the corresponding M–Beans. The strict separation between the man-
ager and the agent role in protocol-based management architectures is therefore
abolished in JDMK. An Adaptor implements a special kind of a protocol, it
is an interface for the CMF and hence for the agent. At present RMI, HTTP,
HTTPS (HTTP over SSL), IIOP, SNMP and a so called HTML adaptor, which
represents a web server, are available. This concept allows to communicate with
the same JDMK agent by means of different protocols. It is not necessary to
change the functionality or the code of the agent, the only thing to do is to reg-
ister a different adaptor. Of course it is possible to use more than one adaptor
at the same time.

<MLET

CODE=
ARCHIVE=
NAME=
VERSION=

>
</MLET>

MBean3
remotebean.jar

"M-Bean 3"
2

remotebean.jar
MBean3.class
Helper.class

classes/MBean1.class

classes/MBean2.class

M-Let
Service

M-Bean
2

������
������
������
������

������
������
������
������

Helper

M-Bean
1

������
������
������
������

������
������
������
������M-Bean

3

printserver.mnm.de

������
������
������
������

������
������
������
������
M-Bean

M-Bean

loaded by M-Let Service 
Instances of Objects

Instances of Objects
loaded from the locale filesystem

http://beanserver.mnm.de/remotebean.jar

beanserver.mnm.de

1.

2.

3.

1. loading a HTML file

3. register M-Beans 

Course:

2. loading and instantiating M-Bean classes

http://beanserver.mnm.de/MyRemoteBean.html

Figure 3. JDMK Management Applet (M-Let) Service

Besides the base
components of JDMK
several services and
tools exist to simplify
the development of
management applica-
tions and agents. Ser-
vices relevant for the
project are briefly ex-
plained in the follow-
ing paragraphs.

Beans may be reg-
istered with the aid
of Repository Service
either as volatile or
persistent within the
CMF. The Discovery
Service is used to de-

tect all active CMFs. To determine the properties and methods which are sup-
ported by an M–Bean the Metadata Service, can be used. The Class and Library
Server serves as a local or remote repository for class files and libraries. M–Let,
Launcher and Bootstrap Service are used for dynamic extension of agents, for



Monitoring Quality of Service across Organizational Boundaries 129

update mechanisms and for bootstrapping. The M–Let Service (Management
Applet Service) offers the possibility to download and configure M–Beans dy-
namically (cf. figure 3). For this purpose a new HTML tag (<MLET>) is defined.
First M–Let Service loads a HTML page from an URL from which it can obtain
all the necessary information about the Beans to load. Then M–Let Service is
able to download the implementation classes of the M–Beans and to instantiate
them. Afterwards, the M–Let Service must register them with the CMF. It is
also possible to put version information inside an (<MLET>) tag and thus use the
M–Let Service for versioning. The Bootstrap Service simplifies the distribution
and instantiation of JDMK agents. This service is used to download implemen-
tation classes. Therefore the Bootstrap Service initializes the CMF, starts the
M–Let Service, loads the necessary classes, initializes, registers and starts all
required M–Beans and services of the agent.

Besides mogen compiler which is used to create C–Beans there is mibgen
compiler for developing a JDMK based SNMP agent for a device. If SNMP–
MIB files are available for a managed device, mibgen is able to use them to
create M–Beans representing the MIB. The M–Beans have to be enlarged with
functions e.g., implementing access to resources of the managed system.

3.2 The Application Response Measurement API (ARM)

The Application Response Measurement API (ARM) [2] has been developed in
1996 in a joint initiative of Tivoli Systems and Hewlett-Packard. Later that year
HP, Tivoli and 13 more companies established the ARM Working Group of the
Computer Measurement Group (CMG)4 to continue development and promotion
of the API. It promises to allow transaction based monitoring of response times
in a distributed and heterogeneous environment. Work on version 2.0 of the
API was finished in November 1997. In January 1999 the ARM API version
2.0 was adopted by the Open Group as its technical standard for application
performance instrumentation.

API

ARMMeasurement
Agent

arm_start

arm_stop

API

ARMMeasurement
Agent

arm_start

arm_stop

Communication

Servers

Clients

Application
Management

Business

Applications
Business

Applications

Figure 4. Using the ARM API

To achieve the goals men-
tioned above a simple API
was defined that is supposed
to be implemented by man-
agement tools. The applica-
tions to be monitored have to
be instrumented to call the
API whenever a transaction
starts or stops. Actual per-
formance monitoring is done
by using management tools that provide measurement agents implementing the
API. These are linked against the application to be monitored and thus are
called whenever a transaction is initiated or ended. (see figure 4). An important
feature added with version 2.0 of the API is correlation of transactions. Often
one transaction visible to the user consists of a number of subtransactions. When
indicating the start of a new transaction, a data structure called a correlator can
4 http://www.cmg.org/regions/cmgarmw/index.html



130 R. Hauck and H. Reiser

be requested from the measurement agent. When indicating the start of a sub-
transaction, this correlator can be used to inform the measurement agent about
the existence and identity of a parent transaction.

4 Monitoring of QoS Using JDMK and ARM

In an industrial cooperation project with DeTeSystem [8] a prototypical manage-
ment solution was developed that fulfills the requirements mentioned in chapter
2.1. In this project JDMK (version 3.0 beta 2) and ARM (version 2.0) were used
for the monitoring of QoS parameters.

4.1 Architecture

As seen before there is a strong requirement for Service Level Monitoring to
be considered from a customer’s perspective. QoS parameters of SLAs are only
reasonable if the user actually tries to use a service. If it does not try to use a
special service there cannot be a violation of an SLA caused by the provider.
Through the use of Flexible Management Agents (FMA) positioned in the cor-
porate network of the customer, our solution enables the measurement of the
actual Service Levels provided to the customer.

In order to avoid additional costs for a customer connected by a dial-up link
the following solution was examined: The agent transmits the collected informa-
tion to the manager only when the link is up and free. In addition packets from
the agent do not affect the idle timer responsible for the disconnection of the link
if it was unused for a predefined period of time. That would mean that only the
(otherwise useless) timeout intervals are used for management traffic. However,
the needed functionality is not available in ISDN routers commonly used today,
as there is no way to distinguish between packets that should affect the idle timer
and packets that should not. As a trade-off the following solution was chosen:
Management traffic is created only when the link is up. Although being sub-
optimal this approach avoids establishing a connection solely for management
purposes and thus reduces the additional cost to a minimum. To check whether
the link is up or down, some kind of status information needs to be available.
Two different solutions have been examined. Many routers send SNMP traps
whenever a link is established or goes down. The router can be configured to
deliver these traps to the agent. So the agent gets informed immediately about
any change in link status. As not all routers send traps concerning the link status
the second approach might be necessary: If the agent has management informa-
tion to transmit, it polls the variable ifOperStatus (operational state of the
interface) from MIB-II [10] on a regularly basis. Both variants mean that from
the perspective of the router, the agent acts in the role of a SNMP manager. As
a relatively high polling interval can be chosen (about half of the idle timeout
value for the link) the additional load induced by polling is minimal.

Every time the SLAs change or new means of measurement are needed, new
functionality must be installed in the corporate network of the customer. As the
customer network is typically located far from the management center of the
provider a solution is necessary that allows dynamic download of new function-
ality. This requirement is one of the main reasons why the presented solution is



Monitoring Quality of Service across Organizational Boundaries 131

based on JDMK. The CMF has to be installed only once at the customer site
and from then on all the functionality needed can easily be downloaded as an
M-Bean using e.g., the M-Let Service. To prevent data from being accidentally
destroyed, the agent can regularly be serialized to local disk. When the system
comes up – for example recovering from a system crash – the JDMK Bootstrap
Service tries to load the local copy of the agent before it contacts the central
repository. Of course this does not prevent a customer from explicitly deleting
the information collected by the agent before it is transmitted to the manager.
Another benefit of using the JDMK was its ability to use different adaptors.
The provider uses a management platform and also wants to use web browsers
to configure the agents. By using JDMK’s SNMP and HTML adaptors this could
be achieved easily. A manager application was built to receive the performance
data sent by the agents using the RMI adaptor. In the current version it writes
the data to a database where management tools can access it.

4.2 Quality of Service Measurement

Browser

WWW-
Server

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

DNS-
Server

FMA

startTransaction A

URL

IP-Adress

index.html

GET /index.html

Connect

startTransaction B

result

Agent

stopTransaction B

startTransaction C

stopTransaction C

stopTransaction A

Figure 5. ARM instrumentation of a web
browser

There are many different ways
Service Level Agreements might
be defined. Typical representa-
tives are the availability of IP
connectivity and the time needed
by a server to fulfill a user re-
quest. In the given scenario there
is the need to measure the re-
sponse times of web servers in the
service areas of both the provider
and the customer. The transac-
tions of interest are the download
of web pages by the dealers. In or-
der to learn about the actual re-
sponse times the user experiences, a web client (Lynx) was instrumented with
calls to the ARM API. Figure 5 shows the transactions to be monitored.

Most important is transaction A which spans the whole process of loading
the page. To allow the manager the localization of failures or bottlenecks two
subtransactions are defined. Subtransaction B covers the part of contacting the
DNS for hostname resolution and subtransaction C covers the actual download
of the page. The measurement agent forwards the results to the FMA which can
do some preprocessing on the data and transmits it to the manager whenever the
link is up. If the FMA receives information about timed-out connections or if the
reported response times exceed given thresholds, it can take some further action
to identify the problem. In our example it does a ping to the local router, to the
PoP and to the server that the user tried to contact. The results can be used to
determine if the problem is located in the dealer’s LAN or in the service area
of the customer. Both would mean that the provider cannot be held responsible
for the malfunction. Through an ARM instrumentation of the servers and a
correlation of server transactions with client transactions even more accurate



132 R. Hauck and H. Reiser

information can be collected. Lynx was chosen as an example because it is a
simple browser and the source code is available, so an instrumentation could be
done in the course of the project. Of course, typical dealers will not be using
Lynx but as ARM is gaining more and more momentum many browsers might
come instrumented in the near future.

5 Evaluation of JDMK and ARM

This section evaluates JDMK and ARM with respect to their applicability to
large enterprise management environments. We will thereby focus on the major
problem domains which are of critical importance for a successful deployment
and address the requirements identified in section 2.1.

5.1 Rapid Prototyping of Flexible, Dynamic Management Systems

As outlined in the previous sections, the primary strength of JDMK is its capa-
bility of realizing flexible and highly distributed management systems. Agents
developed with JDMK can be enhanced and modified at runtime, thus yielding
the opportunity of delegating management tasks to them via the push model.
Furthermore, these agents can also initiate the download of management func-
tionality by themselves (pull model). These additional services are only trans-
ferred to the agent if needed. Under regular conditions, particular tasks of the
management system may be carried out by the agent, thus preventing the ex-
change of large amounts of data between the managing system and the agent.
The services provided by JDMK enable distribution and update mechanisms to
enhance agents with additional functionality residing in centralized code repos-
itories. JDMK also provides mechanisms for the persistent storage of M-Beans,
thus enabling the agent components to remain close to the resource and eliminat-
ing the need of downloading them from remote servers. Simple web-based user
interfaces can be generated automatically by using the HTML-Adaptor. JDMK-
administered resources can be easily accessed from systems in other manage-
ment architectures because several adaptors for different management protocols
are provided. It is thus possible to administer JDMK-based agents from SNMP
management platforms through the SNMP adaptor. The toolkit also enables
the development of adaptors for new protocols not yet supported. The adaptor
concept is helpful if agents should support multiple management protocols simul-
taneously e.g., information provided by a specific agent should be accessible not
only from an SNMP-based management platform but also from a web browser
via HTTP.

In summary, we believe that JDMK has a strong potential for the rapid devel-
opment of highly distributed management environments and providing several
protocol adaptors is a good basis for today’s heterogeneous management envi-
ronments.

5.2 Scalability

JDMK does neither provide standardized directory nor naming services. Fea-
tures for achieving location transparency (like the CORBA Interoperable Object



Monitoring Quality of Service across Organizational Boundaries 133

References) are also not available: An M–Bean is identified by a protocol identifi-
cator, the host address and port number, and its object name. These parameters
and some knowledge about the registered beans in a given CMF must be present
in order to make use of the M–Beans. The scope of the Metadata Service that
can be used to retrieve information on registered M–Beans is limited to a single
CMF, i.e., there is no global Metadata Service. Consequently, the only way of
finding the currently active CMFs is the JDMK Discovery Service which sends a
broadcast message that is answered by all running agents. The establishment of
domains and the structuring of the agents in functional groups is not supported
by the development environment and has to be done by the developer.

The conceptual weaknesses mentioned above impede the development of
management applications for large IT infrastructures where a high number of
different JDMK-based agents is needed. The JDMK services are useful for small,
local environments where the amount and the degree of diversity of the agents
are restricted. Due to the absence of focus on large systems, the scalability of
JDMK-based solutions may be critical at the current stage of the toolkit.

5.3 Security Aspects

JDMK does not have a homogeneous security concept; instead, developers need
to be aware of the different security mechanisms to implement comprehensive
security for agents that support different protocol adaptors. The SNMP adaptor
relies on a file containing access control lists to determine which management
systems have the right to read or modify specific parts of the MIB. Although
this can be considered as an enhancement compared to the (password-based)
mechanism of the early SNMP, modern fine-grained SNMP security mechanisms
like VACM [24] are not supported yet. As the authentication of remote sys-
tems is based on their IP address, the agent is vulnerable with respect to IP-
spoofing attacks. The authentication method of the HTTP/HTML adaptors are
login/password combinations. As sensitive data is exchanged unencrypted, it is
not possible to implement secure HTTP-based management solutions. The RMI
and IIOP adaptors do not support authentication and access control. The only
way of enabling secure authentication is based on the HTTPS (HTTP over SSL)
adaptor which allows the exchange of cryptographically secure certificates. The
appropriate access control system must then be implemented by the developer.

We believe that the current security mechanisms of JDMK are insufficient
because developers still have to implement a large part of the security mecha-
nisms themselves. Furthermore, the large differences between the various security
mechanisms are not yet shielded behind a comprehensive security architecture.

5.4 ARM

The ARM API offers many benefits to a manager who needs to monitor the
response times of applications: The most important factor is its openness. Re-
sulting from a joint initiative of 15 companies, it offers a well defined interface
that can be used either by application developers or by management tool ven-
dors. Applications instrumented with the API calls will work seamlessly with



134 R. Hauck and H. Reiser

management tools from various manufacturers (e.g. Tivoli Application Perfor-
mance Management (TAPM)5 or HP MeasureWare/PerfView6). However, it is
also general enough to allow sufficient differentiation between management so-
lutions from different vendors. Its adoption as a standard by the Open Group
further strengthens its position as the predominant standard for response time
measurement. Another important fact is its simplicity and efficiency. There are
not more than six calls to be used. Technically it is very easy to instrument an
application using these calls and it is also relatively easy to provide a measure-
ment agent that implements the calls. Depending on the amount of processing
the measurement agent does, it affects system performance only to a minimal
level. A further benefit is the way transactions are defined. Even in a highly
distributed environment it is easy to monitor the transactions a user is aware
of. Users are not interested in certain parts of the transactions but in the total
amount of time from their request to the reception of the response. Through
the concept of subtransactions, managers still have the chance to find out which
part of the transaction is responsible when performance problems occur.

However, the ARM API still comes with a lot of problems: Obviously, the
first to mention is the need for instrumented applications. Today most commer-
cially available applications are not instrumented. As normally no source code
is available it is also impossible to instrument these applications on your own.
Even if the source code is provided it is a difficult and time consuming task be-
cause the business transactions seen by the user must be identified in the code,
which requires expert knowledge of the implementation. When using transaction
correlation, the correlator received by the measurement agent must be known to
the subtransactions. In a distributed environment this requires changes to the
applications because the correlators have to be passed explicitly as parameters
when calling the server component.

6 Java Management Extensions

In the middle of 1999 the draft version of the new Java Management Extensions
(JMX) specification [20] has been released for public review. JMX integrates the
former developments within the scope of the Java Management API (JMAPI)
and JDMK into a Java-based management framework. The specification does
not only focus on the agent part of the management system (as it was the case
with JDMK) but will also specify the manager part. However, in the current
version of the specification the JMX manager is left blank. As JDMK can be
considered an integral part of JMX, we will provide a short overview over the
most recent developments and address the question whether the critical issues
of JDMK also apply to JMX. However, please note that the JMX specification
is not yet in a final state.

JMX architecture is very similar to JDMK as depicted in figure 2. JMX dis-
tinguishes between manager, agent and instrumentation levels: Within an agent,
M–Beans responsible for making a resource manageable reside at the instrumen-
tation level. A manageable resource in JMX can be an application, a service
5 http://www.tivoli.com/products/index/app per mgt/
6 http://www.openview.hp.com/



Monitoring Quality of Service across Organizational Boundaries 135

implementation or a device. The instrumentation is made accessible to JMX
managers (forming the manager level) through the agent level which provides
a communications interface, a set of standard services and a run-time environ-
ment. The Core Management Framework of JDMK has been renamed to MBean
Server. JMX MBeans7 have been categorized into four distinct classes: standard
MBean, dynamic MBeans, open MBean and model MBean. The adaptor con-
cept of JDMK is now divided up into protocol adaptors and connectors. Protocol
adaptors are used to link an JMX agent with non-JMX compliant management
applications (i.e., SNMP, Common Information Model (CIM) [3] or proprietary).
The connector – in contrast – is used by a remote JMX-enabled management
application (i.e., developed using JMX manager services) to connect to a JMX
agent. For integration with existing management solutions JMX offers additional
management protocol APIs and includes an open interface that any vendor can
use. Currently, an SNMP API [22] and CIM/WBEM APIs [21] are defined and
implemented. The final JMX specification will provide both a reference imple-
mentation and a compatibility test suite. However, only an early access version
of the reference implementation is available yet.

Based on the current draft of the JMX specification, we have to state that
shortcomings of JDMK identified in section 5 also apply to JMX. To which
degree the review process of the specification will eliminate the weaknesses of the
current JMX version has to remain an open question. This particularly applies
to the manager side of JMX, which is yet unspecified.

7 Conclusion and Outlook

The paper described a case study for the dynamic management and monitoring
of QoS parameters and SLAs based on JDMK and ARM. We have discussed
our implementation concept with flexible and extensible agents which operate
at the customer site. Our work was motivated by the increasing demand for
scalable and reliable solutions which allow the extension of management agents
at runtime. The experiences gained in this project allowed an evaluation of the
applicability of JDMK for managing large-scale enterprise networks and can be
summarized as follows: The development environment permits rapid prototyp-
ing and is easy to use; the transfer of lightweight applications (implemented as
JavaBeans) to management agents at runtime works very well: JDMK supports
both push and pull models and enables agents to acquire additional function-
ality, thus improving their (albeit limited) autonomy. JDMK is best described
as a development framework for Java-based Management by Delegation. At its
current stage, JDMK is a powerful toolkit for the development of management
agents that can be accessed and modified through several different communica-
tion mechanisms.

The usability of management systems – especially in an enterprise-wide
context – depends to a high degree on the security features of the underly-
ing middleware. However, the JDMK security mechanisms are yet unsatisfac-
tory because the different mechanisms of the underlying communication proto-
cols/infrastructures have not yet been integrated into a common security archi-
7 The dash in the word “M–Bean” has been removed in JMX.



136 R. Hauck and H. Reiser

tecture. It therefore depends on the type of the underlying protocol whether
e.g., encryption is available and how access control is handled. Another criti-
cal issue is the absence of services to obtain meta-information on the deployed
agents (like a “global” interface repository and naming services): The services
to obtain information regarding the whole set of agents in a JDMK environment
lack scalability because they can only be applied to a single Core Management
Framework, thus preventing a global view on the agents.

The experiences of the project further allowed an evaluation of how ARM
can be used for the monitoring of service levels of client/server applications.
As the benefits of ARM outweigh the disadvantages by far there is hope that
it will increasingly be adopted by vendors. Recently the CMG has released a
preliminary version of ARM 3.0 SDK for public review (for a short overview see
[9]). The most important topic of this release is the new Java binding. With this
feature Java programs can use the ARM API directly and the indirection via
Java Native Interface is not necessary any longer. However, until now the formal
specification of ARM 3.0 is not available. Growing customer demand for appli-
cations ready for management will lead to a growing number of instrumented
applications. A number of management tool vendors already offer solutions that
implement the ARM API.

Acknowledgment. The authors wish to thank the members of the Munich
Network Management (MNM) Team for helpful discussions and valuable com-
ments on previous versions of the paper. The MNM Team directed by Prof.
Dr. Heinz-Gerd Hegering is a group of researchers of the University of Mu-
nich, the Munich University of Technology, and the Leibniz Supercomput-
ing Center of the Bavarian Academy of Sciences. Its webserver is located at
http://wwwmnmteam.informatik.uni-muenchen.de.

References

1. Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile Agents
for Network Management. IEEE Communication Surveys, 1(1), 1998.
http://www.comsoc.org/pubs/surveys/4q98issue/bies.html.

2. Application Response Measurement (ARM) API . Technical Standard C807, The
Open Group, July 1998.

3. Common Information Model (CIM) Specification Version 2.2. Specification, June
1999.

4. M. Feridun, W. Kasteleijn, and J. Krause. Distributed Management with Mo-
bile Components. In M. Sloman, S. Mazumdar, and E. Lupo, editors, Integrated
Network Management VI (IM’99), pages 857–870, Boston, MA, May 1999. IEEE
Publishing.

5. G. Goldszmit and Y. Yemini. Distributed Managment by Delegation. In Proceed-
ings of the 15th International Conference on Distributed Computing Systems, June
1995.

6. Michael S. Greenberg and Jennifer C. Byington. Mobile Agents and Security. IEEE
Communications Magazine, 36(7):76–85, July 1998.

7. H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked
Systems – Concepts, Architectures and their Operational Application. Morgan
Kaufmann Publishers, ISBN 1-55860-571-1, 1999. 651 p.

http://wwwmnmteam.informatik.uni-muenchen.de
http://www.comsoc.org/pubs/surveys/4q98issue/bies.html
http://www.comsoc.org/pubs/surveys/4q98issue/bies.html


Monitoring Quality of Service across Organizational Boundaries 137

8. M. Hojnacki. Einsatz des Java Dynamic Management Kit (JDMK) zur
Antwortzeitüberwachung bei der DeTeSystem . Master’s thesis, Technische Uni-
versität München, May 1999.

9. M. W. Johnson. ARM 3.0 — Enabling Wider Use of ARM in
the Enterprise. In Computer Measurement Group’s 1999 Interna-
tional Conference (CMG99), Reno, Nevada, USA, December, 5–10 1999.
http://www.cmg.org/regions/cmgarmw/arm30enhancements.pdf.

10. K. McCloghrie and M. T. Rose. RFC 1213: Management information base for
network management of TCP/IP-based internets:MIB-II. RFC, IETF, March 1991.

11. M.-A. Mountzia. Flexible Agents in Integrated Network and Systems Management.
Dissertation, Technische Universität München, December 1997.

12. A. Pham and A. Karmouch. Mobile Software Agents: An Overview. IEEE Com-
munications Magazine, 36(7):26–37, July 1998.

13. K. Rothermel and F. Hohl, editors. Mobile Agents (MA ’98), volume 1477 of LNCS,
Berlin; Heidelberg, 1998. Springer.

14. J. Schönwälder. Network Management by Delegation - From Research Prototypes
Towards Standards. In 8th Joint European Networking Conf. (JENC8), Edinburgh,
May 1997.

15. Jürgen Schönwälder. Netzwerkmanagement mit programmierbaren, kooperierenden
Agenten. PhD thesis, Technische Universität Braunschweig, March 1996.

16. R. Sturm and W. Bumpus. Foundations of Application Management. Wiley Com-
puter Publishing, 1998.

17. Sun Microsystems, Inc. JavaBeans, Version 1.01. Techni-
cal report, Sun Microsystems, Inc., Palo Alto, CA, July 1997.
http://www.javasoft.com/beans/docs/spec.html.

18. Sun Microsystems, Inc. Java Dynamic Management Kit – A Whitepa-
per. Technical report, Sun Microsystems, Inc., Palo Alto, CA, 1998.
http://www.sun.com/software/java-dynamic/wp-jdmk/.

19. Sun Microsystems, Inc. Java Dynamic Managment Kit 3.0 (beta) – Programming
Guide. Technical report, Sun Microsystems, Inc., Palo Alto, CA, August 1998.

20. Sun Microsystems, Inc. Java Management Extensions Instrumentation and Agent
Specification, v1.0. Technical report, Sun Microsystems, Inc., Palo Alto, CA, De-
cember 1999.

21. Sun Microsystems, Inc. Java Mangement Extensions CIM/WBEM APIs. Prelim-
inary Specification Draft 1.9, Sun Microsystems, Inc., Palo Alto, CA, June 1999.

22. Sun Microsystems, Inc. Java Mangement Extensions SNMP Manager API. Prelim-
inary Specification Draft 1.9, Sun Microsystems, Inc., Palo Alto, CA, June 1999.

23. Giovanni Vigna, editor. Mobile Agents and Security, number 1419 in LNCS, Berlin,
Heidelberg, 1998. Springer.

24. B. Wijnen, R. Presuhn, and K. McCloghrie. RFC 2275: View-based Access Control
Model (VACM) for the Simple Network Management Protocol (SNMP). RFC,
IETF, January 1998.

http://www.cmg.org/regions/cmgarmw/arm30enhancements.pdf
http://www.cmg.org/regions/cmgarmw/arm30enhancements.pdf
http://www.javasoft.com/beans/docs/spec.html
http://www.javasoft.com/beans/docs/spec.html
http://www.sun.com/software/java-dynamic/wp-jdmk/
http://www.sun.com/software/java-dynamic/wp-jdmk/

	Introduction
	Scenario: Outsourcing of Extranets
	Management Requirements for Monitoring Quality of Service
	Related Work

	Framework and Development Tools
	Architecture and Services of JDMK
	The Application Response Measurement API (ARM)

	Monitoring of QoS Using JDMK and ARM
	Architecture
	Quality of Service Measurement

	Evaluation of JDMK and ARM
	Rapid Prototyping of Flexible, Dynamic Management Systems
	Scalability
	Security Aspects 
	ARM

	Java Management Extensions
	Conclusion and Outlook



