
JBSA: An Infrastructure for Seamless
Mobile Systems Integration

Stefan Müller-Wilken and Winfried Lamersdorf

University of Hamburg, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany,
Phone: +49-40-42883-2327 Fax: +49-40-42883-2328
{smueller,lamersd}@informatik.uni-hamburg.de,
http://vsys-www.informatik.uni-hamburg.de

Abstract. While the desire to gain full access to stationary information
sources (e.g. the company´s backoffice database) when in transit is only
natural, inherent design limitations such as a lack of computational po-
wer, very limited resources and closed architectures, let mobile system
integration still be a difficult issue. In contrast to other approaches to the
field, the “Java Border Service Architecture” introduced in this article
doesn’t require modifications to the mobile device´s system software or
the application environment to give access existing applications from the
mobile system. It features a new way of generating user interface snaps-
hots in an XML–based description format “on the fly”, translating them
to a light–weight format suitable for the device and sending UI snapshots
to the device in real time. This article gives an overview of the architec-
ture and its functionality and presents an application scenario that has
been implemented on top of it.

1 Introduction

The demand for seamless mobile system integration and optimal access to exi-
sting information systems has been identified in its relevance to distributed sy-
stems research several years ago. Various publications have stated arising pro-
blems (e.g. [8],[9],[17]) and several approaches on how to integrate mobile devices
into existing system infrastructures have been proposed over the time (e.g. [2],
[11], [13], [16]). While approaches differ from one another, most of them have
in common, that they are based on modifications to the mobile device and/or
require special system support on the application side. Especially due to the
fact that mobile systems are very often of “closed” design and resist any mo-
dification to the device itself, such integration platforms will not suffice as an
universal approach to the problem. They will rather be restricted to just a few
device types open for third party modifications or extensions. In addition, it will
not be acceptable for numerous application contexts to make use of specialized
software libraries when realizing mobile system integration. Consequently, one
does have to offer an integration platform that will not have such an impact on
system design on the one hand and mobile devices to be integrated on the other.

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 164–175, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



JBSA: An Infrastructure for Seamless Mobile Systems Integration 165

This article introduces the “Java Border Service Architecture”, a flexible in-
frastructure to support integration of arbitrary mobile devices into distributed
system environments. In contrast to other approaches to the problem, the in-
tegration platform described here is based on the introduction of an abstract
format used to analyze and describe an application’s user interface in real time
and allows for its transformation into a concrete representation on the fly. As
the platform uses runtime analysis rather than code modification, no changes to
the application involved will be necessary. Using this technique, it is possible to
support the ever increasing number of device types by just changing the set of
transformation rules to apply to the abstract representation for a certain class.
As the application code remains unchanged, it is also possible to integrate ap-
plications where a modification is impossible due to design aspects or because
the source code is not available for modification.

The article is organized as follows: section 2 describes the principles under-
lying the JBSA. Section 3 gives an overview on the infrastructure itself and its
core components. An example is introduced in section 4 and finally, section 5
concludes with a summary and outlook on future work.

2 Integration through Abstraction

Various approaches to the problem of finding better means to seamlessly in-
tegrate mobile systems into distributed system environments were proposed in
recent years. In accordance to a taxonomy proposed by M. Satyanarayanan ([18],
see also [10]), one can classify mobile system integration strategies with respect
to their level of adaptivity or “application awareness” in a spectrum ranging
from “laissez faire” (integration without any system support to the application)
to one extreme and “application–transparent” (full integration responsibility at
the underlying system with no modification to the application) to the other.
Adding another dimension to this taxonomy and measuring the level of “mobile
device awareness”, that is, the extent of modifications necessary to the mobile
device, one will get the taxonomy shown in fig. 1. Most existing integration ap-
proaches have in common that they at least partly rely on modifications to the
mobile client. In some cases, a special viewer has to be installed (e.g. a VNC
viewer for the “Virtual Network Computing” environment [15], etc.) to enable
an interaction from the mobile device to be integrated. Other approaches are ba-
sed on design time modification to the application environment and thus require
changes to the application itself (e.g. UIML [1], XFDL [4], etc.). Accordingly,
existing mobile device integration platforms can be assigned to quadrant I or II
of the taxonomy depicted in fig. 1.

In contrast to that, one of the main aims of the integration principle under-
lying the JBSA is to completely avoid changes to both the mobile device and
the application. Consequently, the following aspects were identified as its pri-
mary design goals. Platform indepencency: the integration platform is not to be
restricted to certain device classes but should valid for arbitrary devices. Device
transparency: modifications are not to be made to the mobile device but rather



166 S. Müller-Wilken and W. Lamersdorf

Application-transparent
(No changes to applications)

Device-transparent
(No changes to devices)

I

IIIIV

II

‘‘laissez faire’’
(No system support)

Fig. 1. A taxonomy for mobile adaption and integration strategies

to network nodes and within the infrastructure. Application transparency: modi-
fications are not to be made at design time and changes to the application code
are to be avoided. With respect to these goals, the integration principle can be
assigned to quadrant III of fig. 1.

Separating User Interfaces

Applications can generally be subdivided into multiple layers, each one offering
a certain functionality to adjacent ones. Most of the time, a presentation layer
will be responsible for user interaction (data presentation and visualisation, in-
terception of user commands, etc.); an application logic will be responsible for
data creation and processing and, where applicable, a data storage layer is used
to hold all local data the application is handling (see [14]). Application logic and
presentation are commonly grouped together to coordinate all access to stored
or processed application data.

The solution chosen by the JBSA is based on a runtime analysis of an applica-
tion’s presentation layer and its description in an abstract data representation,
a specially designed XML [5] dialect. By means of a set of device–dependent
transformation rules expressed in XSL [3] and processed by an XSLT processor
[6], the abstract description can be transferred into a concrete format as required
for a proper presentation on the target device (a technique sometimes described
as “rendering” [12]). In a similar way, interaction on the device is transferred
into an abstract representation, routed to the application and retranslated into
events as if caused by local user interaction. All steps are performed in real
time and without significant change from a user’s point of view. As part of the
analysis, all user interface primitives such as text fields, lists, etc., are identified
at an operating system level by means of GUI object hierarchy inspection. No
semantic analysis is performed and thus no “valence” will be added to identi-
fied elements. Type and a unique identifier of each user interface primitive is
derived and registered to allow for later access to each GUI element. All results



JBSA: An Infrastructure for Seamless Mobile Systems Integration 167

Abstraction

Application logic

Presentation

Application logic

Presentation

Fig. 2. An abstraction layer between presentation and application logic

of the runtime analysis are assembled and form a “snapshot” in a well defined
descriptive language.

The snapshot together with a stylesheet corresponding to the target platform
will then be routed to a XSLT processor. The processor in turn will translate
all elements from the snapshot to a concrete representation as defined in the
stylesheet. In addition to a basic transformation of user interface elements into
a target language (e.g. WML), the stylesheet can contain rules on how to adapt
(or even substitute) certain GUI elements to the target device where necessary1.
New devices can be introduced at any time by providing a rule set for their
respective device class and mapping each GUI element from the source platform
to corresponding elements as indicated by their expressive power. The results of
the transformation are finally routed through a communication adapter and to
the target device itself. As part of this process, necessary adaptions to the basic
communication mechanism can take place (e.g. retranslation into SMS messages,
or even speech synthesis) as required by the device.

In the opposite direction, reactions on the target device will be intercepted
by the communication adapter, translated into an internal representation and
forwarded to an application adapter that will “replay” each event to the applica-
tion itself. It is an important design feature that the application will not be able
to distinguish between local user interaction and interaction “remote controlled”
through the integration infrastructure.

3 The Java Border Service Architecture

The Java Border Service Architecture (JBSA) realizes a supporting framework to
provide remote access to running Java applications. The JBSA can continuously
inspect applications, generate “snapshot” information of their user interface in
an abstract data representation and transform this abstract representation into
a concrete format as required by the target platform. Generated information can
be presented to the device using any transport mechanism as indicated by its
communication capabilities. In addition to mere inspection, analysis, transfor-
mation and transport, the JBSA framework will aid the mobile user in locating
1 Substitution can be necessary with WAP devices, for example, where horizontal

scrolling is not possible and tables sometimes can only be displayed when remapping
columns of a row to a vertical orientation.



168 S. Müller-Wilken and W. Lamersdorf

optimal applications for her needs, provide session control for multiple applica-
tion access and offer user authentication and authorization for enhanced security.

The requirement to realize a complete set of core services (e.g. RPC or event
queueing) on the mobile device itself, as necessary with many other integration
architectures, can be avoided when using the JBSA. As the application itself is
not relocated to the mobile device but rather accessed through a remote copy of
its presentation layer (i.e. its user interface), the only requirement arising will
be to provide enough functionality to view that copy — and using the JBSA´s
flexible mechanism of generating an abstract representation first, the copy can
be presented in a way that will best suit the viewing environment offered by the
device. No functionality has to be provided for any aspects concerning application
logic, since all parts dealing with data manipulation as well as the application
itself remain within the connected network. And as no libraries, or supporting
services have to run on mobile devices, the JBSA will be a preferable solution for
“closed” systems such as mobile phones, where modifications are hardly possible.

Device
Class
Catalog

Application

Factory

User
Manager

Application ShadowApplication Shadow

External
Communications

Adapter

External
Communications

Adapter
...

...

Manager
Session

Gatweway
JBSA

Application Application

Transformator

Fig. 3. The Java Border Service Architecture and its components

3.1 The JBSA and Its Components

A modular design was chosen for the JBSA, in which functional components are
grouped into independent services. The following section will give an overview
on each of the services currently realized.



JBSA: An Infrastructure for Seamless Mobile Systems Integration 169

External Communications Adapter. Any interaction of a mobile device
with the infrastructure will take place through one of the External Communi-
cations Adapters. ECAs are responsible for providing a communication channel
as necessary to meet the capabilities of a device class and mapping internal
JBSA communication to external communication with the device. Possible ex-
amples: translation to a WAP transport protocol, translation to SMS messages,
etc. ECAs will additionally provide basic session control capability to the mobile
device. They will decide which ECA instance to route certain events to, when
to declare a particular communication channel as interrupted, and the like.

JBSA Gateway. The JBSA gateway is responsible for routing events as inter-
cepted by a certain ECA (e.g. with a button being pressed or a list item being
selected) to a corresponding application. Additionally, the gateway controls the
various XSLT processors used to translate user interface “snapshots” into con-
crete representation formats. The gateway will finally realize a higher session
semantics. Supported by a session manager (see below), it will assign running
applications to certain users on the one side and certain ECA instances (and
hereby certain devices) on the other.

Application Shadow. Application Shadows are “chained” into the Java/
SWING user interface event queue mechanism of a running application and con-
tinuously monitor its state. Each application shadow is responsible for exactly
one application instance and can analyze its user interface to generate “snaps-
hots” in the “Java Swing Markup Language” (JSML), an XML–dialect specially
designed to describe graphical user interfaces. Each application shadow instance
offers a network interface used by the JBSA gateway to trigger snapshot crea-
tion, to fetch generated JSML documents and to “inject” user interaction back
into the running application´s event queue.

Application Factory. The Application Factory is responsible for the mana-
gement of applications registered with the JBSA infrastructure and available
for remote control from mobile devices. The application factory offers necessary
functionality to add applications and their respective startup parameters into
a central database and it is the factory´s duty to start applications and their
corresponding application shadow when triggered by the JBSA gateway.

Session Manager. The Session Manager realizes a session control at the ap-
plication layer within the JBSA infrastructure. While External Communications
Adapters form a device session that assigns a communication channel to a certain
device, the Session Manager realizes an application session to assign an applica-
tion context to a certain user. The Session Manager is responsible for temporary
suspension of a running session, e.g. when changing the device used to access
the application, and its subsequent reactivation after the user has reconnected
to the infrastructure at a later moment.



170 S. Müller-Wilken and W. Lamersdorf

User Manager. The User Manager serves to personalize the JBSA infrastruc-
ture. The User Manager organizes the user accounts known to the system and is
responsible for user authentication issues. In conjunction with the Session Ma-
nager described above, the User Manager serves to provide unique reference keys
for running application sessions as required to identify applications started by a
certain user and for a certain communication channel. In addition to that, the
User Manager will be used within the JBSA to store all user–specific information
such as lately used applications, preferences, etc.

Device Class Catalog. The Device Class Catalog (DCC) realizes a type ma-
nagement system for all device classes known to the JBSA infrastructure. For
each device class, the DCC holds a description on its unique characteristics and
the stylesheet necessary to create contents to be displayed by a device of that
class. Relations between arbitrary device classes can be stored in nets and will
be utilized whenever a stylesheet for a certain device class could not be found
but similarities to a known class were noticed. The DCC is used by both ECAs
and XSLT processors to find optimum stylesheets for devices they are generating
output for.

3.2 Functionality of the JBSA

This section gives a detailed description of a typical access cycle between ap-
plication and a mobile device integrated through the JBSA. Going through the
various steps that take place as part of the cycle, participating components of
the infrastructure are identified in their responsibilities and illustrated in their
interaction with other components.

Making Contact — Step 1

– The device accesses an external communication adapter through a suitable
access point (e.g. an HTTP–address or a dialup phone line). The ECA sends
a request to the Device Class Catalog to determine the class the target
device belongs, initializes a channel to the JBSA gateway and stores both in
a freshly generated device session.

– In a second substep, the ECA sends a request to the JBSA gateway to create
an application session for the device session generated in the previous step.

Initialization of an Application Session — Step 2

– The JBSA gateway creates a login dialog, translates it to a format indicated
by the device type reported from the external communcation adapter, and
sends the dialog to the ECA. The ECA forwards the request to the device
to query the necessary authentication information and retransmits its result
back to the gateway for further processing.



JBSA: An Infrastructure for Seamless Mobile Systems Integration 171

– The gateway sends a call to the user manager to check the validity of the
user identity. As part of a positive response the user manager will send all
information relevant to the starting phase (e.g. the user´s default application,
personal default parameters for the device class, etc.) back to the JBSA
gateway.

– The gateway makes a call to the session manager to check for the availability
of application sessions suspended on behalf of the user. The session mana-
ger will look through its local database and report all application sessions
carrying th users identifier back to the JBSA gateway.

– If suspended sessions belonging to the user could be identified, the JBSA
gateway will generate an appropriate selection dialog, asking the user if to
resume, cancel a suspended session or create a new session. The dialog data
will be sent to the ECA and on to the target device and the user choice back
to the gateway.

– If no session belonging to the user could be identified or if the user chose not
to pick up an existing one, the identifier for the newly created application
session in combination with the device session identifier reported from the
ECA in step one will be registered at the session manager.

Starting the Application — Step 3. Now, with a session between the target
device and the Border Service Architecture instantiated, the application has to
be started.

– The JBSA gateway sends the factory–identifier of the default application as-
signed to the user profile, the device class or the application scenario together
with a unique startup identifier to the Application Factory.

– The Application Factory scans its database for the factory–identifier coming
from the gateway to find the application path and startup parameters regi-
stered with it. Both, together with a unique startup identifier, are forwared
to a new Application Shadow which the factory has initialized for the appli-
cation session.

– The Application Shadow starts the selected application within its runtime
environment, “hooks” up with the application´s event queue and initializes
a communication channel to allow for further access through the JBSA ga-
teway. Information about this channel together with the startup identifier is
sent back to the JBSA gateway.

– The JBSA gateway uses the startup identifier reported back by the fres-
hly created Application Shadow togeher with the Shadows´s communication
channel to assign the latter to the application session as generated in step
two.

Using the Application — Step 4. As the application is running and the
Application Shadow is ready to generate user interface snapshots in JSML, the
actual interaction between target device and application instance sets in.



172 S. Müller-Wilken and W. Lamersdorf

– After registering the application as part of the application session with the
Session Manager, a request for a first user interface status is sent from the
JBSA gateway to the Application Shadow. To accomplish this, a connection
between the gateway and the Shadow registered with the application session
is opened and a JSML snapshot is fetched from it.

– The JSML snapshot is sent to the XSLT processor initialized with the sty-
lesheet identified by the Device Class Catalog for the target device. The
processor translates it into an appropriate representation and hands it back
to the gateway.

– The user interface snapshot, now in a representation suitable for a presen-
tation on the target device is sent forward to the External Communication
Adapter responsible for the target device.

– The user interface snapshot is presented to the user through some browser
installed on the device. The user can begin her interaction with the applica-
tion, e.g click a button of edit a text field.

– The browser reports any user interaction back to the External Communica-
tion Adapter. Considering the channel the interaction was reported through
(e.g. the phone line used for the interaction), the ECA assigns the incoming
interaction to a certain device session. The ECA transforms the reported in-
teraction event (e.g. pressing a button) into a form useable within the JBSA
infrastructure, combines it with the device session identifier and forwards
both to the JBSA gateway.

– Using the device session identifier, the JBSA gateway identifies the corre-
sponding application session. It extracts the Application Shadow assigned
to the session from the session record and forwards the event on to the
Application Shadow.

– The Application Shadow generates valid Java SWING events from the re-
quest coming from the JBSA gateway and “injects” them into the applica-
tion´s event queue for further processing. The application can not tell the
difference of an event generated by the Shadow to an event caused by local
interaction.

– The application reacts to the event as it would have done to a local user
interaction and changes its user interface according to changed status within
its application logic.

– After a short break (but still not noticeable to the user), the whole process
is reinitiated by the JBSA gateway and starts with another update request
to the Application Shadow.

4 Application Example

An office communication context was chosen as one application scenario for the
JBSA2. In this scenario, field workers need access to a central group calendar
held at a company´s back office. Modifications should be possible from any lo-
cation using a desktop PC as well as a PDAs or a mobile phone. The application
2 The application is limited in its functionality and thus meant as an example and not

a real time management software.



JBSA: An Infrastructure for Seamless Mobile Systems Integration 173

Fig. 4. A simple datebook application

offers basic functionality such as adding, modifying or removing dates (see fig.
4). It is implemented in a client/server design with a front end Java/SWING
user interface accessing a backend database via RMI. Multiple users interfaces
can access a single backend at a time and changes to the database will be pro-
pagated to all registered user interfaces at once. The application backend will
serialize incoming requests and keep the database consistent when processing
concurrent tasks. Stylesheets were designed for various target device classes such

Fig. 5. The datebook shown in different target representation formats

as 3Com PDAs, WAP phones (espec. Nokia 7110, Ericsson R380) and HTML
browsers (Netscape Communicator, Internet Explorer). Fig. 5 shows access to
the application from a WAP phone and a terminal using Netscape Communi-
catior. Even though actual handling differs sometimes significantly between two
device classes (and even among various WAP phones), all application functiona-
lity remains available for remote access. Changing from one device to another is
possible anytime and without losses at runtime using the JBSA. Support for new
device classes can be integrated even with applications being actively accessed.



174 S. Müller-Wilken and W. Lamersdorf

5 Conclusions and Future Work

Integrating mobile devices into existing system infrastructures represents one
important issue in distributed systems research today. Various approaches exist
but most of them show the drawback of being based on modifications to the
mobile device, the application to be accessed while on transit, or both.

This article proposes a new approach to the field based on the introduction
of an abstract layer between presentation layer and application logic of an ap-
plication. By means of a mechanism of generating user interface “snapshots”
on the fly and transforming generated descriptions through a flexible stylesheet
processor, all integration related problems can be hidden away from both the
application and the target device. This is of particular importance for mobile
devices, where a “closed” design renders modifications on the device itself hardly
possible most of the times, and resource limitations make porting of application
clients a difficult task even where third party code can be installed on the device
(e.g. for Java applications to be used from an average PDA). The principles de-
scribed were implemented in the “Java Border Service Architecture”, a modular
integration framework for mobile devices. This article gave an overview on the
architecture, its main components and their functionality. The actual operation
was described and, finally, a short application example was given.

Early experiences with the prototype implementation were very promising,
and a proof–of–concept could be derived from our tests. Access to Java client/ser-
ver applications could be realized for a number of target device classes including
first WAP phones on the market today. The development cycle to integrate new
devices could be drastically reduced as changes are only necessary to a stylesheet
while device and application can remain untouched.

We are currently implementing various enhancements to the “Java Border
Service Architecture”. Additions to the session management will allow for a user
transparent reactivation of multiple suspended application sessions. Improve-
ments to the user management will make it possible to use unique mobile device
identifiers (such as GSM SIMs) for authentication purposes. And we are invesi-
gating if JBSA support can also be realized for non-Java programming platforms
such as native Win32 or Unix (Motif, Qt or similar) applications.

The JBSA is being developed as part of the Hydepark project, in which the
University of Hamburg’s Distributed Systems Group is developing and evalua-
ting new methods on how to integrate mobile devices into distributed system
infrastructures. Another subproject within the Hydepark context is currently
working on ways to integrate non–Java devices into SUN´s “Java Intelligent
Network Infrastructure” (JINI) [7] using the JBSA. JINI itself features an ap-
proach comparable to JBSA with so called “service proxies” acting as loosely
coupled front end interfaces to corresponding service instances. The JINI frame-
work is thoroughly done in Java and consequently not accessible from non–Java
devices at this time. A combination with the JBSA will eliminate this drawback
and give access to JINI–enabled services from any location and with arbitrary
devices, making JINI even more appealing as a platform for distributed systems
design.



JBSA: An Infrastructure for Seamless Mobile Systems Integration 175

References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., and Shuster,
J. UIML: An Appliance Independant XML User Interface Language. In Proc. 8th
International World Wide Web Conference (Toronto, Canada, May 1999).

2. Adams, N., Gold, R., Schilit, W., Tso, M., and Want, R. An infrared net-
work for mobile computers. In Proc. of USENIX Symposium on Mobile Location–
Independant Computing (Cambridge, Mass., 1993), pp. 41–52.

3. Adler, S., Berglund, A., Caruso, J., Deach, S., Grosso, P., Gutentag, E.,
Milowski, A., Parnell, S., Richman, J., and Zilles, S. Extensible Stylesheet
Language (XSL) 1.0. Tech. Rep. WD-xsl-20000327, W3C, March 2000.

4. Boyer, J., Bray, T., and Gordon, M. Extensible Forms Description Language
(XFDL) 4.0. Draft Specification NOTE-XFDL-19980902, W3C, September 1998.

5. Bray, T., Paoli, J., and Sperberg-McQueen, C. Extensible Markup Language
(XML) 1.0. W3C Recommendation REC-xml-19980210, W3C, Feb 1998.

6. Clark, J. XSL Transformations (XSLT) 1.0. W3C Recommendation REC-xslt-
19991116, W3C, November 1999.

7. Edwards, W. K. Core JINI. The SUN Microsystems Press Java Series. Prentice
Hall PTR, Upper Saddle River, NJ, 1999.

8. Forman, G., and Zahorjan, J. The challenges of mobile computing. IEEE
Computer (April 1994), pp. 39–47.

9. Imielinsky, T., and Korth, H. F., Eds. Mobile Computing. Kluwer International
Series in Engineering and Computer Science. Kluwer Academic Publishers, 1996.

10. Jing, J., Helal, S., and Elmagarmid, A. Client–server computing in mobile
environments. ACM Transactions On Database Systems (Prelim.Version, 1999).

11. Joshi, A., Weerawarana, S., Drashansky, T., and Houstis, E. Science-
pad: An intelligent electronic notepad for ubiquitous scientific computing. In
Proc.International Conference on Intelligent Information Management Systems
(IASTED’95) (Washington, USA, December 1995), Purdue University, Dept. Of
Computer Science.

12. Lei, H., Blount, M., and Tait, C. DataX: an approach to ubiquitous data-
base access. In Proc. 2nd IEEE Workshop on Mobile Computing Systems and
Applications, WMCSA’99 (New Orleans, USA, Feb. 1999).

13. McDirmid, S. A distributed virtual machine architecture for mobile java applica-
tions. Handheld Systems 6, 5 (Sep./Oct. 1998), 37–42.

14. Murer, S., Schnorf, P., Gamma, E., and Weinand, A. Eine realistische Ap-
plikationsarchitektur f r Multi–Tier Java–basierte Clients in der Praxis. in: Java
in der Praxis. d.Punkt Verlag, Heidelberg, Germany, 1998, ch. 9.

15. Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A. Vir-
tual network computing. IEEE Internet Computin 2, 1 (Jan/Feb 1998), 33–38.

16. Roman, M., Singhai, A., Carvalho, D., Hess, C., and Campbell, R. H. In-
tegrating PDAs into distributed systems: 2k and PalmORB. In Handheld and Ubi-
quitous Computing – First International Symposium on Handheld and Ubiquitous
Computing (HUC 99) (Heidelberg, Germany, September 1999), H.-W. Gellersen,
Ed., no. 1707 in Lecture Notes in Computer Science, Springer–Verlag.

17. Satyanarayanan, M. Fundamental challenges in mobile computing. In Proc.
14th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC) (Ottawa, Canada, August 1995), ACM.

18. Satyanarayanan, M. Mobile information access. IEEE Personal Communicati-
ons 3, 1 (February 1996).


	Introduction
	Integration through Abstraction
	The Java Border Service Architecture
	The JBSA and Its Components
	Functionality of the JBSA

	Application Example
	Conclusions and Future Work



